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Perry Groot ®*, Christian Gilissen ”, Michael Egmont-Petersen

b

aInstitute for Computing and Information Sciences, Radboud University Nijmegen, the Netherlands
b Department of Human Genetics, UMC St. Radboud Nijmegen, the Netherlands

Abstract

Current approaches for the prediction of functional relations from gene expression data often do not have a clear methodology for
extracting features and are not accompanied by a clear characterisation of their performance in terms of the inherent noise present
in such data sets. Without such a characterisation it is unclear how to focus on the most probable functional relations present. In
this article, we start from the fundamental theory of scale-space for obtaining features (i.e., local extrema) from gene expression
profiles. We show that under the assumption of Gaussian distributed noise, repeatedly measuring a local extrema behaves like a
bivariate Gaussian distribution. Furthermore, the error of not re-observing local extrema is phrased in terms of the integral over
the tails of this bivariate Gaussian distribution. Using integration techniques developed in the 50s, we demonstrate how to compute

these error probabilities exactly.
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1. Introduction

In the last few years, various international genome
projects have yielded the near complete molecular se-
quences of a large number of species, including human.
Novel high-throughput methodologies such as microarray-
based gene expression profiling are now being used to gen-
erate genome-wide transcriptomic data sets at an ever-
increasing rate to analyse and monitor the effects of intrin-
sic and exogenous variables on living cells, tissues, and or-
gans. In general, the timing of mRNA expression for a given
gene has been found to correlate well with the function of
the resultant protein (Béahler, 2005; Bozdech et al., 2003).

Identification of functional relations from gene expres-
sion data has remained difficult because of the inherent
noise in such data sets. Methods that have been developed
to determine such relations include clustering algorithms
like hierarchical clustering, K-means clustering, and self-
organising maps (Eisen et al., 1998; Datta and Datta, 2003).
The simplest approach to clustering is to select a gene and
determine the nearest neighbouring genes according to a
distance measure between gene expression profiles. This ap-
proach, called hierarchical clustering, allows the clustering
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of groups of genes that are co-regulated. As yet, however,
it is unclear how well certain distance functions can deal
with noise which is inherent to gene expression data sets.
Model-based approaches like dynamic Bayesian networks
offer more flexible techniques that can, in principle, deal
with the inherent noise of gene expression data sets (Fried-
man et al., 2000; Husmeier, 2003). However, such model-
based approaches preferably use discretised expression data
mapping expression levels to some discrete representation,
which raises methodological questions. The interpretation
of time series gene expression data sets is complex and is
still regarded to be an open problem (Storey et al., 2005).

In this article, we will focus on the representation pro-
posed by Egmont-Petersen et al. (2004), which only regis-
ters the local extrema of the time course gene expression.
This representation focusses on the most likely time points
a gene changes from up regulated to becoming down regu-
lated or vice versa and allows the prediction of functional
relations without regarding the amplitude of the signal (cf.
Section 2). We will start the analysis of gene expression pro-
files by using a fundamental approach developed in the com-
puter vision community, called scale-space theory (Koen-
derink, 1984), for analysing images and signals at multiple
scales (Section 3). This allows us to formulate criteria for
detecting local extrema in noisy signals. By interpreting
point measurements as a stochastic process we are able to
derive its exact distribution and give a characterisation of
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not re-observing an extremum as the result of noise and/or

smoothing. More specifically, the contributions of this pa-

per are the following;:

— Under the assumption of Gaussian distributed addi-
tive noise, the repeated measurement of two subse-
quent points in the scale-space representation of a one-
dimensional discrete signal is shown to have a bivariate
Gaussian distribution (Section 4).

— Using the criteria for detecting local extrema in the scale-
space representation, the probability that an extremum
is not re-observed because of noise and/or smoothing is
phrased in terms of integrating the tails of a bivariate
Gaussian distribution that cross the horizontal and ver-
tical axis, respectively (Section 4).

