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Abstract
The use of approximation as a method for dealing with com-
plex problems is a fundamental research issue in Knowledge
Representation. Using approximation in symbolic AI is not
straightforward. Since many systems use some form of logic
as representation, there is no obvious metric that tells us ‘how
far’ an approximate solution is from the correct solution.
This article shows how to do a structured analysis of the use
of an approximate entailment method for approximate prob-
lem solving, by combining theoretical with empirical analy-
sis. We present a concrete case study of our approach: we
use a generic approximate deduction method proposed by
Cadoli and Schaerf to construct an approximate version of
classification reasoning. We first derive theorems that char-
acterise such approximate classification reasoning. We then
present experiments that give further insights in the anytime
behaviour of this approximate reasoning method.

Keywords: Approximate Problem Solving, Classifica-
tion, Anytime Inference.

Introduction
The use of approximation as a method for dealing with com-
plex problems is a fundamental research issue in Knowl-
edge Representation. There are two well known reasons for
choosing approximation over exact problem solving. First,
exact problem solving may be computationally infeasible.
Approximation allows us to reduce the computational com-
plexity of problem solving, and enables anytime reason-
ing (Dean & Boddy 1988). Second, exact problem solv-
ing may not result in any solutions because of inconsis-
tent or incomplete data used. Approximation allows us to
make problem solving more robust (Schaerf & Cadoli 1995;
ten Teije & van Harmelen 1996).

Using approximation in symbolic AI is not straightfor-
ward. Since many systems use some form of logic as repre-
sentation, there is no obvious metric that tells us ‘how far’
an approximate solution is from the correct solution.

The literature on approximate and anytime reasoning of
the last decade (e.g., (Russell & Zilberstein 1991; Zilber-
stein & Russell 1996; Zilberstein 1996)) has studied specific
algorithms: their anytime behaviour, their performance pro-
files, compositionality of such algorithms, monitoring and
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control of such algorithms, etc. However, a declarative char-
acterisation of such algorithms is often lacking.

On the other hand, work such as (Schaerf & Cadoli 1995)
and (Dalal 1996) have provided declarative formalisms for
approximate reasoning, but this work only tackles general
logical deduction, and needs to be made more concrete for
specific forms of AI problem solving such as planning or
classification. Some attempts in this direction have been
made by ourselves for diagnosis ((ten Teije & van Harme-
len 1996; 1997)) and by Wasserman et al. for belief revision
(Chopra, Parikh, & Wassermann 2001).

In this article we try to bridge the gap between these algo-
rithm studies on the one hand and the analytical/declarative
characterisations on the other hand. We focus in particular
on the approximate deduction method of Cadoli and Schaerf
(Schaerf & Cadoli 1995). The method is general and can
be applied to any problem that can be formalized in (propo-
sitional) logic and uses logical entailment for inferencing.
This method has a number of desirable properties for an ap-
proximation method, such as reduced computational costs,
sound as well as complete approximations, and incremen-
tal approximations. However, the method also has a num-
ber of limitations. In particular, it is not immediately obvi-
ous what the effect is of applying the method on a specific
problem domain such as diagnosis or classification. Further-
more, the method uses a parameter S resulting in a whole
spectrum of approximations that range from zero to optimal
precision. Practical usefulness of the method therefore de-
pends on the choice for S, making this choice a crucial part
of the method. Currently, the method has not been evalu-
ated beyond diagnosis in (ten Teije & van Harmelen 1996;
1997) and belief revision (Chopra, Parikh, & Wassermann
2001) by means of a quantitative and qualitative analysis.

This article shows how to do a structured analysis of the
use of an approximate entailment method for approximate
problem solving. The approach consists of two steps. The-
oretical analysis: In this step the properties of the approx-
imation method applied on a specific problem domain are
analyzed by using the rules of the logic and the properties
of the approximation method. This step tries to limit the
choices for the parameter S resulting in a smaller search
space of useful settings (and changes) for the crucial ap-
proximation parameter. Empirical analysis: In this step
heuristics for the parameter S are determined and experi-



ments are set up that measure the quality of these heuris-
tics. The experiments include choosing problem instances,
a quality measure for the heuristics, and a way to compare
the measured qualities of the heuristics.

