Quality Checking Medical Guidelines

Perry Groot

Radboud Universiteit Nijmegen

Health Care Computing

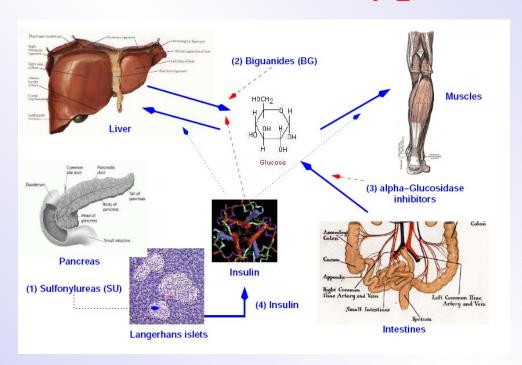
- NWO hefboom
- Part of LaQuSo
- Projects:
 - Breast cancer classification/detection
 - Finding pathways in gene expression data
 - Nuadu (tele-medicine)
 - Protocure (verification medical guidelines)

Protocure (www.protocure.com)

- Universitat Jaume I, Castellón, Spain
- Fundació Biblioteca Josep Laporte, Barcelona, Spain
- Vienna University of Technology, Vienna, Austria
- University of Augsburg, Augsburg, Germany
- Radboud Universiteit, Nijmegen, NL
- Vrije Universiteit, Amsterdam, NL
- Dutch Institute for Healthcare Improvement (CBO), Utrecht, NL

Medical Guidelines

- Evidence-based medicine
- Promoting standards of medical care


"Clinical practice guidelines are systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific circumstances" [Field & Lohr, 1990].

Objective / Approach

Objective: Support guideline developers in the health-care profession in the construction and maintenance of high-quality and upto-date living guidelines and protocols

Approach: Applying formal methods for quality checking medical guidelines

Diabetes Mellitus Type 2

Management DM-2

- Step 1: diet
- Step 2: if quetelet index \leq 27, prescribe a sulfonylurea drug, otherwise prescribe a biguanide drug
- Step 3: combine a sulfonylurea drug and biguanide drug.
- Step 4: one of the following:
 - oral antidiabetic and insulin
 - only insulin

Temporal Logic

Notation	Interpretation	Formal semantics
$\Box \varphi$	φ will always be true	$t \vDash \Box \varphi \Leftrightarrow \forall t' \ge t : t' \vDash \varphi$
$\Diamond \varphi$	φ will eventually be true	$t \vDash \Diamond \varphi \Leftrightarrow \exists t' \ge t : t' \vDash \varphi$
$arphi$ until ψ	φ holds until ψ eventually	$t \vDash \varphi$ until ψ
	holds	$\Leftrightarrow \exists t' \ge t: t' \vDash \psi$
		$\land \forall t \le t'' < t' : t'' \vDash \varphi$
φ unless ψ	φ holds unless ψ holds	$t \vDash \varphi$ unless ψ
		$\Leftrightarrow \forall \ t' \ge t : t' \vDash \varphi$
		$\lor \exists t \le t'' \le t' : t'' \vDash \psi$
οφ	execution does not termi-	$t \vDash \circ \varphi \Leftrightarrow \exists \ t' \in \operatorname{succ}(t) : t' \vDash \varphi$
	nate and the next state sat-	
	isfies φ	
$\bullet \varphi$	either execution terminates	$t \vDash \bullet \varphi \Leftrightarrow \forall \ t' \in \operatorname{succ}(t) : t' \vDash \varphi$
	or the next state satisfies φ	
last	the current state is the last	$t \vDash \mathbf{last} \Leftrightarrow \mathrm{succ}(t) = \emptyset$

Background Knowledge

```
\square Drug(insulin) \rightarrow \square (uptake(liver,glucose) = up \land uptake(peripheral-tissues,glucose) = up
```

```
□ Drug(SU) \land \neg capacity(B-cells,insulin) = exhausted \rightarrow □ secretion(B-cells,insulin) = up
```

 \square Drug(BG) $\rightarrow \square$ release(liver,glucose) = down

Quality Requirements of Treatments (1 of 2)

Let \mathcal{B} be background knowledge, T be a treatment, P be a patient group, N be intensions:

Consistency: $\mathcal{B} \cup \Box T \cup P \not\models \bot$

Coverage: $\mathcal{B} \cup \Box T \cup P \models N$

- $T = \{SU, BG\}$
- $\bullet \ P = \{ capacity(B\text{-}cells, insulin) = \\ nearly\text{-}exhausted, Condition(hyperglycaemia) \}$
- $N = \{Condition(normoglycaemia)\}$

Quality Requirements of Treatments (2 of 2)

Optimality: $O_{\varphi}(T)$ holds, where O_{φ} is a meta-predicate standing for an optimality criterion or combination of optimality criteria φ defined as: $O_{\varphi}(T) \equiv \forall T' \in \Pr_P : T' \preceq_{\varphi} T$,