— We apply the method of (Owen, 1956) for the integra-
tion of a bivariate Gaussian distribution (Section 5) and
provide an algorithm for the procedure (Section 7).

In summary, the paper uses a methodological approach for

detecting local extrema in a signal with Gaussian distributed

noise that is accompanied with a precise quanitification of
the measurement quality of the local extrema that can be
computed with the provided algorithm.

The remaining sections discuss in more detail the mo-
tivations behind our work (Section 2), related work (Sec-

tion 6), and conclusions and further work (Section 8).

2. Motivation

One of the major research directions in bioinformatics is
the identification of functional relations between gene ex-
pression profiles based on extracted features. For example,
Figure 1 shows that when the pol32-profile has a local ex-
tremum at time n, the rad51-profile has a similar extremum
at time n + 1, strongly suggesting a functional relation be-
tween the pol32 and rad51 gene. However, in contrast with
the smooth profiles shown in Figure 1, gene expression pro-
files inherently contain a lot of noise making it difficult
to clearly distinguish features in such profiles. The aim of
our work is to have a clear underlying methodology for ob-
taining features (i.e., local extrema) from gene expression
profiles for predicting functional relations between genes,
which is accompanied with a precise characterisation of not
being able to observe the feature due to noise present.

Here, we focus on locating local extrema in gene expres-
sion profiles. By discretising gene expression levels on the
basis of local extrema we focus on the most likely time
points at which a gene (and eventually its associated pro-
tein) is active (local maximum) and inactive (local min-
imum). As local extrema are invariant under scaling and
vertical shifting (dosage effects (Goldenthal et al., 2004)),
this representation effectively captures the global dynam-
ics of the time-dependent data, i.e., local extrema allow
the prediction of functional relations between a transcrip-
tion factor with small absolute changes in expression ratio,
and a target gene, because the amplitude is disregarded
(Egmont-Petersen et al., 2004).

pol32
m— 2051
151 b
1k |
c
iel
7]
8 o5t i
—
[o%
X
(0]
0 - -
-0.51 1
1 L . !
0 5 10 15 20

time

Fig. 1. Functional relations based on local extrema between gene
expression profiles in yeast.

We start the analysis of local extrema from the theory
of scale-space (Section 3), which allows one to analyse sig-
nals at different scales. At each scale a different amount of
smoothing is applied, resulting in a simplification of the sig-
nal as spurious structures (i.e., local extrema) as the result
of noise is removed. This is shown in Figure 2 for the gene
expression profile of the swi4 gene along the scale-space di-
mension.

Fig. 2. The same signal along the dimension of the scale parameter.
A larger scale parameter results in a smoother signal, i.e., with less
structure.

After formulating criteria for detecting local extrema in
the scale-space representation of a gene expression profile,
the next step is to precisely characterise the probability of
not detecting a local extremum due to noise. This allows
one to focus on those profiles that have the most likely
correct measurements when determining local extrema for
the prediction of functional relations based on those local
extrema.



3. Scale-space Theory

ODbjects in the real-world and details in images exist only
at a limited range of resolution. For example, a branch of
a tree only makes sense at a scale of a few centimetres up
to a few meters (Lindeberg, 1990). The computer vision
community has developed a multi-resolution representa-
tion, called scale-space theory, which allows one to analyse
images at various levels of scale without choosing a scale a
priori. This framework derives for some domain 7', a one-
dimensional continuous signal f : 7 — R, and continuous
scale parameter s € RT a family of signals L : T x R* — R
that represent the original signal f such that !

— All representations are linear shift-invariant smoothings
(i.e., generated by a convolution of the original signal
with a kernel).

— Anincreasing scale parameter s corresponds with coarser
levels of scale and signals with less structure (i.e., local
extrema), and s = 0 represents the original signal, i.e.,
L(t;0) = f(¢) and for s > 0 it holds that L(¢; s) has no
more structure, i.e., local extrema, than L(¢;0).

— Each signal in the scale-space representation is a real-
valued function on the same domain as the original func-
tion, i.e., L(+;s) : T — R.