This article presents a concrete case study of the above
mentioned approach. First we describe the chosen approxi-
mation method and the chosen problem domain. The chosen
approximation method is the approximate entailment opera-
tor of Cadoli and Schaerf (Schaerf & Cadoli 1995). The cho-
sen problem domain is (taxonomic) classification. There-
after, the analysis of the approximate entailment operator
applied to classification is presented. First we present the
theoretical analysis. We give boundaries for the parameter
S and we show that for classification the chosen approxi-
mation technique is useful from an anytime perspective, but
not useful from a robustness perspective. Second we present
the empirical analysis. These experiments give further re-
strictions on S. Two heuristics are defined and applied in
several ways. Thereafter conclusions are given of the per-
formed case study and of our general approach towards ap-
proximate problem solving. This paper finishes by looking
at steps for future work.

Approximate entailment
This section gives a short overview of the approximate en-
tailment operators by Cadoli and Schaerf (Schaerf & Cadoli
1995) that allows for a weaker/stronger inference relation.
Throughout this section we assume that there is an underly-
ing finite language L used for building all the sentences. In
the following we denote with S a subset of L.

Definition 1 (S-3-interpretation) An S-3-interpretation of
L is a truth assignment which maps every letter l of S and
its negation ¬l into opposite values. Moreover, it does not
map both a letter l of L \ S and its negation ¬l into 0.

Definition 2 (S-1-interpretation) An S-1-interpretation of
L is a truth assignment which maps every letter l of S and
its negation¬l into opposite values. Moreover, it maps every
letter l of L \ S and its negation ¬l into 0.

The names given to the interpretations defined above can
be explained as follows. For an S-1-interpretation there is
one possible assignment for letters outside S, namely false
for both x and ¬x. For an S-3-interpretation there are three
possible assignments for letters outside S, namely the two
classical assignments, plus true for both x and ¬x. As a
classical interpretation allows two possible assignments for
letters, such an interpretation is sometimes referred to as a
2-interpretation.

Satisfaction of a formula by an S-1- or S-3-interpretation
is defined as follows. The formula is satisfied by an inter-
pretation σ if σ evaluates the formula written in Negated
Normal Form (NNF) into true using the standard rules for
the connectives.

The notions of S-1- and S-3-entailment are now de-
fined in the same way as classical entailment: A theory
T S-1-entails a formula φ, denoted by T |=S

1 φ, iff ev-
ery S-1-interpretation that satisfies T also satisfies φ. S-3-
entailment is defined analogously and denoted by T |=S

3 φ.

Let S, S′ ⊆ L and let |=S
i ⇒|=S′

i denote T |=S
i φ ⇒

T |=S′
i φ. The definitions given above then lead to the fol-

lowing result:

Theorem 3 (Approximate Entailment) Let S, S ′ ⊆ L,
such that S ⊆ S′, then

|=∅3⇒|=S
3⇒|=S′

3 ⇒|=2⇒|=S′
1 ⇒|=S

1⇒|=∅1 .

This theorem tells us that |=S
3 is a sound but incom-

plete approximation of the classical entailment |=2, whereas
6|=S

1 is a sound but incomplete approximation of 6|=2 (i.e.,
6|=S

1⇒6|=S′
1 ⇒6|=2).

Furthermore, the theorem states that the accuracy of the
approximations can be improved by increasing the param-
eter S until the approximations coincide with the classical
entailment.

In the remainder of this paper we only focus on S-3-
entailment. The following examples (Schaerf & Cadoli
1995) show that the modus ponens rule does not always hold
for S-3-entailment.

Example 4 Let L be {a, b}, and T be {a,¬a ∨ b}. T |= b
holds. If S = {a} then T |=S

3 b. Every S-3-interpretation
satisfying T must map a into 1. Then ¬a must be mapped
into 0 as a ∈ S. Therefore, as ¬a∨b ∈ T , bmust be mapped
into 1.

