
Scalable Instance Retrieval for the Semantic
Web by Approximation

Holger Wache1, Perry Groot2, and Heiner Stuckenschmidt1

1 Vrije Universiteit Amsterdam, de Boelelaan 1081a,
1081HV Amsterdam, The Netherlands

{holger, heiner}@cs.vu.nl
2 Radboud University Nijmegen, Toernooiveld 1,

6500GL Nijmegen, The Netherlands
Perry.Groot@science.ru.nl

Abstract. Approximation has been identified as a potential way of re-
ducing the complexity of logical reasoning. Here we explore approxi-
mation for speeding up instance retrieval in a Semantic Web context.
For OWL ontologies, i.e., Description Logic (DL) Knowledge Bases, it is
known that reasoning is a hard problem. Especially in instance retrieval
when the number of instances that need to be retrieved becomes very
large. We discuss two approximation methods for retrieving instances
to conjunctive queries over DL T-Boxes and the results of experiments
carried out with a modified version of the Instance Store System.

1 Motivation

A central issue in the Semantic Web research community is the expressivity of
its underlying language and the complexity of the reasoning services it supports.
There is a direct correspondence between the current Semantic Web ontology
language OWL and Description Logic (DL).1 Research in DL has lead to sophis-
ticated DL reasoners [6, 3, 5] that can be used to reason with OWL ontologies on
the Semantic Web. Considering T-Box reasoning, current state of the art tech-
niques seem capable of dealing with real world ontologies [7, 4]. However, besides
T-Box reasoning, an important application domain of ontologies is A-Box rea-
soning, i.e., reasoning and retrieving the individuals in an ontology. Experiments
have shown that state of the art DL reasoners break down for A-Box reason-
ing when the number of instances becomes large [8]. Present work focusses at
approximation techniques to make A-Box reasoning in DLs more scalable when
retrieving instances from an ontology with a large number of instances.

In this paper, we investigate optimization techniques that are based on ap-
proximate logical reasoning. The underlying idea of these techniques is to replace
certain inference problems by simpler problems such that either the soundness
or the completeness, but not both, of the solutions is preserved. The solutions
to the simpler problems are approximate solutions to the original problem.
1 More precisely two of the three species of OWL.

M. Dean et al. (Eds.): WISE 2005 Workshops, LNCS 3807, pp. 245–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 H. Wache, P. Groot, and H. Stuckenschmidt

The contribution of this work is in comparing the performance of two approx-
imate reasoning methods proposed in the literature applied to the real world task
of answering conjunctive queries over DL Knowledge Bases. For this, we used
the Instance Store [8], a state of the art system developed to scale-up instance
retrieval for ontologies with a large number of instances, and extended it with
two approximation techniques. The Gene Ontology is used as benchmark data
set to evaluate the performance of the approximation techniques.

The paper is organized as follows. Section 2 gives a brief introduction to DLs.
Section 3 defines the problem of instance retrieval in the context of Description
Logics, which is restricted to conjunctive queries. Section 4 gives a brief overview
of two approximation methods and describes how they can be applied to the
problem of instance retrieval. Section 5 gives the results of experiments with
the two approximation methods applied to instance retrieval using the Gene
Ontology. Section 6 concludes our work.

2 Description Logics

DL Expr. Semantics

A AI ⊆ ∆

¬C (¬C)I = ∆ − CI

C � D (C � D)I = CI ∩ DI

C � D (C � D)I = CI ∪ DI

∃R.C (∃R.C)I = {x|∃y : (x, y) ∈ RI}
∀R.C (∀R.C)I = {x|(x, y) ∈ R =⇒ y ∈ CI}

DLs [1] are a special
type of logic that is tai-
lored to define termi-
nological knowledge in
terms of sets of objects
with common properties.
Recently, DLs have be-
come popular as a formal
foundation for the Web
Ontology Language OWL. The basic modelling elements of a DL are instances,
concepts, and relations. These modelling elements are provided with a formal
semantics in terms of an abstract domain interpretation I, which maps each
instance onto an element of an abstract domain ∆. Instances can be connected
by binary relations defined as subsets of ∆ × ∆. Concepts are interpreted as
a subset of the abstract domain ∆. Intuitively, a concept is a set of instances
that share certain properties. These properties are defined in terms of concept
expressions. Typical operators are the Boolean operators as well as universal
and existential quantification over relations to instances in other concepts. The
formal definitions can be found in the first table.