In this article, we will regard the number of local extrema

as the measure of the structure of the signals in the scale-

space representation. This leads to the following definition

of a scale-space kernel (Lindeberg, 1990):

Definition 3.1 A one-dimensional kernel K : T — R is
denoted a scale-space kernel if for all signals f : T — R the
number of local extrema in the convolved signal [’ = K * f
does not exceed the number of local extrema in the original
signal.

Many authors have shown (Iijima, 1962; Babaud et al.,
1986; Koenderink, 1984; Lindeberg, 1994; Witkin, 1983)
that for continuous signals a unique solution exists that sat-
isfies the scale-space axioms, i.e., the Gaussian function 2
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with mean p = 0 and standard deviation o, the width of the
kernel, which is some fixed value. By taking for the scale
parameter s = o one gets a family of kernels K, : T — R.
For a signal f and scale parameter s, the scale-space repre-
sentation L : T' x RT — R is then given by the convolution
of the Gaussian kernels K with the signal f:

LRt ={r|reRAr >0}

2 The Gaussian function follows uniquely from an axiomatisation
that assumes no knowledge about the domain under study. Addi-
tional knowledge about the domain, may result in a different kernel.
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Note that local extrema can equivalently be rephrased in
terms of zero-crossings as a local extremum in a continuous
function f is equivalent to a zero-crossing in its first differ-
ence D f, which is known to commute with the convolution
operator:

Hence, equivalently we can take a convolution of the
original signal f with the differentiated Gaussian function
to generate a scale-space representation of the first-order
derivative

L(t;s) = (DK, = f)(t)
P

= re T /2 ft—=7)dr

2s3\/T

(4)

in which we can analyse the zero-crossings at each scale.
Note that this regularises differentiation, as differentiation
of discrete data without some smoothing is an ill-posed
problem.

4. Formal Derivation of Error Probabilities

The scale-space theory in the previous section is stated in
terms of continuous signals. In practice, many signals and
images are, however, discrete as is the case for example with
gene expression data. Here, we take our time domain 7' to
be discrete, i.e., T = {...,t_1,%0,t1,...} such that each t; €
T can be identified with [ € Z. A commonly used approach
for discrete signals is to apply the continuous scale-space
theory and discretise the resulting equations giving good
approximations (Canny, 1986; Astrom and Heyden, 1999).
Here, we follow that approach by sampling from the first-
order derivative of the Gaussian kernel
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to generate the following scale-space representation for a
discrete signal f

KL (t) = et/ (5)

L(t;;s) = i V2

V2 s
s =) (6)

n=—oo

which allows us to detect extrema in the signal f by looking
for zero-crossings in-between two points ¢; and ;1. Zero-
crossings occur when the corresponding values in the scale-
space representation changes sign



L(t;;s) < 0and L(t41;s) > 0 (local minimum)

L(t;;8) > 0and L(t;41;8) <0

(7)

(local maximum)

In the real world, signals and images are, however, often
distorted by noise. Here, we assume that the underlying
signal f is distorted by Gaussian distributed additive noise
g(t) = f(t) +e €~ N(0,00) (8)

For readability, we attach the function g used in the con-
struction of its scale-space representation L(t;; s) as a sub-
script, i.e., Ly(t;; s). Furthermore, to simplify notation, we
keep s fixed for the remainder of this section and rewrite
the differentiated Gaussian kernel K¢ by a number of in-
dexed variables k, = K;(n). Note that because each point
t; € T is identified with [ € Z according to Equations (5)
and (6) it holds that

Z kng(ti —n)

Lg(tﬁ s) =
e o)
= Z kng(tlfn)