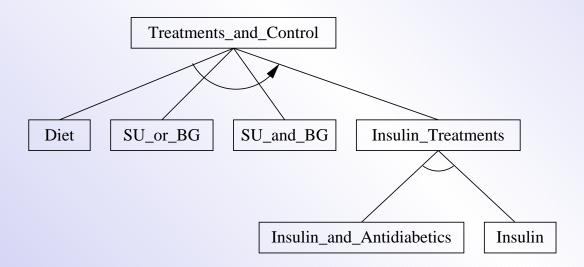
minimal insulin injections + minimal drugs:

 $\begin{array}{ll} \text{insulin} & \preceq_{\varphi} & \text{insulin and antidiabetic} \\ & \preceq_{\varphi} & \text{sulfonylurea and biguanide drug} \\ & \preceq_{\varphi} & \text{sulfonylurea or biguanide drug} \\ & \preceq_{\varphi} & \text{diet} \end{array}$

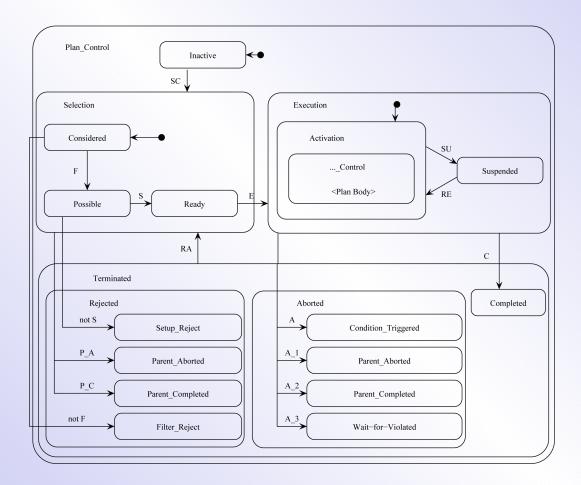
Quality Requirements of Guidelines

Let in addition A be a guideline, then:

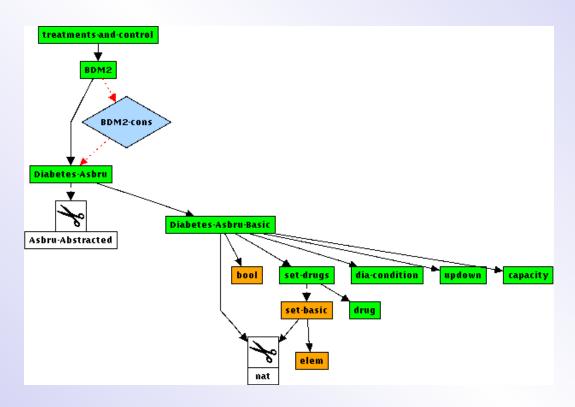
Consistency: $\mathcal{B} \cup A \cup P \not\models \bot$

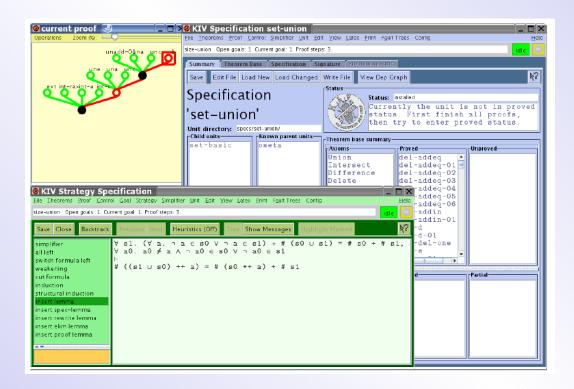

Coverage: $\mathcal{B} \cup A \cup P \models \Diamond N$

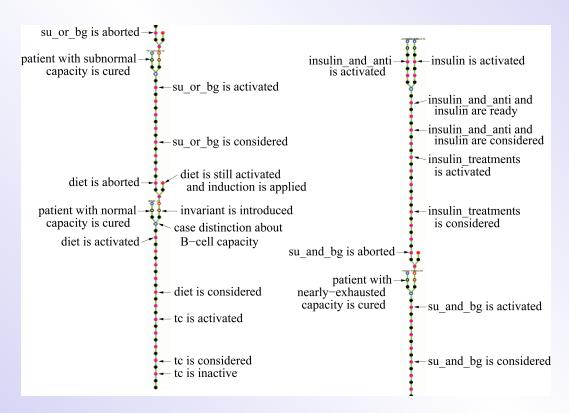
Optimality: $O_{\varphi}(A)$ holds, where O_{φ} is a meta-predicate standing for an optimality criterion or combination of optimality criteria


 φ defined as: $O_{\varphi}(A) \equiv \forall A' \in \mathsf{Pr}_P : A' \preceq_{\varphi} A$,

Asbru (1 of 2)


• Languages for a number of steps with a specific function or goal, e.g., PROforma, Asbru, EON, GLIF, etc.


$Asbru_{(2 \ of \ 2)}$


$\overline{\text{KIV}}_{(1 \text{ of } 3)}$

KIV (2 of 3)

\overline{KIV} (3 of 3)

