
Proving properties
of lazy functional programs with Sparkle

Maarten de Mol, Marko van Eekelen and Rinus Plasmeijer

{maartenm, marko, rinus}@cs.ru.nl
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

Abstract. This tutorial paper aims to provide the necessary expertise
for working with the proof assistant Sparkle, which is dedicated to the
lazy functional programming language Clean. The purpose of a proof
assistant is to use formal reasoning to verify the correctness of a computer
program. Formal reasoning is very powerful, but is unfortunately also
difficult to carry out.
Due to their mathematical nature, functional programming languages are
well suited for formal reasoning. Moreover, Sparkle offers specialized
support for reasoning about Clean, and is integrated into its official
development environment. These factors make Sparkle a proof assistant
that is relatively easy to use.
This paper provides both theoretical background for formal reasoning,
and detailed information about using Sparkle in practice. Special atten-
tion will be given to specific aspects that arise due to lazy evaluation and
due to the existence of strictness annotations. Several assignments are
included in the text, which provide hands-on experience with Sparkle.

1 Introduction

In 2001, the distribution of the lazy functional programming language Clean
[?,?,?] was extended with the dedicated proof assistant Sparkle [?]. The pur-
pose of a proof assistant is to verify the correctness of a computer program
without executing it. This is accomplished by means of the mathematical pro-
cess of formal reasoning, which makes use of the source code of the program and
the semantics of the programming language.

Sparkle is intended as an additional tool for the Clean-programmer and
aims to make formal reasoning accessible. It is conveniently integrated into the
official Development Environment of Clean, allows reasoning on the level of
the programming language itself and offers dedicated support for dealing with
Clean-programs. Unfortunately, formal reasoning is a complex mathematical
process that requires specialized expertise. Therefore, it is often still difficult to
carry out, even in dedicated proof assistants such as Sparkle.

In practice, Sparkle has already been applied for various purposes. It has
been used for proving properties of I/O-programs by Butterfield[?] and Dowse[?].
In [?,?], Tejfel, Horváth and Koszik have proposed an extension for it for dealing

with temporal properties. Support for class-generic properties has been added
to it by van Kesteren[?]. Furthermore, it has also been used in education at the
Radboud University of Nijmegen.

The purpose of this paper is to provide the information that is necessary
for functional programmers to start making use of Sparkle. A combination of
both theoretical and practical expertise will be provided. No special knowledge
is required to understand the contents of this paper: a basic understanding of
lazy functional languages and elementary logic suffices. Upon completion of this
paper, the reader will be able to use Sparkle to prove basic properties of small
Clean-programs with minimal effort. Furthermore, a solid foundation will be
laid for proving properties that are more complex.

This paper is structured as follows. First, the concept of formal reasoning
will be explained independently of Sparkle in Section 2. Then, the important
design principles of Sparkle will be summarized in Section 3, and their effect
on the way that formal reasoning is implemented will be explained. Then, in
Sections 4 and 5 a tutorial of the use of Sparkle in practice is presented.
The first part (Section 4) presents a step-by-step introduction of all the basic
features of Sparkle; the second part (Section 5) describes several advanced
features that are specific for Sparkle. We discuss related work in Section 6 and
draw conclusions in Section 7. Finally, the complete tactic library of Sparkle
is summarized separately in Appendix A.

The tutorial is written in explanatory style and contains various assignments
with which the provided theory can be put into practice. The answers to these ex-
ercises can be found at http://www.cs.ru.nl/vmarko/research/sparkle/cefp2007/.

2 Formal reasoning

In the following sections, a general introduction to formal reasoning will be
presented independently of Sparkle. In Section 2.1, formal reasoning will first
be described as an abstract process that transforms input to desired output. In
Section 2.2, the underlying formal framework will be identified; this framework is
a prerequisite for carrying out formal reasoning. The most important component
of the framework is the proof language, which will be explored in more detail
in Section 2.3. Finally, the soundness of formal reasoning will be discussed in
Section 2.4.

2.1 The abstract process of formal reasoning

Formal reasoning is a mathematical process that fully takes place on the formal
level. The goal of formal reasoning is to verify the correctness of some kind of
formal object by means of reasoning about it. The process as a whole can roughly
be characterized as follows:

1. Formalize an object o;
2. Formalize a property p that says something about o;

2

3. Build a formal proof that shows that p holds for o.

If formal reasoning succeeds and a formal proof is built, then it is shown with
absolute certainty that the formalized object o behaves as specified by means
of property p. This holds for all environments in which o may occur, because
the formal proof is obliged to take all possible circumstances into account. As
such, a positive result of formal reasoning is more powerful than for instance a
positive result of testing, which is restricted by the test-set that was used.

If formal reasoning does not succeed in building a proof, however, then not
much information has been gained. It may either be the case that o is incorrect,
or it may be the case that the desired behavior of o was incorrectly specified by
p, or it may simply be the case that the proof builder did not build the proof in
the right way. A negative result of formal reasoning is hard to interpret correctly
and is therefore less useful than a negative result of for instance testing.

2.2 Formal framework

Formal reasoning makes use of the formal representations of the object to reason
about (input), the property to prove (input) and the proof to be built (output).
Moreover, to ascertain the soundness of reasoning (see Section 2.4), a formal
semantics that assigns a meaning to properties must be available as well. The
combination of these prerequisites of reasoning will be called a formal framework:

Definition 2.2̂.1: (formal framework)
A formal framework is a tuple (O, P, ²o,`o) such that:
• O is the set that contains all possible objects to reason about;

99K (o ∈ O denotes that o is a valid object to reason about)
• P is the set that contains all possible properties that may be specified;

99K (p ∈ P denotes that p is a valid property to prove)
• ²o is the relation that defines the semantics of properties;

99K (²o p denotes that p ∈ P holds in the context of o ∈ O)
• `o is the derivation system that defines proofs of properties.

99K (`o p denotes that a proof of p ∈ P exists in the context of o ∈ O)
(The formal framework of Sparkle is described completely in [?]. In the
remainder of this paper, it will be treated implicitly only.)

Note that the elements of a framework are connected: it must be possible to
refer to components of objects within properties; the semantics of a property
can only be determined in the context of a given object; and the derivation of a
proof depends on a given object as well.

Using the notations introduced by the formal framework, formal reasoning
can now be characterized as follows:

Definition 2.2̂.2: (formal reasoning)
Formal reasoning is the process that given a formal framework (O, P, ²o,`o),
a specific object o ∈ O and a specific property p ∈ P , attempts to determine
whether `o p holds or not. From the soundness of the formal framework it
then follows that ²o p holds as well.

3

In other words, the goal of formal reasoning is to determine ²o by means of `o.
This approach only makes sense for frameworks in which `o is less complicated
than ²o, which is often the case, because derivation systems are usually simpler
than semantic relations.

2.3 Proof language

The most important component of the formal framework is the proof language,
which is usually represented by means of a derivation system. The derivation
rules of this system are reasoning steps that form the building blocks of proofs.
Building proofs is basically the repeated application of these reasoning steps,
and can be characterized as follows:

– Goal: prove a property p.
– Apply: reasoning step R. This transforms p to p1, . . . , pn. If n = 0, then the

proof is complete (R proves p). Otherwise, p1, . . . , pn become the new goals
which all have to be proved recursively by the same reasoning process.

– Goal: prove all properties p1, . . . , pn.

In other words, reasoning steps are functions that transform propositions into
(possibly more) propositions, and the proof language is the set of functions
that one is allowed to apply during reasoning. Furthermore, reasoning itself is
‘goal-busting’: at each point in time a number of propositions (goals) have to
be proved, and these propositions can be simplified (busted) by means of the
repeated application of predefined reasoning steps.

The result of reasoning is a derivation tree in which the nodes are propositions
(and the root node is the initial proposition to prove) and each set of edges
leading from a single node corresponds with a reasoning step. Edges in this tree
do not necessarily have to lead to another node, because reasoning steps may
produce the empty list of propositions. The leaves of the tree are the propositions
that still have to be proved.

The derivation tree is of course the formal representation of a proof. It can
easily be serialized, provided that the reasoning steps are named. A serialized
proof can be transferred to anyone with knowledge of the formal framework that
it uses. Furthermore, the receiver can even automatically check the validity of
the proof by re-running it. Note that validating proofs is easy, because it only
requires the formal framework, but building proofs is difficult, because it requires
the continuous selection of the ‘right’ reasoning step.

2.4 Soundness of formal reasoning

Building formal proofs is an exercise in the repeated simplification of propositions
according to predefined reasoning steps. This, however, is a purely syntactic
exercise that does not take the actual meaning of propositions into account in
any way. In order for the results of reasoning to be meaningful, the underlying
formal framework must be sound as well:

4

Definition 2.4̂.1: (soundness of formal frameworks (1))
A formal framework (O, P, ²o,`o) is sound if for all o ∈ O and p ∈ P it holds
that `o p implies ²o p.

Because `o is composed of individual derivation rules, the soundness of a formal
framework as a whole can be determined by verifying these rules as follows:

Definition 2.4̂.2: (soundness of a derivation rule)
A derivation rule R ∈`o is sound if for all p ∈ P it holds that ²o (p1∧. . .∧pn)
implies ²o p, assuming that R(p) = p1, . . . , pn.

Definition 2.4̂.3: (soundness of formal frameworks (2))
A formal framework (O, P, ²o,`o) is sound if all its derivation rules R ∈`o

are sound.

Formal reasoning only makes sense if the underlying formal framework is sound.
Soundness should therefore preferably be proved explicitly. If the complexity of
the derivation system makes this too difficult, then some degree of confidence can
still be gained from practice (‘no untrue propositions have ever been proved, so it
must be correct’), but this weakens the results of formal reasoning considerably.
The soundness of the formal framework of Sparkle has been proved in [?].

Finally, note that for the usefulness of formal reasoning it is important that
the reverse property of completeness (for all properties p, ²o p implies `o p) holds
too. Full completeness is extremely difficult to achieve for complex frameworks.
Using proof theory, however, it can usually be approximated quite closely.

3 Design principles of Sparkle

The main purpose of Sparkle is to allow functional programmers to reason
about the Clean-programs that they are developing, which improves the quality
of the program as a whole. The reasoning support that Sparkle offers is in the
first place tailored towards this main purpose, although in general Sparkle is
also useable for anyone who would like to reason about functional programs. In
particular, a frontend for Haskell’98 is currently being added to Clean, which
in the future would allow reasoning about mixed Clean/Haskell-programs.

In the following sections, the effect that the main purpose of Sparkle has
on its design will be explored closely. In Section 3.1, first the intended users
of Sparkle will be analyzed in detail. Then, in Section 3.2 a list of resulting
consequences for the design will be presented. Finally, the important consequence
of dedicated reasoning will be explored in detail in Sections 3.3 and 3.4.

3.1 Intended users: functional programmers

The intended users of Sparkle are functional programmers, or more specifically
anyone who has downloaded the Clean-distribution and is developing programs
with it. Of course, there is much diversity in this group, and there is no such
thing as ‘the functional programmer’. Still, for the sake of design, we will make
the following tentative assumptions about the intended users of Sparkle:

5

– they do not necessarily have much experience with formal reasoning, and
may not even know about it at all;

– they often have some theoretical background, and usually have at least a
basic understanding of elementary logic;

– they usually have good knowledge of functional programming in general and
of Clean (and its semantics) in specific;

– they are not necessarily aware of the benefits of formal reasoning for the
purpose of improving the quality of software;

– they are mainly interested in the programs that they develop.