As our criterion for deciding whether a local minimum or
local maximum is present is based on the values Ly(+; s) in
two subsequent points ¢; and ¢;4; we are interested in the bi-
variate probability density p(Lg(t1; s), Lg(ti41; s)). We con-
sider g(t;) and g(t;4+1) as observations of a stochastic pro-
cess. The variance of Ly(t;; s) is then given by

var(Lg(tiss)) = Y kio (10)

n=—oo

because var(aX) = a*var(X) and, with X and Y indepen-

dent variables, var(X +Y") = var(X)+var(Y") (Shao, 1999).
Next, define the function 05 (¢, ¢;11) as the difference be-
tween the two corresponding L, values

Os(t1,tigr) = Lg(ti; ) — L (41 s)

= Y kgt = 3 kst

= Z (kn — kny1)9(ti—n)

As §; is a linear function of independently sampled nor-
mally distributed variables for which holds that (Shao,
1999) var(aX +bY) = a?var(X) + b?var(Y) it follows from
Equation (11) that

o0

var(Ss(t,tg)) = Y (kn — kns1)’0s (12)

n=—oo

By definition, for two variables X and Y it holds that

var(X —Y) = var(X) + var(Y) — 2cov(X,Y) (13)

Placing the covariance on the left hand side results in
1
cov(X,Y) = i(var(X) +var(Y) —var(X = Y)) (14)

Hence, for variables X = Ly(t;;s) and Y = Ly(t;41; s) the
covariance cov(Lg(t1; ), Lg(ti+1; s)) is given by the formula
cov(Lg(ti;s), Lg(tis1;8)) =

1 (15)
5 (var(Lg(t;; s) + var(Lg(tiy1; s)) — var(ds(tr, tig1)))

Combining Equations (10), (12), and (15) gives

cov(Ly(t;8), Lyg(tiy1;8)) =
> 1 & (16)
(3 B Y )
and the covariance matrix ¥, therefore becomes

Y1, =
oo
2 2
o, g k;

n=—oo

cov(Lgy(ti;8), Lg(tiya;s))

cou(Lg(t1;s), Lg(ti415 5))

(o]
2 2
oy g k;

n=—oo

(17)

From these results follows that the bivariate probability
density function p(Lg(ti;s); Lg(ti41;$)) we are interested
in has a bivariate Gaussian distribution G(ur,,¥r,) with
mean vector piy, = (Lg(ti; ), Lg(ti41; s))T. The bivariate
Gaussian distribution can be visualised as concentric el-
lipses with each ellipse being an iso-density curve.

Ly(ti1;8)

local
minimum

Fig. 3. Bivariate distribution of the two time-points through which
the smooth first-order derivative changes sign.

This allows us to give an explicit formula for the error
that an extremum will not be re-observed because of noise
and/or smoothing of the scale-space kernel, i.e., that the



Fig. 4. Stepwise process of integrating a correlated bivariate normal distribution. (a) Correlated bivariate normal distribution with shaded
area denoting area of integration. Transforming the distribution by rotating and stretching the axes results in (b) an uncorrelated bivariate
normal distribution with zero means. The shaded area to integrate is also affected by this transformation. (¢) The final step is to make a
subdivision of the area to integrate into a number of polygons such that they can be integrated using the formulas derived by Owen (1956).
In this case, the polygons in the uv-plane can be constructed by first taking three points in the zy-plane (z,v), (z’,y'), and (z”,y"), which
are the origin and two points on the z- and y-axis further from the origin than any data point and second, mapping these to points (u,v),
(u’,v"), and (u”,v”) in the uv-plane using the same transformation to normalise the bivariate normal distribution.

measurements L (t;; s) and Ly(t41;s) do not fulfil the re-
quirements stated in Equation (7). Hence, for a local mini-
mum the probability of not detecting it due to noise and/or
smoothing becomes

Pmin(Lg(tl; S)a Lg(tlJrl; 5); ,U'Lgv ELg) =

1— G(,UngaELg) dtl dtl+1 (18)

tl,Lg(tl;S) <0,

ti41, Lg(tlJrl; 8) >0

The probability of missing a local maximum is defined anal-
ogous with ¢, %41 such that Ly(-; s) ranges over the lower
right quadrant as shown in Figure 3, i.e., Ly(¢;; ) > 0 and
Ly(tit1;8) < 0.