DL Axiom Semantics

C(x) xI ∈ CI

P (x, y) (xI , yI) ∈ P I

C
 D CI ⊆ DI

P
 R P I ⊆ RI

P ≡ R− P I = {(x, y)|(y, x) ∈ RI}

A DL Knowledge base consists of
a set of axioms about instances, con-
cepts (potentially defined in terms of
complex concept expressions), and re-
lations. Axioms can be used to state
that an instance belongs to a concept
and that two instances are in a certain
relation. Other type of axioms describe

relations between concepts and instances. It can be stated that one concept is a

Scalable Instance Retrieval for the Semantic Web by Approximation 247

subconcept of the other (all its instances are also instances of this other concept).
Further, we can define a relation to be a subrelation or the inverse of another
relation. The formal definition of axioms can be found in the second table.

The formal semantics of concepts and relations as defined by the interpreta-
tion into ∆ can be used to automatically infer new axioms from existing defini-
tions. In particular, given an ontology and a number of instance related axioms,
we can automatically determine whether an instance belongs to a certain concept
based on the expression defining the concept.

3 Instance Retrieval Queries

In this article we focus on the following instance retrieval problem:

Definition 1 (Instance retrieval w.r.t. some query). Given an A-Box A
and a query Q, i.e., a concept expression, find all individuals a such that a is an
instance of Q, i.e., {a | ∀a ∈ A, a : Q}.

Often, an analogy is made between databases (DBs) and DL KBs. The schema of
a DB corresponds to the T-Box and the DB instances correspond to the A-Box.
However, A-Boxes have a very different semantics. This makes query answer-
ing in a DL setting often much more complex than query answering in a DB.
Given the expressivity of DLs, retrieving instances to a query cannot simply be
reduced to model checking as in the database framework because there is no sin-
gle minimal model for a query. Knowledge Bases may contain nondeterminism
and/or incompleteness. Therefore, deductive reasoning is needed when answer-
ing a query in a DL setting.

Conjunctive Queries. A-Box query languages have been quite weak for earlier
DL systems. Usually they supported very simple A-Box queries like instantiation
(is individual i an instance of concept C, i.e., i : C), realisation (what are the
most specific concepts i is an instance of), and retrieval (which individuals are
instances of concept C).

In [9] an approach for answering conjunctive queries over arbitrary DL KBs is
given based on the translation of the query into an equivalent concept expression,
i.e., by rolling up the query.

Definition 2 (Boolean Conjunctive Query). A Boolean conjunctive query
Q is of the form q1 ∧ · · · ∧ qn, where q1, . . . , qn are query terms of the form x : C
or 〈x, y〉 : R, where C is a concept, R is a role, and x, y are either individual
names or variables.

Because binary relations in a conjunctive query can be translated into an existen-
tial restriction such that logical consequence is preserved, standard DL inference
methods can then be used to classify the concept expression the query is trans-
lated into as well as retrieve the instances that belong to it. [9] enables us to use
an expressive query language for arbitrary expressive DL KBs.

248 H. Wache, P. Groot, and H. Stuckenschmidt

Instance Store. DL reasoning is hard, especially in the case of instance retrieval
when the number of instances grows very large. To speed up the overall cost of
instance retrieval, one can address the number and cost of checking whether a
single instance belongs to a query.

Instance Store [8] is developed to speed up instance retrieval by replacing
costly instantiation checks a : Q with database retrieval. However, Instance
Store can not replace all DL reasoning steps using database retrieval. In some
situations DL instantiation checks must still be performed. An analysis of the
Instance Store revealed a drastic breakdown in performance in these situations,
which hampers its goal to scale-up reasoning to ontologies with a large number
of instances. At the moment Instance Store only supports role-free A-Boxes,
i.e., relationships between instances in the A-Box are not allowed, but this was
sufficient for our purpose.

4 Approximation Techniques for Instance Retrieval

There are three components of the instance retrieval problem where approxima-
tion methods can be applied:

The Query. The query can be made weaker, i.e., more general, by omitting
or replacing parts of the query. The underlying assumption is that simpler
queries are easier to check.