Other proof assistants may be geared towards different users; for instance, the
major independent proof assistants (such as for instance Pvs [?] and Coq [?])
are mainly intended for logicians who already know about formal reasoning and
are interested in it as well.

3.2 Design choices

Sparkle implements a theoretically sound formal framework, and therefore fully
supports general formal reasoning on the fundamental level. In its design, how-
ever, Sparkle focuses mainly on functional programmers as its intended users.
The most important choices in the design of Sparkle are:

– The object language should be Clean, because this allows programmers to
reason on the level of the programming language, which is their area of
expertise. Although this has not been realized fully, a good approximation
by means of Core-Clean has been adopted by Sparkle (see Section 3.4).

– For the property language, it suffices to use a standard first-order logic which
has been extended with an equality on arbitrary program expressions. In such
a logic most common properties can be expressed easily. Moreover, functional
programmers are likely to be capable of handling standard first-order logic.
The property language will be introduced in the tutorial in Section 4.3.

– The semantics of the property language should conform to the semantics of
Clean. This ensures that properties that are proved with Sparkle hold for
the real-world Clean-program as well. This is achieved by giving ‘e1 = e2’
the meaning ‘it is possible to interchange e1 with e2 in any program without
changing its observational behavior’. The full semantics will be introduced
on an informal level in the tutorial in Section 4.4.

– Formal reasoning should be integrated with programming, such that switch-
ing between the two activities becomes easy. This makes formal reasoning
more attractive, because it is linked to an activity that is carried out contin-
uously. The integration of Sparkle is realized by allowing it to be started
directly from the IDE (Integrated Development Environment) of Clean, in
which case the current project is loaded automatically in Sparkle.

– The reasoning steps of Sparkle should be specialized for dealing with lazy
functional programs in general, and for dealing with Clean in specific. In
particular, lazy evaluation and explicit strictness have a profound influence

6

on semantics, and therefore on reasoning as well. The specialized features of
Sparkle will be described in Section 5.

– The first impression of Sparkle should be positive, and should entice pro-
grammers to continue with formal reasoning. This is realized by Sparkle’s
attractive user interface (see tutorial), and by allowing small proofs to be
carried out automatically with the hint mechanism (see Section 4.5).

– Sparkle should have up-to-date and extensive documentation. This paper
is the first attempt to achieve this goal.

The design choices with the most profound influence on Sparkle are the level
of the object language and the specialization of the reasoning steps. The conse-
quences of the level of the object language will be examined further in Sections
3.3 and 3.4; the specialized features of Sparkle will be described in detail later
in Section 5.

3.3 Dedicated vs general-purpose formal reasoning

If one wants to add support for formal reasoning to a specific programming
language, two different approaches can be taken:

1. Build one’s own dedicated proof assistant that directly supports reasoning
on the level of the programming language itself; or

2. Build a shell around an existing general-purpose proof assistant, combined
with a translation mechanism to and from its object language.

Currently, several good general-purpose proof assistants are available in practice,
such as for instance Pvs [?], Coq [?] and Isabelle [?]. These proof assistants all
have a large user base and make use of well-developed formal frameworks that are
extremely expressive and powerful. In the shell approach, such a well-established
formal framework is re-used automatically, which is a major advantage.

Unfortunately, general-purpose proof assistants have a major disadvantage as
well: none have an object language that fully supports the semantics of Clean,
which is based on lazy graph-evaluation with explicit strictness. Therefore, the
evaluation mechanism of the proof assistant cannot be re-used, and an interpreter
for Clean has to be built completely within the object language of the general-
purpose proof assistant. This has the following important drawback:

actual reasoning no longer takes place on the level of the Clean-program,
but instead on a meta-representation of it in the object language of the
general-purpose proof assistant

From the programmer’s point of view, however, it is crucial that reasoning at
least appears to be taking place on the level of the Clean-program. In the case
that a general-purpose proof assistant is used, it is therefore the task of the shell
to hide the underlying meta-level completely from the end user. Consequently,
applying a reasoning step in a shell actually requires three activities: (1) translate

7

the program and the reasoning step to the meta-level; (2) execute the reasoning
step on the meta-level; (3) translate the feedback back to the programming level.

To summarize, the shell approach has the advantage that a well-established
formal framework is re-used, but the disadvantage that an interpreter and a
two-way translation and communication mechanism have to be realized. We feel
that the general-purpose approach poses more practical problems than it offers
advantages; therefore, we have chosen to make use of the dedicated approach.

In hindsight, Sparkle has been the result of only about 18 ‘man-months’ of
work, which shows that writing one’s own dedicated proof assistant is certainly
doable. We estimate that writing a shell would have taken considerably more
effort. On the other hand, the formal framework of Sparkle does lack some
expressiveness, but this has turned out to be only a slight disadvantage for
reasoning about functional programs.

3.4 Sparkle’s approximation of dedicated reasoning

Sparkle is a dedicated proof assistant and aims to support formal reasoning on
the level of the programming language itself. Clean, however, is a real-world
programming language with an extensive syntax and lots of syntactical sugar.
Reasoning on the level of Clean requires explicit support for all of its constructs,
both on the practical level (definition of reasoning steps) and on the theoretical
level (semantics). Unfortunately, the complexity of Clean makes it extremely
difficult to use it as the object language of a formal reasoning framework.

It is important that formal reasoning itself is as easy as possible. For this
purpose, Sparkle simply cannot operate on the level of full Clean. Instead, a
simplification of Clean will be used. This simplified version of Clean is called
Core-Clean and is actually the intermediate representation of the compiler.
Although Sparkle does not allow reasoning on the level of Clean itself, using
Core-Clean is still a good approximation of dedicated reasoning, because:

– Core-Clean has the same expressive power as Clean.
In other words: any Clean-program can be transformed to an equivalent
Core-program, on which reasoning with Sparkle is possible. Furthermore,
the transformation itself has already been implemented in the actual Clean-
compiler. Because both Sparkle and the compiler are written in Clean,
the existing transformation can be re-used. This not only saves a lot of time,
but also ensures soundness of the transformation.

– Core-Clean is a subset of Clean.
Programs in Core-Clean can easily be understood by Clean-programmers,
because they make use of the syntax and semantics of Clean. Understanding
the program to reason about is vital for the success of formal reasoning.

– Programs in Core-Clean are very similar to their Clean-originals.
This ensures that much of the programmer’s expertise of the source program
is still valid on the Core-Clean level. Again, this greatly increases the
understanding of the program to reason about.

8

The language Core-Clean will be defined informally in the Tutorial in Section
4.1. There, the feature of Sparkle to present Core-programs as if they were
Clean-programs will also be explained. This feature brings Core-Clean even
closer to Clean.

4 Tutorial part I: getting started with Sparkle

In the following sections, a step-by-step introduction of the basic functionality
of Sparkle will be presented. The introduction covers the user interface, the
specification of programs and properties, the semantics, and the three different
supported styles of reasoning. At various places assignments are included, with
the purpose of giving the reader the opportunity to gain hands-on experience
with the Sparkle proof assistant.

The tutorial will be continued in Section 5, in which the specialized features
of Sparkle will be described. A summary of all available reasoning steps is given
in Appendix A.

4.1 Loading a program

The first step of formal reasoning with Sparkle is loading a Clean-program
into its memory. This program provides the context information that is required
for stating and proving properties. The fastest way of starting Sparkle and
loading a program is by means of the standard IDE of Clean, in which access
to Sparkle has been integrated:

Assignment 1: (loading a program into Sparkle automatically)
(a) Open the Clean-project primes.prj in the Examples\CEFP folder.
(b) Examine the code of the main module (primes.icl) and attempt to predict

the behavior of the program. Then, compile and run the program.
(c) Find the Theorem Prover Project option and use it to launch Sparkle.

Internally, Sparkle maintains its own representation of the program. In this
representation, a program is simply considered to be a list of (interdependent)
modules, and each module is considered to be a list of definitions. Sparkle does
not distinguish between the definition (.dcl) and implementation (.icl) parts
of a module and allows access to all components of a program at any time.

Program :== Module∗

Module :== Definition∗

Definition :== Algebraic Type | Record Type | Function | Class | Instance

Sparkle has a powerful graphical user interface that allows the structure of the
loaded program to be inspected in detail:

Assignment 2: (browsing through the program structure)
(a) Find the window that displays the list of modules that are currently loaded.

In this list, find the primes module and open it.

9

(b) The opened window actually filters all available definitions with the formula
‘functions from the primes module’. Change the filter to find all functions
in StdList and StdFunc that begin with the letter ‘s’.

The user interface also allows each individual definition of the loaded program
to be displayed in a separate window. Furthermore, these definition windows are
interconnected by means of the symbols that are used within it:

Assignment 3: (browsing through the program components)
(a) Open the definition of the function isPrime in the primes module.
(b) Follow the internal link to the canBeDividedByAny function.
(c) Follow the internal link to the predefined rem function.

Sparkle is a dedicated proof assistant that aims to support reasoning on the level
of the programming language. Unfortunately, reasoning on the level of Clean
is not practical, because of the many different syntactical constructs that are
allowed. Therefore Sparkle uses Core-Clean, which is basically the subset of
Clean in which all syntactic sugar has been removed, as intermediate reasoning
language. The only remaining definitions in Core-Clean are algebraic types
and global functions, and expressions may only be constructed by means of
applications, case distinction and lets.

Even though Core-Clean is a small language only, all Clean-programs
can be represented in it. When a Clean-program is loaded into Sparkle, it is
always automatically converted to Core-Clean. As a result, the program in the
memory of Sparkle differs from the original Clean version. Some important
differences between the Clean-program and its Core-Clean-equivalent are:

– all local functions have been lifted to the global level;
– all pattern matches have been transformed to case distinctions;
– all sharing has been expressed by means of recursive lets;
– all overloading has been expressed by means of dictionaries;
– all synonym types and macro’s have been expanded fully;
– all list comprehensions and dot-dot-expressions have been transformed to

function applications.

Fortunately, the differences between the internally loaded Core-Clean program
and the original Clean version only have a slight effect on reasoning, and are
therefore hardly noticeable most of the time. Furthermore, the user interface of
Sparkle is able to optionally display parts of Core-Clean programs in the
syntax of their original Clean versions:

Assignment 4: (effect of the optional display options)
(a) Open the function definitions isPrime and canBeDividedByAny from the

primes module and span from the StdList module.
(b) Toggle the display options Pattern Matching and Case/Let vs #/!. The

‘real’ Core-Clean program is displayed when the options are toggled off.
(c) There is one difference between the internal version of isPrime and the

Clean version that cannot be hidden. What is this difference?

10

4.2 Undefinedness in Clean and Core-Clean

As in any other programming language, computations in Core-Clean and in
Clean can terminate erroneously. This can happen in a number of situations,
for example when dividing by zero, or when a partial function is applied to an
argument for which it was not intended. Additionally, Clean even offers two
standard functions that always terminate erroneously, namely abort and undef.

One of the features of lazy languages is that it is possible for a computation
to produce a (partial) end result, even when it contains subcomputations that
terminate erroneously. This is only possible, however, when the subcomputation
is not needed for producing the end result at all.