Pmax(Lg(tl;S)ng(thLl;S);,UJLg; ELQ) =
1—// G(,UngaELg) dtl dtl+1

tl,Lg(tl;S) > 0,

ti41, Lg(tlJrl; 8) <0

(19)

The derived formulas make it possible to calculate the
part of the bivariate Gaussian distribution that covers the
shaded area, in Figure 3. The probability that an extremum
is not detected because of noise, for a given smoothing fac-
tor reduces to integrating the tails of a bivariate Gaussian
distribution that cross the horizontal and vertical axis, re-
spectively. In the next section we show how to compute this
probability by integration.

5. Bivariate Gaussian Integration

The integration of a correlated bivariate normal distribu-
tion over arbitrary polygons can be performed in a number
of steps as shown in Figure 4. Figure 4(a) shows the outline
of a correlated bivariate normal distribution together with
ashaded area denoting the area over which one wants to in-
tegrate. The first step is to transform the correlated bivari-
ate normal distribution into an uncorrelated bivariate nor-
mal distribution with zero means as shown in Figure 4(b).
This can be done by a rotation and a stretching of the axes.
This transformation will also affect the shaded area over
which we need to integrate as shown in Figure 4(b), which
will therefore need to be re-computed. The final step of
the process is to divide the shaded area into a number of
polygons that are suitable for integration using the formu-
las derived by Owen (1956). These polygons are such that
they are bounded by a finite line segment and two lines
meeting in the origin as shown in Figure 4(c). Note, that
the polygons drawn in Figure 4(c) do not cover the entire
area shaded in Figure 4(b). However, the polygons can be
chosen in such a way that the area not covered has a large
distance from the origin and therefore has a volume that
converges to zero. In the following subsections, we discuss
this process in more detail.

5.1. The Fundamental Formulas

Following the derivation by Owen (1956), the T-function
gives, for h and a > 0, the volume of an uncorrelated bi-
variate normal distribution with zero means and unit vari-
ances over the area between y = ax and y = 0 and to the
right of = h (cf. Fig 5(a)) and is given by
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T(h,a) = 5 5 Zc]a (20)
7=0
where
1 L2y o B2
= (—1) 1—e(=3r) 3 2 21
3= (05|t e ;2%! (21)

which converges rapidly for small values of a or h. Values
for negative a or h can be obtained by using T'(h, —a) =
—T(h,a) and T(—h,a) = T(h,a).
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Fig. 5. (a) area over which T'(h,a) gives the volume of a standard-
ised bivariate normal with correlation zero. (b) a typical area for
computing the bivariate normal integral over a polygon.

The area over which T'(h, a) gives the volume of a stan-
dardised bivariate normal distribution with correlation zero
is shown in Figure 5(a). To compute the volume for an ar-
bitrary polygon as shown in Figure 5(b), which is bounded
by the side AB is given by T'(h,az) — T'(h, ay) for az > ay,
where h is the length of the perpendicular line from the ori-
gin to the intersection C' of the line through AB, a1 h is the
distance from C to B, and ash is the distance from C to A.
If C lies between A and B, the T-values are added instead
of subtracted.

5.2. Transformation

For finding volumes of the general correlated bivariate
normal over polygons, the first step is to make a rotation
and stretching of the axes to reduce the function under the
integral to the form of the T-function, i.e., transforming
the general correlated bivariate normal distribution into an
uncorrelated bivariate normal distribution. We will denote
this transformation as a mapping from the zy-plane into
the uv-plane, which can be done using the transformation

(T, Y s flys Oy Oy, ) =
1 [x—ux
V2+2p

+ y_,UY]
ox oy

’U(Iay;:uxa,uyvazvayvp) =
-1 T—px Y= py
V2—2p ox Oy

for the remainder shortened to u(z,y), v(x, y) for readabil-
ity, which maps a point (x, y) to (u(z,y), v(z,y)) for p* < 1,
where p is the correlation of variables X and Y, i, and p,
are the means of the X and Y variables, and ox and oy
the standard deviations of the X and Y variables respec-
tively. Hence, in terms of Section 4, for two points #;, t;41
of interest, we have