The Ontology. We assume that the query is formulated relative to a given
ontology. Concept expressions in the ontology (representing for example an
instantiation check) can be approximated by weaker or stronger concept
expressions.

The Instance Descriptions. In order to check whether instances belong to
the query, first the descriptions of instances are translated into equivalent
concept expressions. Consequently, those concept expressions can be approx-
imated by weaker or stronger concept expressions.

Conjunctive Query
q1 ∧ · · · ∧ qn

Concept
Expression Q

Instance I
Concept

Expression I ′

I ′ � Q

��������1 ��������2

��������3 ��������4

��������5

Roll up ��

��

���
��

��

�������

Fig. 1. Various components

This section reviews the tech-
niques of [10] and [11] that can
be used to approximate instance
retrieval in DL. Figure 1 gives
an overview of the various com-
ponents used in instance retrieval.
The method of [10] was proposed
to approximate satisfiability of con-
cept expressions (usable in step 5
of Figure 1).2 The method of [11]
can be used to approximate con-
junctive queries, or its concept ex-
pression counterpart (usable in steps 1 and 2 of Figure 1).

2 [10] should also be usable in steps 2 and 4, although not proposed originally.

Scalable Instance Retrieval for the Semantic Web by Approximation 249

Both methods propose to approximate an instantiation test using a sequence
of tests C1, . . . , Cn. Assuming that less complex tests can be answered in less
time, instance checking can then be speeded up. However, both methods dif-
fer in their strategy for selecting the sequence of expressions Ci to be checked
successively. In general, [11] argues that the order should balance two factors:

1. The smoothness of the approximation. In particular, the next test Ci+1
should lead to the next best approximation.

2. The potential contribution of the extension of Ci+1 to the time complexity
of the tests to be done by the system.

Approximating DL Satisfiability. In DLs, satisfiability checking can be seen
as the most basic task as many reasoning services can be restated into satisfiabil-
ity checks [1]. In [10] a technique has been developed to approximate satisfiability
checks. Concept expressions are approximated by two sequences C1, . . . , Cn of
simpler concept expressions, obtained by syntactic manipulations, which can be
used to determine the satisfiability of the original concept expression.

For every subconcept D, [10] defines the depth of D to be ‘the number of uni-
versal quantifiers occurring in C and having D in its scope’. The scope of ∀R.φ is
φ which can be any concept term containing D. A sequence of weaker (stronger)
approximated concepts can be defined, denoted by C�

i (C⊥
i), by replacing every

existentially quantified subconcept, i.e., ∃R.φ where φ is any concept term, of
depth greater or equal than i by � (⊥). Concept expressions are assumed to be
in negated normal form (NNF) before approximating them.

Theorem 1 ([10]). For each i, if C�
i is unsatisfiable then C�

j is unsatisfiable
for all j ≥ i, hence C is unsatisfiable. For each i, if C⊥

i is satisfiable then C⊥
j is

satisfiable for all j ≥ i, hence C is satisfiable.

The sequences C� and C⊥ can be used to gradually approximate the sat-
isfiability of a concept expression. [10] only replaces subconcepts D ≡ ∃R.C as
the worst case complexity depends on the nesting of existential and universal
quantifiers. Theorem 1 leads to the following for C⊥-approximation:

(I
 Q)⊥i is not satisfiable ⇔ (I � ¬Q)⊥i is satisfiable ⇒
(I � ¬Q) is satisfiable ⇔ (I
 Q) is not satisfiable

Therefore, we are only able to reduce complexity when approximated subsump-
tion tests are not satisfiable. When an approximated subsumption test (I
 Q)⊥i
is satisfiable, nothing can be concluded and the approximation continues to level
i+1 until no more approximation is applicable, i.e., the original concept term is
obtained. Analogously, from Theorem 1 one obtains that when (I
 Q)�i is sat-
isfiable this implies that (I
 Q) is satisfiable. When (I
 Q)�i is not satisfiable
nothing can be deduced and the approximation continues to level i + 1.

Research on this kind of DL approximation is quite limited. [10] is the only
method that deals with approximation of satisfiability in DLs. Few results have
only been obtained recently [2].

250 H. Wache, P. Groot, and H. Stuckenschmidt

Approximating Conjunctive Queries. In [11] a method is introduced for
approximating conjunctive queries. The method computes a sequence Q1, . . . , Qn

of queries such that: (1) i < j ⇒ Qi � Qj and (2) Qn ≡ Q. The first property
ensures that the quality of the results of the queries doesn’t decrease. The second
property ensures that the last query computed returns the desired exact result.