Assignment 5: (partial undefinedness in practice)
(a) Open the undefined project with the IDE. Run and compile it.
(b) Replace the body of my undefined with another computation that also

terminates erroneously.
(c) Cycle through the available Start bodies and examine the run-time results.

A formal model of Clean needs to be able to handle expressions that contain
undefined subexpressions. For this purpose, Core-Clean defines the additional
expression alternative ‘⊥’. This constant expression is treated as a base value
of any type, because a computation of any type can terminate erroneously. All
different kinds of errors are treated equally; therefore, only one ⊥ suffices and it
does not need additional arguments.

Note that ⊥ is a special value with special characteristics. It cannot be used
as a pattern, or in a case distinction. In fact, it is not possible at all in Clean
to produce a defined result based on a successful check of undefinedness.

Assignment 6: (undefinedness cannot be detected)
(a) What famous (unsolvable) problem would be solved if it was possible to

detect undefinedness within a Clean program?

4.3 Stating a property

A property in Sparkle is a logical statement, either true or false, that deals with
the executional behavior of a Clean-program. Properties can be used to state
that the program functions correctly with respect to its specification. Expressing
the desired behavior of a program by means of properties is very useful.

Sparkle allows properties to be expressed in an extended first-order logic.
The usual logic operators ¬ (not), ∧ (and), ∨ (or), → (implies) and ↔ (iff) are
supported, as well as the quantors ∀ (for all) and ∃ (exists), and the constants
TRUE and FALSE. Variables and quantors can range over propositions and over
expressions of an arbitrary type, but not over predicates or relations of any kind.
To state properties of programs, the logic also supports equality on expressions.

11

Prop :== VarProp

| TRUE | FALSE
| ¬Prop | Prop ∧ Prop | Prop ∨ Prop | Prop → Prop | Prop ↔ Prop
| ∀VarProp .Prop | ∀VarExpr .Prop | ∃VarProp .Prop | ∃VarExpr .Prop
| Expr = Expr

Many concepts of the proposition level are also available on the expression level,
which can be a little confusing. Note for instance the subtle differences between:

– True and False, which are expressions of type Bool, and TRUE and FALSE,
which are propositions;

– not, && and ||, which are Clean-functions that operate on values of type
Bool, and ¬, ∧ and ∨, which are operators that connect propositions;

– ==, which is an overloaded Clean-function that produces a Bool and must
be defined manually for each type, and =, which produces a proposition and
is available automatically for each type.
(the Clean-function == is computable and cannot compare undefined values,
while the formal = is not computable and can compare undefined values; this
additional expressiveness is really important, because many properties have
definedness preconditions that could otherwise not be expressed)

Assuming the context of the primes project, examples of properties are:

1. ∀P∀Q.(P ∧Q) ↔ (Q ∧ P)
2. 17 > 12 = True
3. ∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
4. ∀xs.reverse (reverse xs) = xs
5. ∀n∀xs.(n < length xs = True) → length (take n xs) = n
6. ∀i∀j .(i > j = True ∧ j > 0 = True) → primes !! i > primes !! j = True

Of these properties, the first does not refer to any component of the program; in
fact, it is a tautology which is independent of any program. The second property
refers to the function >, which is defined for integers in the module StdInt. The
third, fourth and fifth properties refer to the functions map, ++, reverse, take
and length, which are all defined in the module StdList. The sixth property,
finally, is the only property that is really specific for the primes project. It
not only depends on the standard functions > and !!, but also on the primes
function of the primes module.

Assignment 7: (validity of the example properties)
(a) Of the six example properties, only five are true, and one is in fact false (it

needs an additional precondition). Which one is false?
(Hint: lists may be infinite in Clean)

(b) What happens to the sixth property if either i or j is undefined?

The only way to enter properties in Sparkle is by means of textual input. The
parser allows the natural syntax to be used, with the following conventions:

12

– ~P denotes ¬P ;
– P /\ Q denotes P ∧Q;
– P \/ Q denotes P ∨Q;
– P -> Q denotes P → Q;
– P <-> Q denotes P ↔ Q;
– _|_ denotes ⊥;
– [x] denotes ∀x; and
– {x} denotes ∃x.

Type-checking of propositions is performed automatically by Sparkle. During
this check, the types of the variables are inferred as well. Alternatively, it is also
possible to explicitly specify the type of a variable in a quantor. These explicit
types may contain type variables, which are implicitly assumed to be bound by
universal quantors. Typed quantors are denoted by:

– [x::a] denotes ∀x::a; and
– {x::a} denotes ∃x::a.

Assignment 8: (specify the example properties (1))
(a) Use New Theorem to manually enter all six example properties.

(Hint: in case of failure, attempt to add brackets)

Assignment 9: (specify properties with overloading)
The manual specification of types is essential when making use of overloading:
(a) Without explicit types, attempt to specify ∀x∀y.x + y = y + x.
(b) Use explicit types (x ::Int, y ::Int) to help Sparkle solve the overloading

in ∀x∀y.x + y = y + x.

For the sake of convenience, Sparkle offers two features to make the manual
specification of properties easier:

– Each free symbol in the proposition is assumed to be a variable, and a
universal quantor is created automatically for it. This feature allows universal
quantors to be omitted when specifying properties. It also means, however,
that mistyping the name of an identifier, or using an identifier that is not
defined by the current program, does not lead to a bind error, but instead
results in an incorrect universal quantor.

– When possible, boolean expressions are automatically lifted to propositions
by implicitly adding ‘= True’. This feature shortens specifications, but may
also lead to confusion between the expression and the proposition level. Note
that the ‘= True’ behind a lifted boolean expression is not even displayed
by Sparkle if the Boolean Predicates display option is turned on.

Assignment 10: (specify the example properties (2))
(a) Specify the example properties again, using the features described above.

Do not quit Sparkle afterwards.

13

Sparkle organizes theorems and proofs into sections, much in the same way as
Clean organizes definitions into modules. Sections are stored in a semi-readable
internal format in Sparkle’s \Sections subdirectory. Theorems and (parts of)
proofs can be assigned to individual sections, which must then be saved explicitly.
A warning to new users: Sparkle does not save sections automatically, and does
not prompt you to do so either!

Assignment 11: (save properties into sections)
(a) Create a new section with the name temp.
(b) Open both the main section and the temp section.
(c) Move the example properties from the main section into the temp section.
(d) Save the temp section and quit Sparkle.

Of course, sections can be loaded into Sparkle as well. Because the contents
of a section may depend on various other components, the following actions are
carried out when a section is loaded:

– First, it is verified if the symbols are available that are required for stating the
properties of the section. If this is not the case, then the section is not loaded
at all. Otherwise, theorems are created for the properties of the section. The
proofs themselves, however, are not loaded yet.

– Then, the sections are loaded recursively that contain the theorems that are
used within the proofs of the top-level section.

– Finally, the proofs of the section are loaded and carried out again, step by
step. If a step fails, which may be the case if a definition within the program
has been altered (but its name and type were unchanged), then the proof is
loaded partially until the error point.

After this process, it can be guaranteed that the internal state of Sparkle is
consistent, and that all proofs that were loaded successfully are valid.

Assignment 12: (load sections into memory)
(a) Start Sparkle manually (directly and not from within the IDE).
(b) Attempt to load the predefined section lists.
(c) Open the primes project from within Sparkle.
(d) Load the predefined section lists.
(e) Load the section temp of the previous assignment.

4.4 The meaning of properties

The meaning of properties is described by a formal algorithm that determines
whether a given property, in the context of a given program, is true or false.
This algorithm is expressed at the formal level only, and cannot be executed in
practice, neither by a human nor by a computer. If it could be executed, formal
reasoning would not have been necessary in the first place.

14

A meaning must be provided for all alternatives of Sparkle’s first-order
logic, which was introduced in Section 4.3. This logic contains both standard
elements (TRUE, FALSE, ¬, ∧, ∨, →, ↔, ∀ on propositions, ∃ on propositions)
and customized ones (=, ∀ on expressions, ∃ on expressions). The meaning of
the standard elements is the same as in standard logic, which we assume to be
well-known. The meaning of the customized elements is as follows:

– The equality e1 = e2 holds if for all programs P the observational behavior
stays the same if e1 is interchanged with e2 (or vice versa, e2 with e1). The
observational behavior of a program is the visible output that is produced
when it is executed. Sparkle cannot deal with programs that perform I/O;
therefore, only output that is displayed on the console is considered.
To be able to determine the equality between observational behaviors, it has
to be taken into account that programs may not terminate, and that the
output that they produce may be infinite. On the formal level, observational
behavior is therefore modelled by time indexed streams, and bisimulation
is used to determine equality. On the intuitive level, this is equivalent to
assuming that infinite time is available to programs, and that the resulting
infinite streams are equal only if all their finite substreams are equal.
Finally, note that it is not possible to determine if e1 and e2 are semantically
equal based only on the observational behaviors of the programs Start =
e1 and Start = e2. This is because e1 and e2 may be functions that only
produce meaningful output when they are supplied with arguments.

– The universal quantification ∀x.P holds if for all wellformed expressions E
the instantiated proposition P [x 7→ E] holds. An expression E is wellformed
if the resulting P [x 7→ E] is both closed and welltyped.
Note that the undefined expression ⊥ is always a valid value for E, because
it is closed and of any type. Furthermore, if the domain of x allows for it,
infinite expressions are also valid values for E.

– The meaning of the existential quantification ∃x.P is defined in the same
way as the universal quantification.

Assignment 13: (examples of (in)equality)
(a) Are ‘ones’ and ‘let x = [1:x] in x’ equal? If so, argue; if not, give the

program that distinguishes between them.
(b) Same question for ‘ones’ and ‘ones ++ ones’.
(c) Same question for ‘ones’ and ‘[2] ++ ones’.
(d) Same question for ‘ones’ and ‘ones ++ [2]’.
(e) Same question for ‘⊥’ and ‘[1:⊥]’.
(f) Same question for ‘⊥’ and ‘λx.⊥’.

(Hint: make use of explicit strictness)
(g) Same question for ‘⊥’ and ‘let x = x in x’.

(Hint: only basic values and constructors are meaningful output)

4.5 Reasoning style in Sparkle

As most modern day proof assistants, Sparkle is based on the LCF-approach.
This means that reasoning takes place by the repeated simplification of a list of

15

goals by means of the application of tactics. This process of reasoning was first
introduced by the LCF[?] proof assistant, and has since been named after it.

A goal is a property that still has to be proved, represented in such a way that
it can be manipulated easily in the reasoning process. A tactic is a function from
a single goal to a list of goals, such that the semantic validity of the produced
goals implies the validity of the original one. Therefore, applying tactics is sound,
because a proof of the produced goals is also a proof of the original goal.

A proof is represented by a tree in which the nodes are goals and the edges
are tactics. The root in such a proof tree contains the original property that
one wants to prove, and the leaves hold the goals that still need to be proved.
The application of a final tactic, which is a tactic that produces the empty list
and therefore immediately proves the source goal, closes a leaf. The proof of a
property is complete when all the leaves in its proof tree have been closed.

Assignment 14: (backwards proving)
(a) Why is Sparkle’s reasoning style sometimes also called backwards proving?