Example 5 Let L be {a, b, c}, and T be {a,¬a∨ b,¬b∨ c}.
T |= c holds, but if S = {a}, T |=S

3 c does not hold. The
mapping that maps the literals a, b and ¬b into 1 and all re-
maining literals into 0 is an S-3-interpretation that satisfies
T , but does not satisfy c.

Another way to look at S-3-entailment is that it resembles
removing all clauses with a letter not in S. Let T be a theory
and γ be a formula. Then for a clause c the following relation
holds:

T ∧ c |=S
3 γ ⇔ T |=S

3 γ,

if c contains a letter that does not occur both in S or γ.

Classification
This section describes the conceptualization of classification
given by (Jansen 2003). In classification the goal is to iden-
tify an object as belonging to a certain class. The object
is described in terms of a (possibly incomplete) set of ob-
servations. Some assumptions have to be made about the
representation of the task domain to provide us a vocabulary
that can be used to define classification. In (Jansen 2003) six
basic ontological types are defined, namely attribute, object,
value, class, feature, and observation. An attribute is a qual-
ity which can be associated with a list of possible values.
The (finite) set of attributes is denoted withA. It is assumed
that each attribute can only have one value at a time. A class
will be denoted by the letter c. The set of all classes is de-
noted by C. A feature is an admissible attribute-value (AV)
pair. A feature will be denoted by the letter o. The set of all
features is denoted by O. Objects that need to be classified
are described by a finite number of AV-pairs. These AV-pairs
are called observations. The set of observations for a partic-
ular object will be denoted by Obs. The set of attributes



occurring in an element e of the domain (e.g., a class, a set
of observations) will be denoted by Ae.

A domain theory, denoted by DT , is a conjunction of
class descriptions. Class descriptions can be represented in a
number of ways. Within this article it is assumed that classes
are represented by necessary conditions. For example

c→ (a1 ∨ . . . ∨ an) ∧ . . . ∧ (b1 ∨ . . . ∨ bm).1

The class name is represented by the proposition c and
implies its features (i.e., AV-pairs). Features are here rep-
resented as atomic propositions with an index for ease of
representation. a1 represents the feature where a designates
the attribute and the index 1 a certain value. For example

blackbird → ((plumage = black) ∨
(plumage = brown)) ∧
(bill = yellow).

Furthermore, we assume that whenever c → a1 ∨ . . . ∨ an
is part of the domain theory, each a1, . . . , an has the same
type (i.e., they contain the same attribute).

It is assumed that an attribute can only have one value at a
time. In case multi-valued attributes are transformed into a
number of binary attributes additional rules need to be added
to the domain theory to enforce this assumption. This can be
done by adding rules for each feature of the following form:

a1 → (¬a2 ∧ . . . ∧ ¬an).

Under this representation the candidate solutions S with
respect to some classification criteria can be formulated us-
ing logical entailment. The classification criteria we con-
sider are weak, strong, and explanative classification. In
weak classification a class c is a solution when it is consis-
tent with the domain theory DT and the observations Obs.
In strong classification a class c is a solution when the do-
main theory together with c explains all observations. That
is, we want candidate solutions to actually possess the prop-
erties that have been observed. In explanative classification
a class c is a solution if the class is explained by the ob-
servations. That is, a class is a candidate solution if all its
properties are observed. Note that in strong classification
a candidate solution may have more properties while in ex-
planative classification a candidate solution may have less
properties than the ones actually observed. Using the above
representation these classification criteria can be formalized
as follows:

Definition 6 Let DT be a domain theory containing class
descriptions with necessary conditions in which disjunctions
are not allowed. Then the classification criteria can be for-
malized as follows:
Weak classification:

SW = {c | DT ∪ {c} ∪Obs 6|= ⊥}.
Strong classification:

SS = {c | DT ∪ {c} |= Obs} ∩ SW .
1Note that c → a ∧ b is equivalent to (c → a) ∧ (c → b) and

equivalent to ¬c ∨ (a ∧ b). We will use these equivalent represen-
tations without further notice.