The proposed method can easily be adapted for instantiation checks. The
computed sequence Q1, . . . , Qn is used to generate the sequence C∆

1 , . . . , C∆
n

with C∆
i = a : Qi. Assuming that less complex queries can be answered in less

time, instantiation checks can then be speeded up using the following implication:

(I �
 Q′) ∧ (Q
 Q′) ⇒ I �
 Q

In [11] the sequence of subsuming queries Q1, . . . , Qn is constructed by step-
wise adding a conjunct (of the original query) starting with the universal query.

A problem that remains to be solved in this approach is a strategy for select-
ing the sequence of queries to be checked successively. This problem boils down
to ordering the conjuncts of the query which should balance the two factors
‘smoothness’ and ‘time complexity’.

As described in [11] the smoothness of the approximation can be guaranteed
by analyzing the dependencies between variables in the query. After translat-
ing the conjunctive query to a DL expression, these dependencies are reflected
in the nesting of subexpressions. As the removal of conjuncts from a concept
expression is equivalent to substitution by �, this nesting provides us with
a selection strategy to determine a sequence of approximations Si where all
subexpressions at depth greater or equal than i are replaced by �. Hence, this
method is somewhat similar to C�-approximation except that it is restricted to
the conjunctive query, i.e., the instance description is not approximated, and it
can replace any conjunct in the query with �, not only existentially quantified
conjucts.

Typically, however, queries often have a very flat structure. For example, all
queries used in our experiments with the Gene Ontology are of depth one. This
means that S0 is the query � whereas S1 is already the original query. To avoid
this bad approximation scheme, next we propose an improved strategy.

An Improved Approximation Strategy. To overcome the flatness of queries
typically found in ontologies, we propose a strategy that also provides an order
for subexpressions at the same level of depth. A possible ordering is the ex-
pected time contribution of a conjunct to the costs of the subsumption test. As
measuring the actual time is practically infeasible, a heuristic is proposed.

For this purpose, we unfold the conjuncts using the definitions of the concepts
from the ontology occurring in the conjunct. In order to determine a suitable
measure of complexity for expressions, we consider the standard proof proce-
dure for DLs. Most existing DL reasoners are based on tableau methods, which
determine the satisfiability of a concept expression by constructing a constraint
system based on the structure of the expression. As the costs of checking the
satisfiability of an expression depends on the size of the constraint system, we
can use this size as a measure of complexity. As determining the exact size of

Scalable Instance Retrieval for the Semantic Web by Approximation 251

the constraint system requires to run the tableau method, heuristics are used
for estimating the size. Based on this estimated size, we determine the order in
which conjuncts at the same level of depths are considered.

In the following, we propose a method for estimating the size of the tableau
for expressions in ALC that will be used in the experiments. The tableau rules
[1] provide us with quite a good idea about an estimation of the maximal size
of the tableau in the worst case. For this purpose, we define a function Φ that
assigns a natural number representing the estimated size of the corresponding
constraint system to an arbitrary ALC expression in the following way:

Φ(A) = 1

Φ(¬A) = 0

Φ(C � D) = 2 + Φ(C) + Φ(D)

Φ(C � D) = φ + 2 + Φ(C) + Φ(D) where φ is the current value of Φ(E)

Φ(∃ R.C) = 2 + Φ(C)

Φ(∀ R.C) = n + n · Φ(C) where n is the number of existential quantifiers in E

A and ¬A: Atomic concepts are added as a single constraint. Negated concepts are
not added as they are merely used to check the existence of a contradiction.

C � D: Two new constraints are added. The expressions in these constraints have to be
evaluated recursively, therefore, we also have to estimate the number of constraints
that will be generated by C and D.

C � D: Two new constraints are added and each of the constraints has to be evaluated
recursively, however, we have to deal with two separate constraint systems from
this point on. The number of constraints in the system at this point has to be
doubled. For an estimation we add the current estimation value.

(∃ R.C): Two new constraints are added, one for the relation and one restricting the
object in the relation to C Object y has to be evaluated recursively.