During reasoning, the proof state consists of a list of goals that correspond to the
leaves of the proof tree. The active goal being manipulated is called the current
goal; the others are called subgoals. A goal corresponds to a property that has
been broken down into introduced variables, introduced hypotheses, and a ‘to
prove’. If x1, . . . , xn are the introduced variables, H1 : P1, . . . ,Hm : Pm are the
introduced hypotheses, and Q is the to prove, then the goal corresponds to the
property ∀x1...xn .P1→ . . .Pm→ Q. By breaking down properties, its components
can be accessed much more easily in a proof.

Current Goal
Current GoalCurrent Goal

Current GoalCurrent Goal

Context of this Goal

A Goal

Current Goal

A Proof State

n ∈ Int

H1: n ≠⊥

take n ⊥ ++ drop n ⊥ = ⊥

Fig. 1. A proof state

Assignment 15: (decompose the property)
The proof states in Fig. 1 and Fig. 2 are taken from an actual proof.
(a) Which property corresponds to the current goal in Fig. 1?
(b) Which property was the starting point of the proof?

16

Fig. 2. Screen shot of the Sparkle proof window at the same proof state as in Fig. 1.

4.6 Proving a simple property

In this section, we will use Sparkle to prove a simple property which concerns
the behavior of the map function from the standard environment of Clean.

Assignment 16: (specification of a property of map)
(a) Open Sparkle from scratch, then load the standard environment (Ctrl-E).
(b) Create a new section with the name map section.
(c) In map section, create a new theorem named map property, stating:

∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
(d) Open the proof window (Ctrl-P) that corresponds to the created theorem.

Building a proof is the repeated process of selecting tactics and applying them on
the current goal. For this process, Sparkle makes a total of 39 tactics available,
which are all described briefly in Appendix A. The user interface of Sparkle
allows tactics to be applied by means of three different methods:

– The hint mechanism, which is activated by opening the Tactic Suggestion
Window during proving. This window holds a dynamically updated list of
suggestions for tactics that can be applied to the current goal. Sparkle
generates these suggestions automatically based on built-in heuristics. Each
suggestion is assigned a score between 1 and 100 that indicates the likelihood
of that tactic being helpful in the proof. Based on this score, the suggestions
are ordered. A suggested tactic can be applied by either clicking on it, or by
means of its associated hot-key (F1 for the first hint, F2 for the second, etc.).
It is also possible to configure Sparkle to apply the top hint automatically
if it has a score higher than a manually set threshold.
The hint mechanism is mainly for beginning Sparkle users. It is fast and
easy to use, and requires little expertise of the available tactics (simply trust
Sparkle!). The hint mechanism is a valuable tool that can be used as a
means of learning Sparkle, and with which many small proofs can be built
fully. However, it is not very powerful and by no means failsafe. Sometimes
the right tactic is not suggested, or several wrong tactics get high scores.

– The tactic dialogs. Each tactic has its own dialog that can be opened by
clicking on its name in the Tactic List Window. This dialog has entries for
all the arguments that can be given to the tactic. When possible, the current

17

goal is used to restrict the input to valid values only. When all arguments
have been entered, the tactic can be applied from the dialog directly.
The tactic dialogs are for intermediate users. This method of proving is
both powerful, because all tactics can be applied this way, and fairly easy,
because one does not need to memorize the name or syntax of a tactic, nor
the arguments that it requires.

– The command line interface. This is a textual interface that is for advanced
users only. It is powerful, but requires extensive expertise of Sparkle and
its tactics. However, once mastered, it is the fastest way of building proofs,
because all tactics can be applied this way and it does not require opening
additional dialogs at all.

The property of map that was given above is very easy and can therefore be
proved automatically with the hint mechanism:

Assignment 17: (proving the map property with the hint mechanism)
(a) Open the Tactic Suggestions Window (Ctrl-H) and set the threshold to 1.
(b) Set the threshold back to 101. Why is this necessary prior to (c)?
(c) Enter JRestart.I at the command-line interface.

(From now on, Jcmd.I will be used to denote textual input to the command-
line. For reasons of parsing, these commands have to end with a closing ‘.’,
otherwise Sparkle will not be able to recognize them.)

(d) Redo the proof by applying suggestions manually with the hot-keys.

The complete proof tree of the example property has now been stored internally
by Sparkle. By means of the Theorem Info Window, this proof tree can be
browsed and inspected in detail:

Assignment 18: (browsing through the proof)
(a) Open the Theorem Info Window of the completed proof.
(b) Click ‘browse’ after the first tactic and then browse through the proof using

the ‘previous’ and ‘next’ buttons.
(c) Undo the first application of Reflexive only.
(d) Click on the brown star to return to the Proof Window.
(e) Use a different tactic to prove the goal.

The hint mechanism has succeeded in completing the proof automatically, and
it did not require any expertise at all. The downside to this, unfortunately, is
that no understanding of the tactics has been gained in the process. Therefore,
below we will present the entire proof again, and this time we will explain each
tactic that was applied too.

The initial goal is simply the property to be proved:

-

∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
(1)

Because both map and ++ are tail-recursive, structural induction on xs is likely to
be useful here. This is accomplished by applying the tactic JInduction xs.I.

18

Three new goals(1.1,1.2,1.3) are created: one for the case that xs is ⊥; one for the
case that xs is Nil; and one for the case that xs is an application of Cons. Note
that ⊥ is a base value of any type and is therefore always treated by induction
as a constructor case.

-

∀f∀ys.map f (⊥ ++ ys) = map f ⊥ ++ map f ys
(1.1)

Fig. 3. Screen shot of Sparkle at proof state (1.1)

The current proposition starts with two universal quantifications, on which it
does not make sense to perform induction (on f it is not possible, and on ys
it does not help because ++ is not tail-recursive in its second argument). It is
therefore best to apply JIntroduce f ys.I, which removes the quantors and
introduces the variables f and xs in the context of the goal. After this action,
the main proposition can be accessed more easily.

f :: b→ a, ys :: [b]

map f (⊥ ++ ys) = map f ⊥ ++ map f ys
(1.1′)

Due to the strictness of map and ++ and the presence of ⊥ arguments, redexes
are present in the current goal. The tactic JReduce NF All.I can be used to

19

reduce all redexes in the current goal to normal form. With other parameters, the
tactic Reduce can also be used for stepwise reduction, reduction to root normal
form, reduction of one particular redex and reduction in the goal context.

f :: b→ a, ys :: [b]

⊥ = ⊥ (1.1′′)

This is clearly a trivial goal, because equality is a reflexive relation. Such reflexive
equalities are proved immediately with the final tactic JReflexive.I.

-

∀f∀ys.map f ([] ++ ys) = map f [] ++ map f ys
(1.2)

This is the second goal of induction, created for the case that xs is the empty
list. Again, induction makes no sense for f and ys, and they should therefore be
introduced in the goal context by means of JIntroduce f ys.I.

f :: b→ a, ys :: [b]

map f ([] ++ ys) = map f [] ++ map f ys
(1.2′)

There are again redexes present in the current goal, because both map and ++
have patterns that match on the empty list []. Therefore: JReduce NF All.I.

f :: b→ a, ys :: [b]

[] = []
(1.2′′)

This is another example of a reflexive equality; therefore JReflexive.I.

-

∀x∀xs.
(∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys)
→ (∀f∀ys.map f ([x :xs] ++ ys) = map f [x :xs] ++ map f ys)

(1.3)

This is the third goal created by induction for the case that xs is a composed
list. The current goal looks quite complicated, but introduction can make things
a lot clearer. Here, we will not only introduce variables from universal quantors,
but we will also introduce hypotheses from implications. This can be performed
in one go with JIntroduce x xs IH f ys.I.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

map f ([x :xs] ++ ys) = map f [x :xs] ++ map f ys
(1.3′)

Again, the current goal contains redexes, because map and ++ have patterns that
match on constructed lists of the form [x :xs]. Therefore, JReduce NF All.I.

20

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

[f x :map f (xs ++ ys)] = [f x :map f xs ++ map f ys]
(1.3′′)

The current proposition is now of the form [X:Y] = [X:Z]. Using the automatic
injectivity of all lazy data constructors in Clean, we can simplify this to X = X
∧ Y = Z. Therefore, JInjective.I.

Assignment 19: (injectivity and strictness)
(a) Why does injectivity not hold for strict data constructors?

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

f x = f x ∧ map f (xs ++ ys) = map f xs ++ map f ys
(1.3′′′)

The current proposition is now of the form P ∧ Q, and can obviously be split into
subgoals P and Q. Therefore, JSplit.I, which creates subgoals 1.3.1 and 1.3.2.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

f x = f x
(1.3.1)

This is a reflexive equality that can be proved immediately with JReflexive.I.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

map f (xs ++ ys) = map f xs ++ map f ys
(1.3.2)

The current proposition is now an instantiation of the induction hypothesis IH.
It can therefore be proved immediately by applying IH with JApply IH.I.

Q.E.D.

There are no more subgoals, which means that the proof is complete!

Assignment 20: (manual proof of the map property)
(a) Prove the map property again, using the tactic dialogs only.
(b) Prove the map property again, using the command interface only.

(Hint: JReduce.I abbreviates JReduce NF All.I, and JIntros.I is a
variant of introduction that comes up with suitable names on its own)

(c) The automatic proof consists of the application of 13 tactics. It is possible
to prove the property in less steps (our shortest proof consists of 9 steps).
Try to shorten the proof yourself.

Assignment 21: (more small proofs)
Try to prove the following properties, preferably without the hint mechanism:
(a) ∀xs∀ys∀zs.xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.
(b) ∀xs.¬(xs =⊥) → ¬(xs = []) → [hd xs :tl xs] = xs.
(c) ∀n∀xs.¬(n =⊥) → take n xs ++ drop n xs = xs.
(d) ∀P∀Q.(¬P ↔ Q) ↔ (P ↔ ¬Q).

21

5 Tutorial part II: specialized features of Sparkle

In this section, the tutorial will be continued with advanced information about
the dedicated use of Sparkle in practice, and the features that are specialized
for reasoning about Clean will be described. The same explanatory style will be
used as in part I of the tutorial, and various assignments will again be included.

First, in Section 5.1 the importance of sharing in proofs will be explained.
Then, the specification of definedness conditions in properties will be described
in Section 5.2. The specialized behavior of four tactics will be introduced next; for
‘Extensionality’ in Section 5.3, for ‘Induction’ in Section 5.4, for ‘Definedness’ in
Section 5.5, and for ‘Reduce’ in Section 5.6. Finally, the specification of properties
by means of Clean-functions will be discussed in Section 5.7.

5.1 The influence of sharing on reasoning

Sharing is important for the efficiency of functional programs. In Clean sharing
is explicit, because for every construct it is precisely defined what is shared and
what is not shared[?]. The semantics of Clean are based on graph rewriting
[?,?,?]. This means that during reduction of the Start expression to its result,
sharing is maintained as much as possible.

In Sparkle, reduction may be used at many points in proofs as well. This
reduction should behave in a semantically equivalent way to reduction in Clean,
but it does not have to be exactly the same. Note that reduction in Sparkle is
symbolic, because it may encounter free variables that are introduced by logic
quantors. In Clean, reduction only operates on closed expressions.

Sharing has no influence on semantics, and reduction in Sparkle is free to
either preserve or break it. Currently, the following strategy is realized:

– Within the application of reduction sharing is always preserved;
– But afterwards sharing is always automatically broken.