Explanative classification:

SE = {c | {o | DT ∪ {c} |= o} ⊆ Obs} ∩ SW .
These definitions can also be found in the literature (e.g.,

(Jansen 2003)). Usually the definitions for strong- and ex-
planative classification are simplified by omitting the inter-
section with SW as this has no influence on the formaliza-
tions of the criteria when using propositional logic and the
classical entailment operator. As we will substitute an ap-
proximate entailment operator |=S

3 for the classical entail-
ment operator |=, which also occurs in SW , we keep the
intersection with SW part of our formalization. Of the for-
malizations given in Definition 6, only the formalization of
weak classification can also be used in case of class descrip-
tions with disjunctions.

Related work
Classification has been studied before by other researchers,
for example in the context of Description Logics (DLs). As
(Schaerf & Cadoli 1995) studies the approximation of DLs
using S-1- and S-3-entailment the question rises what the
differences are between our approach and theirs.

Although the same term ‘classification’ is used in our
work as well as within the context of DLs the meaning, how-
ever, is quite different. In DLs classification means placing a
concept expression in the proper place in a taxonomic hierar-
chy of concepts. This is done by checking known subsump-
tion relations between concepts without referring to specific
instances. In our approach classification means identifying
to which class a specific instance belongs. In DLs this is
called instance checking.

Another difference between our work and the work done
in DLs is the use of three different classification criteria
(weak, strong, and explanative). Classification criteria are
not discussed in the context of DLs. An instance simply be-
longs to a concept when it satisfies all the properties of the
concept. Any property satisfied by the instance which is not
mentioned in the concept has no influence on the outcome.
Note that this is the same as explanative classification used
in our work.

Finally we like to point out that our work focuses on a spe-
cific problem task, namely classification, whereas (Schaerf
& Cadoli 1995) uses their approximation techniques in a
more general setting, i.e., approximate satisfiability within a
certain logic. The general nature of (Schaerf & Cadoli 1995)
makes it unclear if their proposed approximation technique
is applicable to practical problem solving. Our work fills
some of this gap. Furthermore, the approximation technique
of (Schaerf & Cadoli 1995) uses a parameter S which is
important for the effectiveness of the method. Our work ad-
dresses this problem and proposes a structured analysis for
choosing this parameter.

Approximating classification using
S-3-entailment

This section gives the results of a theoretical analysis of
the influence of the approximate S-3-entailment relation of
Cadoli and Schaerf on the various classification forms. This



analysis is the first step in our approach to restrict the crucial
parameter S by exploiting the formalization of our specific
problem domain (classification). The results of this analysis
will be used in the empirical analysis for concrete guidelines
for setting boundaries for the parameter S.

We assume that class descriptions are given by necessary
conditions. The approximations are obtained by selecting
|=S

3 instead of the usual entailment and additionally choos-
ing an appropriate set of propositional letters S. More pre-
cisely, we define

SSW3 = {c | DT ∪ {c} ∪ Obs 6|=S
3 ⊥},

SSE3 = {c | {o |DT ∪ {c} |=S
3 o} ⊆ Obs} ∩ SSW3,

SSS3 = {c | DT ∪ {c} |=S
3 Obs} ∩ SSW3,

for some set S of propositional letters.
These definitions can be used to approximate the classi-

cal classification forms from above (too many solutions) or
below (too few solutions):2

Lemma 7 Let S, S′ ⊆ L, such that S ⊆ S ′. Then

SW ⊆ SS
′

W3 ⊆ SSW3 ⊆ S∅W3 = C,
SE ⊆ SS

′
E3 ⊆ SSE3 ⊆ S∅E3 = C,

∅ = S∅S3 ⊆ SSS3 ⊆ SS
′

S3 ⊆ SS .

The effect of using S-3-entailment in the definitions of
classical classification can be described in simpler terms.
Before doing so, let Aincorrect be a set of attributes and
Oincorrect be the set of all features with an attribute in
Aincorrect. Weakening weak classification by allowing the
values of attributes in Aincorrect to be inconsistent can then
be formalized as

SincorrectW = {c | DT ∪ {c} ∪ (Obs \Oincorrect) 6|= ⊥}.
Approximate weak classification (using S-3-entailment)

can be described as follows:

Theorem 8 S
C∪(O\Oincorrect)
W3 = SincorrectW .