(∀ R.C): A new constraint has to be added for every existing constraint xRy in the
constraint system S and each one has to be evaluated recursively. As we do not
know how many of these statements are or will be in S, we use the overall number
of existential quantifiers in the expression that can lead to the addition of these
constraints as an upper bound.

The value Φ can now be computed for each conjunct in the query and be
used as a basis for determining the order in which conjuncts at the same level
of nesting are processed.

5 Experimental Evaluation

In this section experimental results are shown of the approaches described in the
previous section. The main question focused on in the experiments is if, and if
yes, in what way does approximation reduce the complexity of the retrieval task.
We focus on the number of operations needed and the overall computation time
used. The goal of our approximation approach is to replace costly reasoning op-
erations by a (small) number of cheaper approximate reasoning operations. The
approximation methods used are sound and complete. Therefore, the suitability

252 H. Wache, P. Groot, and H. Stuckenschmidt

of the approximation methods depend solely on the time gained (or lost) when
classical operations are replaced by a number of approximate ones.

Our experiments were made with the Gene ontology and Instance Store [8].
The focus of our experiments are those queries where Instance Store cannot
replace all DL reasoning with database retrieval, but must still check the in-
stantiations of some instances. These instantiation checks were found to be a
bottleneck in the scalability of this approach. We originally started with 17
queries (with Q1 to Q6 user formulated queries and queries Q7 to Q17 arti-
ficial), but discarded the queries that didn’t require instantiation checks from
further experiments.

Table 1. Performed Subsumption tests

normal C� C⊥ C∆

true false true false true false true false

Q2

L0 20 0
L1 20 0

L0 0 19 L0 19 0 L2 9 11
normal 9 11 normal 9 11 normal 9 11 normal 9 0

Q8
L0 607 0

L0 0 606 L0 606 0 L1 10 597
normal 10 597 normal 10 597 normal 10 597 normal 10 0

Q12 L0 0 7871 L0 7871 0 L0 15 7856
normal 15 7856 normal 15 7856 normal 15 7856 normal 15 0

Q14

L0 408 0
L1 5 403

L0 0 407 L0 407 0 L2 5 0
normal 5 403 normal 5 403 normal 5 403 normal 5 0

Q15
L0 0 6693 L0 6693 0 L0 6693 0

normal 46 6647 normal 46 6647 normal 46 6647 normal 46 6647

Q17
L0 0 7873 L0 7873 0 L0 1 7872

normal 1 7872 normal 1 7872 normal 1 7872 normal 1 0

The results of the first experiments are shown in Table 1, which is divided
into four columns with each column reporting the number of subsumption tests
performed. The first column reports results for the experiment without any ap-
proximation, the second column with C�-approximation, the third column with
C⊥-approximation, and the fourth column with C∆-approximation. Each col-
umn is further divided into smaller rows and columns. The rows represent the
level of the approximation used, where normal denotes without approximation,
and Li denotes the level of the approximation approach. The subcolumns show
the number of subsumption tests that resulted in true or false.3 This distinc-
3 We will use the shorthand ‘true subsumption test’ and ‘false subsumption test’ to

indicate these two distinct results.

Scalable Instance Retrieval for the Semantic Web by Approximation 253

tion is important, because Section 4 tells us that only when a C�-approximated
subsumption succeeds, or a C⊥- or C∆-approximated subsumption test fails we
obtain a reduction in complexity.

Discussion. Let us first focus on the question if the approximation methods
can lead to any reduction in complexity. Table 1 shows that C�- and C⊥-
approximation cannot reduce the number of normal subsumption tests. Only
C∆ is able to reduce, except for Q15, all false subsumption tests to 0.

The first column in Table 1 shows that much more false subsumption tests
are needed than true subsumption tests. This indicates that C�-approximation
is wrong in this approach as it can only be used to lower the complexity of true
subsumption tests, which is negligible when compared to false subsumption tests.
This may explain its bad approximating behaviour, however, C⊥ also performs
badly, which does approximate false subsumption tests. Closer analysis shows
that term collapsing [2], i.e., the substitution of terms by � or ⊥ results in the
query becoming equivalent to � or ⊥, is the reason for this. An analysis of C⊥

shows that this occurs in all cases.
Apart from looking at if an approximation method can successfully reduce

the number of normal subsumption tests, we must also consider the cost for
obtaining the reduction, i.e., in what way are the normal subsumption tests
reduced. For example, approximating Q8 changes 607 = 10 + 597 normal sub-
sumption tests into 10 normal subsumption tests, 607 C∆