The idea behind this strategy is twofold. Firstly, efficiency is important in proofs
too, therefore sharing is preserved within reduction. Secondly, after full reduction
sharing is often not meaningful anymore and only hinders reduction, therefore
it is automatically broken.

Assignment 22: (the effect of sharing during reduction in proofs)
(a) Consider in Sparkle the trivial theorem (let n = 1+2+3 in n+n) = 12.

Prove it using JReduce NF All.I, followed by JReflexive.I.
(b) Undo the proof with Ctrl-Z and prove the theorem again, this time using

reduction with a fixed number of steps (JReduce 4.I).
(c) Undo the proof with Ctrl-Z and prove the theorem again, this time using

repeated single-step reduction (JReduce 1.I).
(d) Explain why more reduction steps are needed in (c) than in (b).

Unfortunately, Sparkle’s current strategy for handling sharing is not optimal.
The main problem is that all meaningful sharing, such as for instance recursion

22

that has been expressed by means of cyclic lets, cannot be dealt with at all.
Moreover, the current behavior is not very intuitive, as was already demonstrated
in the assignment above.

The way sharing is handled in Sparkle is currently being fixed according
to the reduction mechanism described in [?]. In the next release, Sparkle will
always preserve all sharing, and manual reasoning steps will be added that allow
users to manipulate, and possibly break, shared expressions at will.

5.2 Definedness conditions in properties

Sparkle makes use of a total semantics in which undefinedness is taken into
consideration explicitly. This has two consequences for the property language.
Firstly, expressions are only equal if they either produce the same defined value,
or both produce undefinedness. Secondly, the undefined value ⊥ is a member of
any type, and therefore a valid instantiation of any quantor.

In order to specify properties of Clean-programs correctly, one therefore has
to know precisely how they behave in case some of their input becomes undefined.
This behavior is determined by the lazy rewriting semantics of Clean, of which
a thorough understanding is required for formal reasoning. Below we present a
small example to illustrate the propagation of ⊥-values through expressions. For
a full explanation of computation in Clean we refer to [?] and [?].

Example. Consider the following definition of the well-known function take:
| take n [] = []
| take n [x:xs] = if (n>0) [x: take (n-1) xs] []
In Clean, patterns are evaluated from top to bottom, and right-hand-sides
are only evaluated when their pattern matches. Consequently:
• take n ⊥=⊥ for all n, because the first pattern always causes ⊥ to be

matched against [], which fails;
• take ⊥ [] = [], because the successful match of the first pattern does

not require ⊥ to be evaluated;
• take ⊥ [x:xs] =⊥ for all x and xs, because the second pattern matches,

and its right-hand-side requires the computation of ⊥ > 0, which fails.

It is very important that the starting point of formal reasoning is a logically
correct property. Therefore, the specification of properties must always involve
an analysis of behavior in the undefined case. In some cases, the property turns
out to hold automatically for the undefined value, and nothing has to be changed.
In other cases, however, the property actually turns out to be false:

Example. Consider the following intuitively true property of drop and take:
| ∀n∀xs.take n xs ++ drop n xs = xs.
This property is falsified by the case n=⊥, because then the left-hand-side
may become undefined, while the right-hand-side remains xs:
• Assume xs = [1]. Then the left-hand-side reduces to ⊥, as follows:

take ⊥ [1] ++ drop ⊥ [1] =⊥ ++ drop ⊥ [1] =⊥.
But the right-hand-side is [1], which is defined.

23

Assignment 23: (more definedness analysis)
(a) The example property ∀n∀xs.take n xs ++ drop n xs = xs is not falsified in

the case that xs =⊥ ∧ n 6=⊥. Argue why this is the case.
(Hint: distinguish between n = 0 and n 6= 0.)

(b) Is the property ∀f∀xs∀ys.map f (xs ++ ys) = (map f xs) ++ (map f ys) falsified
in the undefined case? If so, give example values for f , xs and ys that break
the property. If not, argue why.
(Hint: see also Section 4.6.)

If definedness analysis shows that a property is falsified by a set of variable values
V , then it can be rectified simply by adding conditions that exclude V . These
definedness conditions are often simple and of the form ‘n 6=⊥’, but they can
also be more intricate (see Section 5.7).

Rectified example: The take-drop property can be corrected by means of:
| ∀n∀xs.n 6=⊥→ take n xs ++ drop n xs = xs.

Assignment 24: (proving the rectified take-drop example)
(a) In Sparkle, prove ∀n∀xs.n 6=⊥→ take n xs ++ drop n xs = xs.

Finally, note that Clean supports strictness annotations, with which the strict
evaluation of certain expressions can be enforced explicitly. These annotations
are often placed without much thought with the purpose of improving efficiency.
However, strictness annotations change the definedness behavior of the program,
and have an effect on properties and reasoning as well. In the context of formal
reasoning, they should therefore only be used with care.

The precise effect of strictness annotations on properties is difficult to predict.
Adding a strictness annotation can either: (1) not change a property at all; or (2)
falsify a property, requiring additional definedness conditions to be formulated;
or (3) allow existing definedness conditions to be removed. The third effect in
particular is rather surprising.

Example of (1). Consider the following property:
| ∀xs∀ys∀zs.(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
This property holds for the standard definition of ++, which is strict in its
first argument only. Adding strictness to the second argument does not effect
the property, however; it remains valid in the strict case as well.

Example of (2). Consider the following property:
| ∀f,g∀xs .map (f o g) xs = map f (map g xs)
This property is valid for lazy lists, but invalid for element-strict lists.
Suppose xs = [12], g 12 = ⊥ and f (g 12) = 7.
Then map (f o g) xs = [7], both in the lazy and in the strict case.
However, map f (map g xs) = [7] in the lazy case, but ⊥ in the strict case.
The property can be adapted to element-strict lists by explicitly enforcing
that g produces a defined result for all elements x of xs:
| ∀f,g,xs .(∀x∈xs .g x 6= ⊥) → map (f o g) xs = map f (map g xs).

24

Example of (3). Consider the following property:
| ∀xs .finite xs → reverse (reverse xs) = xs
This property is valid both for lazy lists and for spine-strict lists.
The condition finite xs, however, is satisfied automatically for spine-strict
lists, because spine-strict lists can never be infinite. In the spine-strict case,
the property can therefore safely be reformulated (or, rather, optimized) by
removing the finite xs condition:
| ∀xs .reverse (reverse xs) = xs
Note that without the condition, the property is invalid in the lazy case: just
choose any infinite list for xs.

5.3 Specialized behavior of extensionality

The property of extensionality, which states that two functions are equal iff they
produce the same result for all possible arguments, is often considered to be
universal. Unfortunately, there is a (rather obscure) example of two functions
for which the property of extensionality does not hold unconditionally in the
context of lazy evaluation:

H :: a -> b F :: (a -> b)
H x = H x F = F

In the definitions above, H is a function of arity 1 that only reduces (to itself)
when it is given an argument. F on the other hand is a function of arity 0 that
always reduces to itself, regardless of whether it is applied or not. Obviously,
F x = H x now holds for all x, because they both reduce to themselves and are
therefore both undefined.

Surprisingly, the property F = H does not hold, because H is defined (it is a
partial function application, and is thus in head normal form), while the meaning
of F is undefined. It is therefore not safe to replace H by F (nor F by H); such a
replacement could namely change the termination behavior of the program.

Fortunately, the problem can be corrected by weakening the property of
extensionality as follows:

Definition 5.3̂.1: (revised version of extensionality)
∀f∀g.(f = ⊥ ↔ g = ⊥) → (∀x.f x = g x) → f = g

This revised version of extensionality is correct in the context of Clean. It can
not be applied to prove F = H, because the condition F = ⊥ ↔ H = ⊥ does
not hold. Sparkle defines a reasoning step for extensionality that makes use of
the correct behavior.

Assignment 25: (extensionality)
(a) Prove using extensionality that sum ◦ (map (const 1)) = length holds.

25

5.4 Specialized behavior of induction

An important reasoning step for dealing with recursive functions over algebraic
datatypes is structural induction. Although induction is not always applicable, it
is extremely useful in the context of functional programming, because it can be
used successfully on many common data structures (such as for instance lists)
and on many common kinds of recursive functions (such as for instance those
defined by recursion on the results of pattern matching).

In order to deal with lazy evaluation, induction has to be customized in two
different ways. Firstly, an extra base step is required for the undefined value ⊥.
Because ⊥ is a member of each type, it must namely be treated as a constructor
with no arguments. This behavior of induction is actually quite intuitive; for
instance, if we want to prove ∀x∈[A].P (x) with induction on the list structure,
we would get the following proof obligations:

– P (⊥);
– P ([]);
– ∀x∈A∀xs∈[A].P (xs) → P ([x:xs])

Note that without the case for undefinedness it is possible to prove properties
that are not true. For instance, we could easily prove that every lazy list is finite:
the empty list is finite, and the extension of a finite list with a single element is
always finite as well. The undefined list, on the other hand, is not finite!

The second customization of induction extends it to infinite structures as
well. Because an infinite structure does not end with a base case, the induction
principle is in general not applicable to it. In [?], however, Paulson has shown
that the results of induction may be applied to infinite structures as long as
the induction predicate satisfies the criterion of admissibility. We claim that
Paulson’s results may be applied to the context of Clean as well.

The admissibility criterion can be lifted to lazy functional languages easily.
The basic idea is that equalities on negative positions (behind a negation) within
a proposition must be decidable. An equality on type α is decidable if all possible
expressions of type α are finite. This can be approximated statically: if α does
not contain any recursion, then all its members are certainly finite. An equality
on Bool is for instance decidable, but an equality on lists is not.

Definition 5.4̂.1: (finite types)
A type α is finite if the set E of all possible expressions of type α is finite.

Definition 5.4̂.2: (decidable equalities)
An equality between values of type α is decidable if α is finite.
We will denote this (informally) with Decidable(=).

26

Definition 5.4̂.3: (admissibility)
A proposition P is admissible if Adm(+1, P) holds, by means of:

Adm(sign, True) = True
Adm(sign, False) = True
Adm(sign, ¬P) = Adm(−sign, P)
Adm(sign, P ∧Q) = Adm(sign, P) ∧Adm(sign, Q)
Adm(sign, P ∨Q) = Adm(sign, P) ∧Adm(sign, Q)
Adm(sign, P → Q) = Adm(−sign, P) ∧Adm(sign, Q)
Adm(sign, P ↔ Q) = Adm(sign, P → Q) ∧Adm(sign, Q → P)
Adm(sign, ∀.P) = Adm(sign, P)
Adm(sign, ∃.P) = Adm(sign, P)
Adm(sign, E1 = E2) = Decidable(=) ∨ sign = +1

Assignment 26: (induction on lazy lists)
For each of the theorems below: prove it or show that it is not admissible.
(a) ∀xs.finite xs → take (length xs) xs = xs
(b) ∀xs.xs = ones→ finite xs
(c) ∀xs∀f∀p.all p (map f xs) = all (p o f) xs
(d) ∀xs∈[a]∀ys∈[a].xs = ys → xs == ys

In order to reason about non-admissible predicates and/or non-inductive types
several techniques have been developed. The most renowned of them are the take
lemma and its improved version the approximation lemma [?] on one hand, and
the class of techniques concerning co-induction based on bisimilarity[?] on the
other hand. To treat them in further detail is outside the scope of this paper.