Our analysis of SSW3 also showed that excluding a class
c from the parameter S results in c always being a solution,
i.e., c 6∈ S ⇒ c ∈ SSW3. A reasonable choice for S should
therefore include the set of all classes C to obtain a reason-
able approximation of classical weak classification. Hence,
the above theorem characterizes approximate weak classifi-
cation for all reasonable choices of S.

Theorem 8 gives us an interpretation of SSW3. It states that
SSW3 is the same as weak classification that allows certain at-
tributes to be inconsistent. Furthermore, Theorem 8 gives us
a method for computingSincorrectW as the algorithm given by
Cadoli and Schaerf (Schaerf & Cadoli 1995) for computing
S-3-entailment can be used.

Approximate explanative classification can be described
as follows:

Theorem 9 Let D ⊆ C, and O ⊆ O. If the domain theory
DT has only class descriptions without disjunctions then

S
(C\D)∪O
E3 = SE ∪D.

2Proofs are omitted but can be obtained from (Groot 2003).

Hence, this theorem states that the usefulness of approxi-
mating explanative classification by using S-3-entailment is
limited. There is no interpretation of SSE3 possible in terms
of explanative classification in which missing or inconsistent
attributes are allowed as there is a one to one correspondence
between classes not in S and classes in SSE3. More precisely,
any sequence of sets S1 ⊆ S2 ⊆ · · · ⊆ Sn used as param-
eter in SSE3 to approximate explanative classification with
increasing accuracy as Si increases, leads to the sequence
of solution sets SE ∪ D1 ⊇ SE ∪ D2 ⊇ · · · ⊇ SE ∪ Dn,
where Di = C \ Si, approximating SE in an obvious but
uninformative way.

Approximate strong classification can be described as fol-
lows:

Theorem 10 Let D ⊆ C and O ⊆ O. If the domain theory
DT has only class descriptions without disjunctions then

SD∪OS3 = SS ∩D.
Note that this theorem states that the usefulness of ap-

proximating strong classification by using S-3-entailment is
limited. There is no interpretation of SSS3 possible in terms
of strong classification in which missing or inconsistent at-
tributes are allowed as there is a one to one correspondence
between classes not in S and classes not in SSS3. Strong clas-
sification with S-3-entailment can only be used to restrict
strong classification to a subset of the class hierarchy.

Summarizing the theoretical analysis, S-3-entailment ap-
plied to classification is of limited use. Only weak classifi-
cation with S-3-entailment can be interpreted in terms of in-
consistent attributes. Nevertheless, with S-3-entailment one
obtains three approximate classification methods that can be
used to incrementally increase or decrease the number of so-
lutions. However, the quality of these approximating meth-
ods depend on the chosen order of S. The following section
looks at this issue in more detail.

Empirical analysis
The analysis of the previous section results in a number
of restrictions for reasonable choices for S. In the case of
strong classification and explanative classification, the pre-
vious section showed that adding observations to S had no
influence on the outcome. Hence, for both forms of clas-
sification, only the order in which the classes are added to
S is important. In the second step of our approach we use
these restrictions for developing concrete guidelines for S in
the context of strong classification and explanative classifi-
cation in the following two subsections respectively. (Addi-
tional experiments omitted from this article were performed
to corroborate the theoretical results. These can be obtained
from (Groot 2003).)

Strong classification
With approximate strong classification the set of solutions
is approximated from below (sound but incomplete), i.e., by
adding more classes to S more strong solutions are obtained.
A reasonable choice for S therefore seems to be to prefer
a class c over a class d when class c is more likely to be
a strong solution. As for strong classification AObs ⊆ Ac



must hold (i.e., all attributes in Obs must also occur in c and
their values must match), this seems to be the case when (1)
the number of attributes in the class description of c is higher
than the number of attributes in the class description of d,
and/or (2) the number of possible values that can be assigned
to attributes of c is less than the number of possible values
that can be assigned to attributes of d. (More precisely, the
second heuristic is computed by taking the product of the
number of possible values per attribute.)