1 subsumption tests,
and 607 C∆

0 subsumption tests. Thus, the number of subsumption tests may
increase, but the complexity of most tests will be lower than normal. Note how-
ever, that some computations seem unnecessary as nothing can be deduced from
them, e.g., the 607 C∆

0 tests.Obviously, in this approach unnecessary subsump-
tion tests should be minimized. Several cases can be observed in the experiments
with C∆-approximation. Either no subsumption test is unnecessary (Q12, Q17),
some subsumption tests are unnecessary (Q2, Q8, Q14), or all subsumption tests
are unnecessary (Q15).

Table 2. Time needed for Subsumption
tests (in milliseconds)

normal C� C⊥ C∆

Q2 175 348 299 547
Q8 5373 8383 7753 9912
Q12 61410 93100 85764 56478
Q14 4372 6837 6017 7391
Q15 61560 90847 83714 114162
Q17 113289 158218 144689 93074

This distinction seems to influence
the overall time needed when approx-
imating a query. Table 2 reports the
overall time in milliseconds needed
for each query. For comparison C�

and C⊥ are also reported. For queries
having unnecessary subsumption tests,
approximation always leads to more
computation time. In those cases, re-
ducing the complexity of subsumption
tests do not weigh up to the costs of
additional (unnecessary) subsumption
tests. For queries having no unnecessary subsumption tests, approximation does
save time when compared to the normal case.

254 H. Wache, P. Groot, and H. Stuckenschmidt

Another observation of Table 1 is that false subsumption tests for C∆ only
occur at one level. It seems that the conjunct that is added to the approxi-
mated conjunctive query on which the false subsumption tests occur is crucial
in determining the outcome.The role of conjunct in a subsumption test is still
unclear. More research is needed if this conjunct (or a group of conjuncts) can
be identified in advance to speed up approximation.

6 Conclusions

Instance retrieval is one of the most important inferences in the Semantic Web. In
order to make methods more scalable for ontologies with a large set of instances
we investigated two approximation methods and evaluated them on a bench-
mark set. Both methods use a similar idea, i.e., removing parts of an expression
to make it simpler to speed up retrieval. However, the method of [10] shows bad
approximating behaviour because the selection and substitution of subconcepts
is too restrictive. The method of [11] was extended with a heuristic for sub-
concept selection and shows some potential for speeding up instance retrieval.
However, more research is needed to improve the heuristic and to determine if
the approximation method can be used to speed up instance retrieval.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P F. Patel-Schneider.
The Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

2. P. Groot, H. Stuckenschmidt, and H. Wache. Approximating Description Logic
Classification for Semantice Web Reasoning. In A. Gómez-Pérez and J. Euzenat,
editors, ESWC’2005, pages 318–332. Springer-Verlag, 2005.

3. V. Haarslev and R. Möller. RACE system description. In Proceedings of the 1999
DL Workshop, CEUR Electronic Workshop Proceedings, pages 130–132, 1999.

4. V. Haarslev and R. Möller. High performance reasoning with very large knowledge
bases: A practical case study. In IJCAI’2001, pages 161–168, 2001.

5. V. Haarslev and R. Möller. RACER system description. In IJCAR’2001, volume
2083 of LNAI, pages 701–705. Springer, 2001.

6. I. Horrocks. The FaCT System. In TABLEAUX’98, volume 1397 of LNAI, pages
307–312. Springer, 1998.

7. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In KR’98,
pages 636–647. Morgan Kaufmann, 1998.

8. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: DL Reasoning
with Large Numbers of Individuals. In Proc. of the 2004 DL Workshop, 2004.

9. I. Horrocks and S. Tessaris. A Conjunctive Query Language for Description Logic
Aboxes. In AAAI, pages 399–404, 2000.

10. M Schaerf and M Cadoli. Tractable reasoning via approximation. Artificial Intel-
ligence, 74:249–310, 1995.

11. H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries.
In FQAS’2002, number 2522 in LNCS, pages 329–343. Springer-Verlag, 2002.

	Motivation
	Description Logics
	Instance Retrieval Queries
	Approximation Techniques for Instance Retrieval
	Experimental Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