5.5 Definedness analysis and the special ‘definedness’ tactic

A consequence of the specialized behavior described in Sections 5.2-5.4 is that
reasoning in Sparkle often involves properties of the form E =⊥ or E 6=⊥.
Dealing with definedness is cumbersome, and should therefore be supported as
much as possible. For this purpose, Sparkle derives definedness information
automatically, and offers specialized tactics that make use of this information.

Definedness analysis is the process of deriving definedness information. It is
carried out automatically by Sparkle each time a new goal is constructed. The
results of definedness analysis are sets D and U , which contain expressions that
have been determined to be defined and undefined respectively. The sets D and
U are stored with each goal and can be used by various tactics.

The process of definedness analysis starts by assigning all occurring basic
values to D and ⊥ to U . It then repeatedly extends D and U by examining
the hypotheses that have been introduced, and by making use of strictness and
totality properties. The following derivation rules are used for this purpose:

– Definedness by hypothesis equality.
If a hypothesis E0 = E1 is available, and Ei ∈ D, then add E1−i to D.
If a hypothesis E0 = E1 is available, and Ei ∈ U , then add E1−i to U .
If a hypothesis E0 6= E1 is available, and Ei ∈ U , then add E1−i to D.

27

– Constructor definedness.
Assume that C is a constructor of arity n with strict arguments S ⊆ {1 . . . n}.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ⊆ D, then add A to D.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ∩ U 6= ∅, then add A to U .

– Total function definedness.
Assume that F is a function of arity n which is known to be total.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | 1 ≤ i ≤ n} ⊆ D, then add A to D.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | 1 ≤ i ≤ n} ∩ U 6= ∅, then add A to U .

– Normal function definedness.
Assume that F is a function of arity n with strict arguments S ⊆ {1 . . . n}.
If the application A = (F E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ∩ U 6= ∅, then add A to U .

Note that the strictness information for the definedness analysis is available
explicitly in the source program, whereas the totality information is assumed to
be made available externally (in Sparkle, many functions from StdEnv are hard-
coded to be total). Furthermore, to maximize the effectiveness of the definedness
analysis, the negation of the current goal is treated as a hypothesis as well.

An important tactic that makes use of definedness analysis is ‘Definedness’.
It immediately proves any goal that contains contradictory definedness, which
is the case if D and U overlap. Note that because the negation of the current
goal is treated as a hypothesis, it also proves any goal in which the definedness
information implies the validity of the to prove. Although the rules of definedness
analysis are relatively simple, it is surprisingly powerful. The Sparkle-tactic
‘Definedness’ is therefore extremely useful, and can be applied often in proofs.

Assignment 27: (using the Definedness-tactic)
Prove each of the following properties in Sparkle with the Definedness-tactic.
(a) ∀f∀xs.¬(map f xs =⊥) → ¬(xs =⊥)
(b) ∀n.eval (n + 12) → ¬(n =⊥)
(c) ∀n∀m.(n / m = 42) → ¬(n + m =⊥)
(d) ∀n.(7 + (12 * (13 - n)) =⊥) → n =⊥
More examples of the use of definedness can be found in [?].

5.6 Specialized behavior of reduction

Because of the presence of logic variables that are introduced by quantors on
the property level, reduction in Sparkle is symbolic. A logic variable may be
instantiated with an arbitrary well-typed expression, and its evaluation does not
yield anything. Assuming termination, it is therefore no longer possible to reduce
every expression to either a weak head normal form or to ⊥.

28

It is important that reduction in Sparkle carries on as far as possible. For
this purpose, Sparkle realizes two extensions in its reduction mechanism that
allow reduction to continue, even when a logic variable is encountered on a strict
position.The first extension involves ignoring unnecessary strictness annotations;
the second extension involves using the results of definedness analysis.

The idea of the first extension is that some strictness annotations can safely
be removed without changing the semantics of the program. To illustrate this,
take a look at the following three Clean-functions:

id :: !a -> a K :: !a !b -> a length :: ![a] -> Int
id x = x K x y = x length [x:xs] = 1+length xs

length [] = 0

An exclamation mark before the type of an argument indicates strictness. During
evaluation, the strict arguments of a function will always be reduced to weak head
normal form before the function is expanded, whereas the non-strict arguments
will not. A strictness annotation always changes the reduction behavior of the
program; however, it does not always change the semantics.

The strictness annotation in the function id does not change the semantics,
because the evaluation of its body immediately requires the evaluation of its
argument anyway. The same goes for the length function, because the pattern
match enforces evaluation. In the function K, the first strictness annotation does
not change the semantics, but the second one does. In fact, removing the second
annotation would cause K x ⊥= x, where in the current situation K x ⊥=⊥.

The reduction system of Sparkle is able to recognize the different kinds
of strictness annotations. In case a strict function argument is encountered like
in id or in K (first annotation), it will be reduced first, but the function will
always be expanded afterwards. This is different from reduction in Clean, but
semantically sound, and much more user friendly for reasoning (not expanding
‘id x’ would be really inconvenient). The behavior of Sparkle on annotations
as in K (second annotation) is of course not changed, because that would be
semantically unsound. The behavior on annotations as in length is not changed
either, because the pending pattern match requires its argument to be reduced.
Expanding the function therefore does not make much sense, because reduction
would be stopped by the pattern match anyway.

Assignment 28: (reduction in Sparkle (1))
(a) Build a Clean-module with the functions above and load it into Sparkle.
(b) Prove ∀x.id x = x
(c) Prove ∀x.K x 12 = x
(d) Attempt to prove ∀x.K 12 x = 12. Why does this property not hold?

The second extension of reduction is very straightforward: simply make use of
the results of the definedness analysis. In case Sparkle encounters a function
argument whose strictness cannot be removed safely, and on which no pattern
match is performed, then the function is allowed to be expanded anyway, as
long as the argument expression is an element of D. Again, the argument will be

29

reduced as much as possible first. The second extension allows users to influence
the reduction mechanism by means of specifying (and later proving) additional
definedness properties.

Assignment 29: (reduction in Sparkle (2))
(a) Prove ∀x∀y.¬(y =⊥) → K x y = x

5.7 Property specification in Clean

The property language of Sparkle is a simple first-order proposition logic only,
in which predicates and relations cannot be expressed. However, the possibility
to define higher-order functions in the programming language and use them as
boolean predicates gives unexpected expressive power. The higher-order of the
programming language can be combined with Sparkle’s first order logic.

A good example of a boolean predicate in Clean is the function eval. The
purpose of eval is to fully reduce its argument and return True afterwards. Such
an ‘eval’ function is usually used to express evaluation strategies in the context
of parallelism [?,?]. We use eval for expressing definedness conditions.

In the module StdSparkle of Sparkle’s standard environment, the function
eval is defined by means of overloading. The instance on Char is defined by:

class eval a :: !a -> Bool

instance eval Char
where eval :: !Char -> Bool

eval x = True

In a logical property, (eval x = True) can now be used as a manual definedness
condition. The meaning of this condition is identical to ¬(x =⊥), because:

– If x =⊥, then (eval x) = (eval ⊥) =⊥ on the semantic level, because eval
is strict in its argument. Therefore, eval x = True is not satisfied.

– If x 6=⊥, then x must be equal to some defined basic character b. Therefore,
(eval x) = (eval b) = True on the semantic level.

– Note that eval is defined in such a way that it is never equal to False.

On characters, eval is not so interesting. However, by means of overloading, it
can easily be defined for lists, and all other kinds of data structures as well. The
overloading is used to assume the presence of an eval on the element type:

instance eval [a] | eval a
where eval :: ![a] -> Bool | eval a

eval [x:xs] = eval x && eval xs
eval [] = True

This instance of eval fully evaluates both the spine of the list and all its elements,
and only returns True if this succeeds. It can therefore be used to express the

30

intricate definedness condition that a list is finite and contains defined elements
only. This condition cannot be expressed on the property level at all.

Assignment 30: (proofs of properties that use eval)
Using the function eval from StdSparkle, prove the following properties:
(a) ∀x∀xs.eval xs → isMember x xs → eval x
(b) ∀xs.eval xs → sum (map (K 1) xs) = length xs

(using the strict version of function K, see assignment 28)
(c) ∀x∀p∀xs.eval x → eval xs → eval (map p xs) →

isMember x (filter p xs) = isMember x xs && p x

All instances of eval have to share certain properties. To prove properties of
all members of a certain type class, the recently added tool support for general
type classes can be used [?]. With this tool, the properties ∀x.eval x → x 6=⊥
and ∀x.eval x 6= False can be stated and proven in Sparkle.

A useful variation of eval on lists is the function that evaluates the spine of
the list only, but leaves the elements alone. This function expresses the condition
that a list is finite. It is defined in StdSparkle as follows:

finite :: ![a] -> Bool
finite [x:xs] = finite xs
finite [] = True

The boolean predicate finite allows several useful properties to be stated and
proven in Sparkle:

Assignment 31: (proofs of properties that use finite)
Using the function finite from StdSparkle, prove the following properties:
(a) ∀xs.finite xs → length xs ≥ 0
(b) ∀xs.finite xs → finite (reverse xs)
(c) ∀xs.finite xs → reverse (reverse xs) = xs

6 Related Work

Currently, well-known and widely used proof assistants are Pvs [?], Coq [?]
and Isabelle [?]. They are all generic provers that are not tailored towards
a specific programming language. It is very hard for programmers to reason in
them, because they require using a different syntax and a different semantics. For
instance, strictness annotations as in Clean are not supported by any existing
proof assistant. On the other hand, these well established proof assistants offer
features that are not available in Sparkle. Most notably, the tactic language
and the logic are much richer than in Sparkle.

At Chalmers University of Technology, the proof assistant Agda [?] has been
developed in the context of the Cover [?] project. Agda is dedicated to the lazy
functional language Haskell [?]. As in Sparkle, the program is translated to a
core-version on which the proofs are performed. Being geared towards facilitating

31

the ‘average’ functional programmer, Sparkle offers dedicated tactics and a
dedicated semantics based on graph rewriting. Agda uses standard constructive
type theory on λ-terms, enabling independent proof checking.

Also as part of the Cover project, it is argued in [?] that “loose reasoning”
is “morally correct”, i.e. that the correctness of a theorem under the assumption
that every subexpression is strict and terminating implies the correctness of the
theorem in the lazy case under certain additional conditions. The conditions that
are found in this way, however, may be too restrictive for the lazy case. Sparkle
offers good support for reasoning with definedness conditions directly.

Another proof assistant dedicated to Haskell is Era [?], which stands for
Equational Reasoning Assistant. This proof assistant builds on earlier work initi-
ated by Andy Gill[?]. It is intended to be used for equational reasoning, and not
for theorem proving in general. Additional proving methods, such as induction or
logical steps, are not supported. Era is a stand-alone application. Unfortunately,
it seems that work on this project has been discontinued for a while. Recently,
Andy Gill took up the project again, producing a version with an Ajax based
interface, under the name of Hera [?], short for Haskell Equational Reasoning
Assistant.

