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Supervised Learning: Regression

Data D = {(x i , yi)|i = 1, . . . ,n};
Input space X ⊆ Rd ; Output space Y ⊆ R
Goal predict functional relation f : X → Y
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Supervised Learning: Regression

parametric regression: f (x ; w)

Linear model: f (x ; w) = wT x =
∑d

j=0 wjxj

Polynomial model: f (x ; w) =
∑M

j=0 wjx j

Loss function: L(w) =
∑n

i=1(yi − f (x i ; w))2
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Supervised Learning: Regression

There are a couple of disadvantages:
Lack of error bars on predictions
Problem of overfitting

Overfitting can be avoided by using simpler models, but its
predictive performance may be poor.
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Bayesian regression

Bayes’ rule to obtain a posterior distribution:

p(w |y ,X , σ2) =
p(y |X ,w , σ2)p(w)

p(y |X , σ2)

predictive distribution

p(y∗|x∗,y ,X , σ2) =

∫
p(y∗|x∗,w , σ2)p(w |y ,X , σ2) dw

All parameters contribute to a prediction
Good generalization performance and robust to
overfitting
Allows for error bars on predictions
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Weightspace view

Assuming a probability distribution over w ∼ N (µ,Σ) leads
to a probability distribution over functions f (·; w)
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Weightspace view

Which leads to a distribution at each test point
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Functionspace view

Instead of taking a distribution over weights, we can also
directly consider distributions over functions. We will
consider the following model yi = fi + εi with ε ∼ N (0, σ2)
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Gaussian Processes

A Gaussian process (GP) is collection of random variables
{fi} with the property that the joint distribution of any finite
subset has a joint Gaussian distribution.

A GP specifies a probability distribution over functions
f (x) ∼ GP(m(x), k(x ,x ′)) and is fully specified by its mean
function m(x) and covariance (or kernel) function k(x ,x ′).

Typically m(x) = 0, which gives

{f (x1), . . . , f (x I)} ∼ N (0,K ) with Kij = k(x i ,x j)
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Gaussian Processes - Covariance function

Squared exponential (or Gaussian) covariance function:

k(x ,x ′) = exp

(
− 1

2`2

N∑
n=1

(xn − x ′n)2

)
where ` is a length-scale parameter denoting how quickly
the functions are to vary.
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Gaussian Processes - Posterior process

A priori, given data D = {X ,y} with y = f (X ) and test
points X ∗ we have[

f (X )
f (X ∗)

]
∼ N

(
0,
[

K (X ,X ) K (X ,X ∗)
k(X ∗,X ) K (X ∗,X ∗)

])
and after conditioning

f (X ∗)|X ∗,X ,y ∼ N (µ,Σ)

with

µ = K (X ∗,X )K (X ,X )−1y
Σ = K (X ∗,X ∗)− K (X ∗,X ) K (X ,X )−1︸ ︷︷ ︸

O(n3)

K (X ,X ∗)
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Gaussian Processes - 1D demo
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Gaussian Processes - Sampling

How to sample functions from a GP(m,K )?

This can done using the Cholesky decomposition, which is
a lower triangular matrix L such that LLT = K

L = chol(K )T ;
u ∼ N (0, I);
f = m + LuT ;

Then E[f ] = m + LE[uT ] = m and
var(f ) = var(LuT ) = E[LuT uLT ] = LE[uuT ]LT = LILT = K
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Gaussian Processes - Sampling
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Model Selection: Hyperparameters

The kernel function and likelihood may depend on additional
parameters (hyperparameters) that need to be set
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Model Selection: Marginal Likelihood

In Bayesian model selection one can think of a hierarchical
specification. At the bottom level, the posterior over
parameters is

p(w |y ,X ,θ,H) =
p(y |X ,w ,θ,H)p(w |θ,H)

p(y |X ,θ,H)

where the evidence or marginal likelihood is

p(y |X ,θ,H) =

∫
p(y |X ,w ,H)p(w |θ,H) dw

Analogously, at the next level, the posterior over
hyperparameters is

p(θ|y ,X ,H) =
p(y |X ,θ,H)p(θ|H)

p(y |X ,H)
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Model Selection: Marginal Likelihood

This hierarchical specification can be continued
analogously to obtain a posterior over models H.
Depending on the model, however, some integrals may
be intractable and approximations are needed.
In a type II maximum likelihood approximation we
maximize the marginal likelihood.

log p(y |X ,θ) = −1
2

log |K | − 1
2

yT Ky − n
2

log 2π
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Classification

GPs can alo be used for classification, but
computations are intractable (needs approximations).
The idea is to squash a regression function in the
domain (−∞,∞) to the domain [0,1]

Logistic regression: λ(xT w) with λ(z) = 1
1+exp(−z)

Probit regression: Φ(z) =
∫ z
−∞N (x |0,1) dx
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Gaussian Process Applications

Regression / Classification
Clustering
Ordinal Regression
Preference Learning
Ranking
Surrogate modeling / Global Optimization
Relational Learning
Reinforcement Learning
Visualization of high dimensional data
Nonrigid Shape Recovery
Evaluating Integrals
. . .
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Preference Learning

Problem: Given a data set of M pairwise preferences (i.e., a
set of pairs (x1,x2) and whether x1 � x2 or x1 ≺ x2 holds)

D = {(xm1 ,xm2 ,dm)|1 ≤ m ≤ M,dm ∈ {−1,1}}

predict for new instances x ,y which one is preferred.