These two heuristics lead to four possible orders. S1: ap-
ply only the first heuristic, S2: apply only the second heuris-
tic, S3: apply the first followed by the second heuristic (in
case two classes have the same number of attributes), and
S4: apply the second heuristic followed by the first heuris-
tic.

The goal is to compute the average approximating be-
haviour of the various orders of S on a set of observations.
As the number of strong solutions will be different for dif-
ferent object descriptions, each result on one specific object
description needs to be normalized before the average can be
computed. In the following the quality of an approximating
algorithm will be mapped on the interval [0,1] by dividing
the obtained value through the maximum value that can be
obtained, i.e., the number of classical solutions.

For the experiment of strong classification some condi-
tions were set for the theory while the rest of the theory was
created randomly. The conditions consisted of 100 classes
and 10 attributes. The maximum allowed number of val-
ues for an attribute was set at 5 and the class descriptions
contained between 5 and 10 attributes. Furthermore, 30 ran-
dom object descriptions were created containing one, two, or
three observations. (This theory was chosen so that the ob-
ject descriptions did not result in too few strong solutions.)
The results of the experiment are shown in Figure 1.
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Figure 1: Results of various orders used in approximate
strong classification.

Figure 1 shows the results of the ordersS1, . . . , S4 as well
as three random orders. This means that the order of the
classes were chosen at random before the experiment, and

then this random order was used on all 30 object descrip-
tions. These random orders are used for comparison with the
heuristic orders. More random orders were tested in prac-
tise, which resulted in similar behaviour as shown in Figure
1, but they are left out for readability.

The results show that the order that selects classes with the
highest number of attributes, i.e., S1, performs much better
than a random order for S. Figure 1 also shows that S1 can
be further improved by also considering the number of pos-
sible values, i.e., S3. The orders that first select the classes
with the lowest number of possible values, i.e., S2 and S4

perform much worse than a random order of S. This may
seem surprising at first, but not when considering the results
of order S1. Classes with the lowest number of possible val-
ues are often classes with less attributes (as one less attribute
means one less number in the product used to compute the
second heuristic), hence orders S2 and S4 tend to take the
opposite order of S than S1.

Explanative classification
With approximate explanative classification the set of solu-
tions is approximated from above (complete but unsound),
i.e., by adding more classes to S more incorrect solutions
are discarded. A reasonable choice for S therefore seems
to be to prefer a class c over a class d when class c is less
likely to be an explanative solution. As for explanative clas-
sification Ac ⊆ AObs must hold, this seems to be the case
when (1) the number of attributes in the class description of
c is higher than the number of attributes in the class descrip-
tion of d, and/or (2) the number of possible values that can
be assigned to attributes of c is higher than the number of
possible values that can be assigned to attributes of d.

These two heuristics lead to four possible orders. E1: ap-
ply only the first heuristic,E2: apply only the second heuris-
tic, E3: apply the first followed by the second heuristic (in
case two classes have the same number of attributes), and
E4: apply the second heuristic followed by the first heuris-
tic.

The goal of the experiment is to compute the average ap-
proximating behaviour of the various orders. As the set of
classic solutions is approximated from above (incorrect so-
lutions are discarded when S increases) normalization of
the result of each object description is more complicated
than the case of strong classification. To obtain an in-
creasing quality function on the interval [0, 1] as in Figure
1 we apply for a theory with n classes the normalization
(n − v(i, o, s))/(n − v(n, o, s)) where v(i, o, s) is the size
of the solution set at iteration i for some object description o
and some chosen order s. Note that v(n, o, s) is equal to the
number of classical explanative solutions.

The theory used for the experiment consisted of 100
classes and 10 attributes. The maximum number of allowed
values per attribute was set at 7 and the class descriptions
contained between 1 and 3 attributes. Furthermore, 30 ran-
dom object descriptions were created consisting of eight,
nine, and ten attributes. The results of the experiment are
shown in Figure 2.