In [?], a description is given of an automated proof tool which is dedicated to
Haskell. It supports a subset of Haskell, and needs no guidance of users in the
proving process. Induction is only applied when the corresponding quantor has
been marked explicitly in advance. The user, however, cannot further influence
the proving process at all, and cannot suggest tactics to help the prover in
constructing the proof.

Another proof assistant that is dedicated to a functional language is Evt [?],
the Erlang Verification Tool. However, Erlang differs from Clean, because it
is a strict, untyped language which is mainly used for developing distributed
applications. Evt has been applied in practice to larger examples.

The Programatica project of the Pacific Software Research Center in
Oregon (www.cse.ogi.edu/PacSoft/projects/programatica) is another project that
aims to integrate programming and reasoning. They intend to support a wide
range of validation techniques for programs written in different languages. For
functional languages they use P-logic, which is based on a modal µ-calculus
in which undefinedness can also be expressed. In the Programatica project,
properties are mixed with the Haskell source.

Properties about functional programs are proved by hand in many textbooks,
for instance in [?]. Also, several articles (for instance [?]) make use of reasoning
about functional programs. It seems worthwhile to attempt to formalize these
proofs in Sparkle. In programming practice, however, reasoning about func-
tional programs is scarcely used.

7 Conclusions

In this paper, we have presented a thorough description of the dedicated proof
assistant Sparkle, which is integrated in the distribution of the lazy functional

32

programming language Clean. We have introduced Sparkle in detail, both
on the theoretical and on the practical level. On the theoretical level, we have
explained the process of formal reasoning in general, and Sparkle’s dedicated
support for it in specific. On the practical level, we have provided an extensive
tutorial of the actual use of Sparkle.

The tutorial not only covers the fundamental functionality of Sparkle, but
also explains several of its advanced features that are specific for reasoning about
lazy functional programs. Assignments are included at various points in the
tutorial; they allow useful hands-on experience with Sparkle to be obtained in a
guided way. After completion of the tutorial, anyone with a basic understanding
of functional programming will be able to make effective use of Sparkle in
practice, and will be able to prove small to medium properties with little effort.

Furthermore, we also hope to have sparked an interest in making use of formal
reasoning to show important properties of functional programs. With the right
tool support, this is already feasible for many smaller examples, and provides an
enjoyable challenge for bigger programs too!

33

A Appendix: short description of all Sparkle tactics

This appendix provides a short description of the tactics that can be used in
Sparkle proofs. In total, Sparkle makes a library of 39 tactics available. In
the description below, each tactic is briefly categorized as follows:

Equivalence/Strengthening - an equivalence tactic creates new goals that are
logically equivalent to the original goal; a strengthening tactic creates goals
that are logically stronger.

Forwards/Backwards - a forwards tactic brings hypotheses closer to the current
goal; a backwards tactic brings the current goal closer to the hypotheses.

Instantaneous - an instantaneous tactic proves a goal in one single step (and will
not be categorized as equivalence/strengthening or forwards/backwards).

Programming/Logic - a programming tactic is based on the semantics of Clean;
a logic tactic is based on the semantics of the logical connectives.

Besides the type, for each tactic some information about its inner working is
stated, and a small example is given of its use.

Absurd <Hyp1> <Hyp2>.
Type: Instantaneous; logic.
Info: Proves a goal that contains contradictory (absurd) hypotheses.
Details: Hypotheses are contradictory if they are each other’s exact negation.
Example: p, 〈H1:¬(p = 12)〉, 〈H2:p = 12〉 ` FALSE

JAbsurd H1 H2.I
Q.E.D.

AbsurdEquality <Hyp>.
Type: Instantaneous; programming.
Info: Proves a goal that contains a hypothesis stating an absurd equality.
Details: An equality between two different basic values is absurd, as well as an
equality between applications of different lazy constructors.
Example: 〈H1:True = False〉 ` FALSE

JAbsurdEquality H1.I
Q.E.D.

Notes: True and False are constructors; FALSE is a constant proposition.

34

Apply <Fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Applies a fact to the current goal.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form ∀x1...xn .P1→. . . Pm→ Q. It is only valid if r1 . . . rn can
be found such that Q[−→xi 7→ −→ri] equals the current goal. If this is the case, then
the current goal is replaced with the conjunction P1[−→xi 7→ −→ri]∧. . .∧Pm[−→xi 7→ −→ri].
Example: p, 〈H1:∀x∀y∀z.x > 0 → y < z → x + y < x + z〉 ` 7 + p < 7 + 12

JApply H1.I
p, 〈H1:∀x∀y∀z.x > 0 → y < z → x + y < x + z〉 ` 7 > 0 ∧ p < 12

Notes: This tactic can also be applied in a forwards manner. In that case, P1

must match on a hypothesis R, which is then replaced by P2 → . . . Pn → Q.

Assume <Prop>.
Type: Equivalence; forwards; logic.
Info: Assumes the validity of a manually stated proposition.
Details: Two goals are created: one with the assumption as new hypothesis,
and one with the hypothesis as goal itself.
Example: P, Q, R, 〈H1:P → R〉, 〈H2:¬P → R〉 ` R

JAssume P ∨ ¬P.I
(1) P, Q,R, 〈H1:P → R〉, 〈H2:¬P → R〉, 〈H3:P ∨ ¬P 〉 ` R
(2) P, Q,R, 〈H1:P → R〉, 〈H2:¬P → R〉 ` P ∨ ¬P

Notes: A name for the new hypothesis is generated automatically.

Case <Hyp>.
Type: Equivalence; backwards; logic.
Info: Breaks down an introduced disjunction.
Details: The hypothesis must be of the form P ∨Q. Two goals are created: one
in which the hypothesis is replaced by P , and one in which it is replaced by Q.
Example: P, Q, 〈H1:P ∨ ¬P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 ` Q

JCase H1.I
(1) P, Q, 〈H1:P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 ` Q
(2) P, Q, 〈H1:¬P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 ` Q

35

Cases <Expr>.
Type: Equivalence; programming.
Info: Performs a case distinction on a given expression.
Details: The expression must be of an algebraic type. New goals are created
for each of its constructors, and one for ⊥ as well. Each new goal is obtained
by replacing all occurrences (also in the hypotheses) of the indicated expression
with a generic application of the constructor.
Example: xs, ys, 〈H1:length (xs ++ ys) > 0〉 ` ¬(xs ++ ys = [])

JCases (xs ++ ys).I
(1) 〈H1:length ⊥ > 0〉 ` ¬(⊥= [])
(2) 〈H1:length [] > 0〉 ` ¬([] = [])
(3) x1, x2, 〈H1:length [x1 :x2] > 0〉 ` ¬([x1 :x2] = [])

Notes: Names for the newly introduced variables are generated automatically.

ChooseCase.
Type: Equivalence; programming.
Info: Simplifies a case distinction in which only one pattern is valid.
Details: The goal must be of the form E1 = E2, where E1 is a case distinction
and E2 is a basic value. A pattern is valid if its result is not statically unequal
to E2. The tactic succeeds only if there is exactly one valid pattern. The case
is then simplified to the result of the single valid pattern, and its condition is
introduced as a conjunction in the goal.
Example: n ` case n of (7 7→ 13; 13 7→ 7;n 7→ 11) = 13

JChooseCase.I
n ` n = 7 ∧ 13 = 13

Compare <Expr1> with <Expr2>.
Type: Equivalence; backwards; logic.
Info: Distinguishes between the possible compare results of two expressions.
Details: The expressions must both be of type Int. Five new goals are created;
one for E1 =⊥, one for E2 =⊥, one for E1 < E2, one for E1 = E2 (provided
that E1 and E2 are not ⊥), and one for E2 < E1.
Example: m,n ` min m n ≤ max m n

JCompare m with n.I
(1) m,n ` m =⊥→ min m n ≤ max m n
(2) m,n ` n =⊥→ min m n ≤ max m n
(3) m,n ` m < n → min m n ≤ max m n
(4) m,n ` ¬(m =⊥) → ¬(n =⊥) → m = n → min m n ≤ max m n
(5) m,n ` n < m → min m n ≤ max m n

36

Contradiction.
Type: Equivalence; backwards; logic.
Info: Builds a proof by contradiction.
Details: Replaces the current goal by the absurd proposition FALSE and adds
its negation as a hypothesis in the context. If a double negation is produced, it
will be removed automatically.
Example: P, 〈H1:P → FALSE〉 ` ¬P

JContradiction.I
P, 〈H1:P → FALSE〉, 〈H2:P 〉 ` FALSE

Notes: A name for the new hypothesis is generated automatically. This tactic
can also be applied in a forwards manner on a hypothesis. In that case, the
negation of the hypothesis simply becomes the new goal to prove.

Cut <Fact>.
Type: Equivalence; backwards; logic.
Info: Duplicates a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis.
It is added to the to prove by means of a new implication.
Example: 〈H1:∀P .P ∨ ¬P 〉 ` FALSE

JCut H1.I
〈H1:∀P .P ∨ ¬P 〉 ` (∀P .P ∨ ¬P) → FALSE

Definedness.
Type: Instantaneous; logic.
Info: Uses contradictory definedness information to prove a goal.
Details: Two sets of expressions are determined: (1) those that are statically
known to be equal to ⊥; (2) those that are statically known to be unequal to
⊥. These sets are determined by examining equalities in hypotheses and using
strictness information. In addition, the totality of certain predefined functions is
used. If an overlap between the two sets is found, the goal is proved immediately.
Example: xs, ys, zs, 〈H1:xs =⊥〉, 〈H2:xs ++ ys = [1:zs]〉 ` FALSE

JDefinedness.I
Q.E.D.

Notes: In the example, xs =⊥ due to H1, and ¬(xs =⊥) due to the strictness of
++ and the definedness of the result of xs ++ ys by means of H2.

Discard <Hyp>.
Type: Strengthening; logic.
Info: Deletes an introduced hypothesis.
Example: x, xs, 〈H1:reverse [] = []〉 ` reverse [x :xs] = reverse xs ++[x]

JDiscard H1.I
x, xs ` reverse [x :xs] = reverse xs ++[x]

37

Exact <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that is identical to an introduced hypothesis.
Example: 〈H1:∀P∀Q.(P ∧Q) → P 〉 ` ∀P∀Q.(P ∧Q) → P

JExact H1.I
Q.E.D.

ExFalso <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that contains a hypothesis stating FALSE.
Example: 〈H1:FALSE〉 ` 5 = 6

JExFalso H1.I
Q.E.D.

Extensionality <Name>.
Type: Equivalence; backwards; logic.
Info: Proves equality of functions by means of extensionality.
Details: The current goal must of the form E1 = E2, and both E1 and E2 must
be functions. The goal is then replaced with ∀Name.(E1 Name) = (E2 Name).
Example: ` (++ []) = id

JExtensionality xs.I
` ∀xs.[] ++ xs = id xs

Notes: To prevent proving ⊥= λx.⊥, which is not valid, additional definedness
conditions are created under certain conditions.