Idea: Assume a latent (utility) function f over instances that
preserves user preferences, i.e., basically f (x1) > f (x2)
when x1 � x2.
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Preference Learning

Bayesian framework

p(f |D,H) =
p(f |H)p(D|f ,H)

p(D|H)

with a likelihood function, for b ∈ R, δ1, δ2 ∼ N (0, σ2),

p(x1 � x2|f (x1), f (x2)) = p(f (x1) + δ1 > f (x2) + b + δ2)

= Φ(z)

with
z =

d(f (x1)− f (x2)− b)√
2σ
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Preference Learning

Applied to 14 normal-hearing and 18 hearing-impaired
subjects. Obtained significant improvement for predicting
preferences of hearing-impaired subjects.
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Surrogate Modelling with GPs

Complex (physical) systems can be studied nowadays by
computer simulations, but often need long running times.

Figure: 1. Car collision; 2. Turbulent-mixing dynamics of a
supernova; 3. Gas cloud collapsing inwards to form a star.
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Surrogate Modelling with GPs

Idea: replace costly simulation model by a fast Gaussian
process surrogate model.

Choose function evaluations in a "smart way" (e.g., reducing
overall variance) to obtain a good model fit.

Sometimes, however, we are not interested in a good global
model, but only in one specific point (e.g., the best
parameter setting).

x̃ = argmaxx f (x)



GPs

Perry Groot

Regression

Gaussian
processes
Posterior

Sampling

Model Selection

Classification

Applications
Preference Learning

Surrogate Modeling

Integration

Function Optimization

Let fmax = max{f (x1), . . . , f (xn)} be the best value so far.
The improvement at a new point y = f (x) is defined as

I(x) = max{0, f (x)− fmax}

Using the GP prediction y = f (x) ∼ N (m, s2) we obtain the
Expected Improvement (EI):

E(I) =

{
(m − fmax)(1− Φ(d)) + sφ(d) s > 0
0 s = 0

with d = (fmax −m)/s and where Φ() and φ() denote the cdf
and pdf of the standard normal distribution.
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EI - 1D example
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Generalized Expected Improvement

Advantages and disadvantages EI:
EI allows for exploration and exploitation
Expected Improvement can be sampled fast
Expected Improvement often converges to a local
optimum

Generalized Improvement (g positive integer):

Ig(x) =

{
(f (x)− fmax)g f (x) > fmax
0 otherwise

Larger g results in more exploration.
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Bayesian Monte Carlo

Consider the following integral

F =

∫
x

f (x)p(x) dx

where p is a known distribution over the inputs X .

For example,
f could be a computer simulation needing several hours
of computation to evaluate f in a single point
p(x) is the posterior distribution and f (x) predictions
made by the model with parameters x ,
p(x) is the parameter prior and f (x) = p(y |x) the
likelihood (i.e., integral computes the evidence)
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Bayesian Monte Carlo

Monte Carlo makes the approximation

F ' 1
T

T∑
t=1

f (x (t))

with x (t) random draws from p(x). Disadvantages are (c.f.
[O’Hagan, 1987] ‘Monte Carlo is Fundamentally Unsound’):

MC is a frequentist approach
MC can use an irrelevant importance sampling
distribution q(x) when sampling is hard from p(x)

MC ignores the values x (t)
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Bayesian Monte Carlo

We can think of F as being random as we are uncertain
about f (x) because we cannot afford to compute f (x) at
every location.

The integral is then a Bayesian inference problem:
put a prior on f ,
for observations, evaluate f in a number of points
combine the prior and observations into a posterior
distribution over f (which implies a distribution over F )
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Bayesian Monte Carlo

When the prior f and posterior f |D are GPs, the distribution
of F is Gaussian, F ∼ N (F , cov(F )), and is fully
characterized by its mean and variance

F =

∫
x

fD(x)p(x) dx

cov(F ) =

∫
x

∫
x ′

cov(fD(x), fD(x ′))p(x)p(x ′) dx dx ′
(1)

with fD and cov(fD(x), fD(x ′)) the posterior mean and
posterior variance, respectively.
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Bayesian Monte Carlo - Special case

Sometimes the problem can be reduced to products of one
dimensional integrals and/or some analytic expression, e.g.,

p(x) ∼ N (b,B)

k(x ,x ′) = w0 exp
(
−1

2(x − x ′)T A−1(x − x ′)
)

with A = diag(w2
1 , . . . ,w

2
N). Then

F = zK−1Y , cov(F ) = kc − zK−1zT

with

kc = w0|2A−1B + I |−1/2

zl = w0|A−1B + I |−1/2 exp
(
−1

2
(x l − b)T (A + B)−1(x l − b)

)
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Bayesian Monte Carlo - 1D demo
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Bayesian Monte Carlo and Optimization

Suppose we want to introduce a
new cake mix into the consumer
market which is robust to an
inaccurate setting of oven
temperature and baking time.

3 Control variables: The amount of
flour (F), the amount of sugar (S),
and the amount of egg powder (E).

2 Noise variables: Oven
temparature (T) and baking time (t).
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