In this experiment, all heuristic orders produce a better
approximating behaviour when compared with the random
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Figure 2: Results of various orders used in approximate ex-
planative classification.

orders. However there is little to choose between the various
heuristic orders. Order E1, which only considers the num-
ber of attributes, performs worst, but it can be improved by
also considering the number of values (E3). The best orders
are E2 and E4. Note that classes with many possible values
for its attributes are often also classes with many attributes.
Hence, the second heuristic tends to prefer classes also pre-
ferred by the first heuristic. Therefore, all orders based on
the two heuristics result in very similar approximating be-
haviour.

Note that similar experiments on a different theory re-
sulted in similar behaviour as in Figure 2. However, the
difference between the various orders E1, . . . , E4 was even
less, probably caused by a lower number of explanative so-
lutions.

Experiments continued
The previous experiments were only performed on one the-
ory, which is too few to reach a general conclusion. Al-
though similar behaviour may be expected, more theories
should be used in the experiments.

One question that rises from the previous experiments is
if the experiments are robust (or repeatable), i.e., will the re-
sults of two experiments be similar when both experiments
are run using similar conditions. Therefore, another theory
was created using the same conditions (10 attributes with
upto 5 possible values and 100 classes with 5 upto 10 pos-
sible attributes) on which the experiments from the previous
section were repeated.

In this section we focus on the experiments with strong
classification. The results of the repeated experiment are
shown in Figure 3.

Note that the results of Figure 3 are very similar to the
results of Figure 1. The heuristics S1 and S3 perform better
than the random heuristics and heuristics S2 and S4 perform
worse than the random heuristics. This indicates that the ex-
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Figure 3: Results of various orders used in repeated experi-
ment of approximate strong classification.

periment is robust. There is only a slight difference between
the heuristics S1 and S3. In Figure 1 the heuristic S3 per-
formed slightly better than the heuristic S1, but in Figure 3
it is the other way around, heuristic S1 performs slightly bet-
ter than heuristic S3. As the heuristic S3 uses more knowl-
edge about the domain to construct the order than heuristic
S1 one might expect it to have a better approximating be-
haviour. However, these experiments do not confirm this.

Another question that rises from the previous experiments
is if the results also hold for theories constructed using dif-
ferent conditions. Another two theories, which we will re-
fer to as domain-2 and domain-3 were therefore cre-
ated based on the theory of the previous experiment, but
with slightly different conditions. The theory domain-2
consisted of 10 attributes with 1 upto 5 possible values and
100 classes, but the class descriptions contained only 5 or
6 attributes (instead of 5 upto 10 attributes). The theory
domain-3 consisted of 100 classes with 5 upto 10 at-
tributes and 10 attributes, but the attributes were only al-
lowed upto 2 possible values (instead of 5). The results
of approximate strong classification with these theories are
shown in Figures 4 and 5.

Note that the results of Figure 4 are very similar to the
results of Figure 1 or Figure 3. There is somewhat more
difference between the heuristics S2 and S4, but they still
perform worse than the random orders. However, Figure 5
is somewhat different than the other results of approximate
strong classification. There is now much less difference be-
tween the four heuristic orders and the three random orders.
Nevertheless, heuristic S3 seems to outperform the other or-
ders. The heuristic S1 which performed well in the other ex-
periments only performs well until the parameter S contains
about 60 elements. Thereafter, heuristic S1 drops below the
other heuristics. Hence, all experiments indicate that heuris-
tic S3 is the best choice for an order in which elements are
added to the parameter S.

The experimental results also show that the quality of the
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Figure 4: Results of various orders used in approximate
strong classification using theory domain-3.

heuristic order S3, i.e., the difference in quality between the
order S3 and other orders, depends on the theory used. The
results shown in Figures 4 and 5 indicate that the quality of
the approximation depends on certain parameters of the the-
ory used. Some parameter will have more influence on the
quality of the approximation then other parameters. Figures
4 and 5 suggest that in this case study the variation in the
number of attributes in a class description has more influ-
ence on the quality of the approximation than the number of
possible values for an attribute. However, more experiments
should be run before any conclusion can be drawn.