Generalize <Expr> to <Name>.
Type: Strengthening; backwards; logic.
Info: Generalizes an arbitrary subexpression.
Details: In the to prove, replaces all occurrences of the indicated expression
with the variable Name. Then, adds the quantor ∀Name in front of it.
Example: xs ` (reverse xs) ++ [] = reverse xs

JGeneralize (reverse xs) to ys.I
` ∀ys.ys ++ [] = ys

38

Induction <Var>.
Type: Strengthening; backwards; programming.
Info: Performs structural induction on a variable
Details: The type of the indicated variable must be Int, Bool or algebraic. A
goal is created for each root normal form(RNF) the variable may have, which
includes ⊥. The RNFs of an algebraic type are determined by its constructors. In
each created goal, the variable is replaced by its corresponding RNF. Universal
quantors are created for new variables. Additionally, induction hypotheses are
added (as implications) for all recursive variables.
Example: ` ∀xs.xs ++ [] = xs

JInduction xs.I
(1) `⊥ ++ [] =⊥
(2) ` []++ [] = []
(3) ` ∀x∀xs.(xs ++ [] = xs) → [x :xs] ++ [] = [x :xs]

Injective.
Type: Strengthening; backwards; logic.
Info: Proves equality of applications by making use of injectivity.
Details: Replaces a goal of the form (S E1 . . . En) = (S E′

1 . . . E′
n), where S is

either a function or a constructor, with the conjunction E1 = E′
1∧. . .∧En = E′

n.
Example: xs, ys ` xs ++ [] = xs ++ ys

JInjective.I
xs, ys ` xs = xs ∧ [] = ys

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

IntArith.
Type: Equivalence; backwards; logic.
Info: Built-in simplification of arithmetic expressions.
Details: This tactic operates on expressions containing applications of +, − and
∗ on integers. It performs three simplifications: (1) a ∗ (b + c) is replaced with
a ∗ b + a ∗ c; (2) constants are moved to the right as much as possible; and (3)
computations on constants are carried out statically.
Example: x, y ` 3 + 7 ∗ (12 + x)− 100 = y

JIntArith.I
x, y ` 7 ∗ x− 13 = y

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

39

IntCompare.
Type: Instantaneous; logic.
Info: Proves goals with contradictory integer comparisons.
Details: Only hypotheses of the exact form x < y are used as input. If a chain
x < y < . . . < x can be found, then the goal is proved immediately.
Example: x, y, z, 〈H1:y < x〉, 〈H2:z < y〉, 〈H3:x < z〉 ` FALSE

JIntCompare.I
Q.E.D.

Introduce <Name1> <Name2> ... <Namen>.
Type: Equivalence; backwards; logic.
Info: Introduces universally quantified variables and hypotheses in the goal.
Details: The current goal must be of the form ∀x1...xa

.P1→. . . Pb→ Q, where
a + b = n. The quantors and implications may be mixed. The variables x1 . . . xa

and the hypotheses P1 . . . Pb are deleted from the current goal and are added to
the goal context using the names given.
Example: ` ∀x.(x = 7 → ∀y.(y = 7 → x = y))

JIntroduce p H1 q H2.I
p, q, 〈H1:p = 7〉, 〈H2:q = 7〉 ` p = q

MoveQuantors <Dir>.
Type: Equivalence; backwards; logic.
Info: Swaps implications and universal quantifications.
Details: The direction argument is either ‘In’ or ‘Out’. When moving inwards,
goals of the form ∀x1...xn .P1→ . . . Pm→ Q are transformed to P1→ . . . Pm →
∀x1...xn .Q, provided that none of the xi occur in any of the Pj . The outwards
move is the opposite of the inwards move.
Example: R ` ∀P∀Q.R → ¬R → P ∧Q

JMoveQuantors In.I
R ` R → ¬R → ∀P∀Q.P ∧Q

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Opaque <Fun>.
Type: Special.
Info: Marks a function as non-expandable.
Details: When a function is marked opaque, it will not be expanded by the
reduction mechanism. Instead, reduction will stop.
Example: ` zip ([], []) = []

JOpaque zip2; Reduce NF All.I
` zip2 [] [] = []

40

Reduce NF All.
Type: Equivalence; backwards; programming.
Info: Reduces all expressions in the current goal to normal form.
Details: All redexes in the current goal are replaced by their reducts. This full
reduction is accomplished by first using standard reduction to root normal form,
and then continuing recursively on the top-level arguments.
Example: ` reverse [7 ∗ 12, 100− 12] = [89− 1, 83 + 1]

JReduce NF All.I
` [88, 84] = [88, 84]

Notes(1): An artificial limit is imposed on the maximum number of reduction
steps in order to safely handle non-terminating reductions.
Notes(2): This tactic can also be configured to reduce n steps; or to reduce to
root normal form; or to reduce a specific redex; or to reduce within a hypothesis.

RefineUndefinedness.
Type: Equivalence; backwards; logic.
Info: Refines undefinedness equalities.
Details: Attempts to refine all undefinedness equalities in the current goal of
the form (S E1 . . . En) =⊥, where S is either a constructor or a halting function.
Replaces the equality with the disjunction of all Ei =⊥ where Ei is on a strict
position and not statically known to be defined.
Example: x, y ` (x + y)− 13 =⊥

JRefineUndefinedness.I
x, y ` (x + y) =⊥

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Reflexive.
Type: Instantaneous; logic.
Info: Utilizes the reflexivity of the built-in operators = and ↔.
Details: Immediately proves any goal of the form ∀x1...xn .P1→. . . Pm→ Q, where
Q is either E = E or P ↔ P .
Example: ` ∀x∃y.x < y → x + y = x + y

JReflexive.I
Q.E.D.

Rename <Name1> to <Name2>.
Type: Special.
Info: Renames an introduced variable or an introduced hypothesis.
Example: x, y ` x < y → ¬(x = y)

JRename x to z.I
z, y ` z < y → ¬(z = y)

41

Rewrite <fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Rewrites the current goal using an equality in a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form ∀x1...xn .P1→. . . Pm→ Q, where Q is either L = R or
L ↔ R. It is only valid if r1 . . . rn can be found such that L[−→xi 7→ −→ri] occurs
within the to prove. If this is the case, then all occurrences of L[−→xi 7→ −→ri] are
replaced with R[−→xi 7→ −→ri]. Furthermore, goals are created for each condition of
the fact; the i-th states Pi[−→xi 7→ −→ri].
Example: p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 ` (p− 7) ∗ 0 = 0

JRewrite H1.I
(1) p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 ` 0 = 0
(2) p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 ` ¬(p− 7) =⊥

Notes: This tactic can also be configured to rewrite from right to left; or to
rewrite at one specific location only; or to rewrite within a hypothesis.

Specialize <Hyp> with <Expr>/<Prop>.
Type: Strengthening; forwards; logic.
Info: Specializes a universally quantified hypothesis.
Details: The hypothesis must be ∀x.P , and the given expression/proposition r
must have the same type as x. Then, the hypothesis is replaced with P [x 7→ r].
Example: x, y, z, 〈H1:x<y〉, 〈H2:y<z〉, 〈H3:∀a.x<a → a<z → x<z〉 ` x<z

JSpecialize H3 with y.I
x, y, z, 〈H1:x<y〉, 〈H2:y<z〉, 〈H3:x<y → y<z → x<z〉 ` x<z

Split.
Type: Equivalence; backwards; logic.
Info: Splits a conjunction into separate goals.
Example: P, Q, 〈H1:P 〉, 〈H2:Q〉 ` P ∧Q

JSplit.I
(1) P, Q, 〈H1:P 〉, 〈H2:Q〉 ` P
(2) P, Q, 〈H1:P 〉, 〈H2:Q〉 ` Q

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

42

SplitCase <Num>.
Type: Strengthening; backwards; programming.
Info: Splits a case expression into its alternatives.
Details: The case expression that will be split is indicated by means of an index
(cases are numbered from left to right starting with 1). A new goal is created for
each of the alternatives of the case, including one for ⊥ and one for the default.
In each goal, the case expression is replaced by the result of the alternative.
Hypotheses are introduced to indicate which alternative was chosen.
Example: xs, 〈H1:¬(xs =⊥)〉 ` case xs of ([y :ys] 7→ y; 7→ 12) > 0

JSplitCase 1.I
(1) xs, 〈H1:¬(xs =⊥)〉, 〈H2:xs =⊥〉 `⊥ > 0
(2) xs, y, ys, 〈H1:¬(xs =⊥)〉, 〈H2:xs = [y :ys]〉 ` y > 0
(3) xs, 〈H1:¬(xs =⊥)〉, 〈H2:xs = []〉 ` 12 > 0

SplitIff.
Type: Equivalence; backwards; logic.
Info: Splits a ↔ into a → and a ←.
Details: The current goal must be of the form P ↔ Q. Two goals are created,
one for with P → Q and one for Q → P .
Example: P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 ` P ↔ Q

JSplitIff.I
(1) P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 ` P → Q
(2) P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 ` Q → P

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Symmetric.
Type: Equivalence; backwards; logic.
Info: Utilizes the symmetry of the built-in operators = and ↔.
Details: The current goal must be of the form ∀x1...xn .P1→. . . Pm→ Q, where
Q is either E1 = E2 or Q1 ↔ Q2. If this is the case, then Q is replaced with
E2 = E1 if it was a =, and with Q2 ↔ Q1 if it was a ↔.
Example: x, 〈H1:x = y〉 ` y = x

JSymmetric.I
x, 〈H1:x = y〉 ` x = y

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

43

Transitive <Expr>/<Prop>.
Type: Equivalence; backwards; logic.
Info: Utilizes the transitivity of the built-in operators = and ↔.
Details: If the argument T is an expression, then the current goal must be of
the form E1 = E2; if T is a proposition, then it must be of the form P1 ↔ P2.
Two goals are then created, one stating E1 = T (or P1 ↔ T), and the other
stating T = E2 (or T ↔ P2).
Example: p ` p < p + 2

JTransitive (p+1).I
(1) p ` p < p + 1
(2) p ` p + 1 < p + 2

Transparent.
Type: Special.
Info: Marks a function as expandable.
Details: Undos the effect of Opaque.
Example: ` zip ([], []) = []

JOpaque zip2; Transparent zip2; Reduce NF All.I
` [] = []

Trivial.
Type: Instantaneous; logic.
Info: Proves the trivial proposition TRUE.
Details: Immediately proves any goal of the form ∀x1...xn .P1→. . . Pm→ TRUE.
Example: ` ∀P .P → ¬P → TRUE

JTrivial.I
Q.E.D.

Uncurry.
Type: Equivalence; backwards; programming.
Info: Uncurries all applications in the current goal.
Details: Forces all curried applications (f x1 . . . xi) xi+1 . . . xn in the current
goal to be uncurried to f x1 . . . xn.
Example: ` [((+) 1) 1 : map ((+) 1) []] = [2]

JUncurry.I
` [1 + 1 : map ((+) 1) []] = [2]

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

44

Undo <num>.
Type: Special.
Info: Undos the last n steps of the proof.
Details: Sparkle does not memorize the last actions of the user. Instead, n
upwards steps in the proof tree are made.
Example: ` ∀xs.xs ++ [] = []

JInduction xs; Reduce. Undo 2.I
` ∀xs.xs ++ [] = []

Witness <Expr>/<Prop>.
Type: Strengthening; backwards; logic.
Info: Chooses a witness for an existentially quantified goal.
Details: The current goal must be of the form ∃x.P , and P [x 7→ T] (where T
is the term argument) must be welltyped. If this is the case, then the goal is
replaced with P [x 7→ T].
Example: ` ∃x.x ∗ x = x

JWitness 1.I
` 1 ∗ 1 = 1

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

45