Finally note that the specific results obtained in these em-
pirical experiments are not the main purpose of this article,
but rather the approach followed to make the approxima-
tion technique of Cadoli and Schaerf applicable to a spe-
cific problem domain. First, a theoretical analysis was per-
formed for limiting the choices of the crucial parameter S in
the approximation method of Cadoli and Schaerf. Second,
an empirical analysis was performed for evaluating specific
choices for S.

Conclusions
This study began with the premise that complex problem
solving can benefit from approximation techniques. In par-
ticular, approximation can be used to reduce computational
costs of problem solving or to make problem solving more
robust against incorrect/incomplete data.

A general technique for approximating logical inference
problems one can use is replacing the standard entailment
operator by the approximate entailment operators developed
in (Schaerf & Cadoli 1995). Although this technique is gen-
eral and has some desirable properties, little is known about
the method when applied to specific problems. This arti-
cle analyzed the applicability of the method of Cadoli and
Schaerf to classification.

The main results of the theoretical analysis are the for-
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Figure 5: Results of various orders used in approximate
strong classification using theory domain-2.

mulas obtained that describe the effect of replacing the en-
tailment operator by the S-3-entailment operator for the
three classification forms. It was proven that, using S-3-
entailment, approximate weak classification behaves iden-
tical to weak classification that allows certain observations
to be inconsistent. Furthermore, approximate strong classi-
fication behaves identical to strong classification restricted
to a subset of all classes. The solutions to approximate ex-
planative classification are identical to classical explanative
classification to which a set of classes is added.

A theoretical analysis does not provide all necessary in-
formation about a method. Although a theoretical analysis
helps in setting boundaries for the parameter S, it does not
provide clear guidelines for choosing which letters should be
added to the parameter S and in which order. The empirical
analysis was performed to fill in some of these gaps. Two
experiments were performed, one in the context of strong
classification and one in the context of explanative classifi-
cation, for validating heuristic orders of S for a given theory.

Although an empirical analysis is useful to accompany a
theoretical analysis, some drawbacks of this approach were
found. Although some of these may be obvious, one should
be aware of these drawbacks. First, results of an empirical
analysis may depend on the particular instance used for an-
alyzing a method. For example, the empirical results shown
may depend on the theory used for classification. Determin-
ing the structure of such a theory and representing it as a
set of parameters may be hard if not impossible. Second,
even if a domain can be characterized as a set of parame-
ters, there may be too many parameters to explore using an
empirical analysis. Third, if not all instances of a problem
can be used in an empirical analysis, then the results of this
analysis cannot be used as facts. An empirical analysis can
be used to corroborate a statement or theory and provide in-
sight in a problem. However, an empirical analysis cannot
be used to prove a property of a method unless all instances
are explored.



Future work
The approach towards a structured analysis of approximate
problem solving taken in this article contains two forms of
analyses. The theoretical analysis for obtaining properties
and setting boundaries for the parameter S, and the empiri-
cal analysis for constructing concrete guidelines for the pa-
rameter S. Both of these analyses allow room for further
research.

The theoretical analysis gives a detailed analysis of S-3-
entailment used in classification. However, the analysis can
be extended in two ways. First, the analysis is restricted
to classes defined by necessary conditions. Other represen-
tations should be included in future research. Second, all
obtained results are for S-3-entailment. No results are ob-
tained for S-1-entailment. Both theoretical analyses have to
be accompanied with an empirical analysis.

In the empirical analysis it was clear which (heuristic) or-
der performed better when two orders were compared with
each other. In both experiments (i.e., strong classification
and explanative classification), the quality of an order was
always higher, lower, or the same when compared with the
quality of another order. When the quality of an order is
sometimes higher and sometimes lower than the quality of
another order, it becomes unclear which order should be
preferred. A general framework should be created for the
comparison of such performance profiles. This framework
should answer the question which performance profile is
preferred with respect to a number of preferred properties.

Besides extending the theoretical and empirical analysis,
other variations of the performed case study can be explored.
These are other problem domains, another logic, or other
approximation techniques.
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