Hae = (KS * f)(tl) = Lf(tl;s)v

ty = (Ks* f)(tiv1) = Ly(tier;s),

ox =

(ki = kji1)?)
(> k7)

In the next subsection, an empirical validation will be given
of the methods shown. As can already be seen in Figure 8,
using the transformation described above, empirical data
with a correlated bivariate distribution as shown in Fig-
ure 8(a) is transformed into an uncorrelated bivariate dis-
tribution as shown in Figure 8(b).

Using this transformation from the xy-plane into the uv-
plane also transforms the volume of interest, i.e., the poly-
gon over which we need to integrate. Any polygon in the xy-
plane will be transformed into a polygon in the uv-plane.
The vertices in the uv-plane of the transformed polygon
need to be computed to construct the polygon over which
we need to integrate in the wv-plane. In general, one can
draw a graph of the polygon in the uv-plane and compute
its volume using the following formulas (Owen, 1956)

p =

|u1v2 - u2111|

h =
V(uz —u1)? + (v2 — v1)?
a; = |U1(UQ—U1)+111(’02—1}1)| (24)
[u1ve — ugv1 |
o |UQ(UQ — ul) —+ 1)2(’02 — 1)1)|
ag =

[urve — uovy |

where (u1,v1) and (ug,v2) are the coordinates of two adja-
cent vertices on the transformed polygon, i.e., the polygon
in the uv-plane, and h, a1, as are used as described in Sec-
tion 5.1 and Figure 5(b). With the aid of the graph, these
volumes are then combined to give the volume over the
outside (or inside) of the polygon.

In particular, in our case we need three vertices (u,v),
(u',v"), and (u”,v") to construct the two polygons as il-
lustrated in Figure 4. To calculate their volume, we will
need to compute the T-values using the parameters h, a1, as



as computed above, once using the pair of vertices (u,v),
(u’,v") and once using the pair of vertices (u/,v"), (u”,v").

5.3. Empirical Validation

(a) (b) (c)

Fig. 6. Illustrating the acquisition of the model signal. (a) Represents
the original, continuous signal f. In (b), the continuous signal is
sampled to form a discrete signal f;. Finally, in (c) distributed,
additive noise is added to the discrete signal to obtain signal fl

The method presented in this article has been empirically
validated. A time series was constructed using the process
as described in Figure 6. Firstly, a continuous signal f was
created (cf. Figure 6(a)). Secondly, the continuous signal
f was discretised by sampling data points, denoted by f;
(cf. Figure 6(b)). Thirdly, noise was added to the discrete
samples, denoted by fi. (cf. Figure 6(c)).

The discretised signal f; has a length of 34 samples
and there is a corresponding local minimum in the con-
tinuous signal f between points 15 and 16. By repeating
the process in Figure 6, we obtained several time series
Je = {fLe, o f347e}, e=1,...,10* with added Gaussian
noise € ~ N (0, %) Each time series g. can be considered
a stochastic experiment in which we are interested in the
detection of a local extrema between points g, 15 and g, i6.
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Fig. 7. (a) Original continuous signal f together with one noisy
realisation g = f; +¢, where e ~ N(0, %) (b) The convolved signal of
a noisy time series with a discretely sampled differentiated Gaussian.

Therefore, for each time series g., its convolution
ve = K % go was calculated with K a discretely sampled
differentiated Gaussian as in Equation (5), with ¢ = 0 and

scale s = 1.1 (cf. Figure 7(b)). The value of o was arbitrar-
ily chosen and the number of samples used for the kernel
was 16 as all infinite sums need to be bounded for imple-
mentation purposes. > By plotting the value of v, 15 against
Ve,16, We obtained the empirical data shown in Figure 8(a).
Note that the top left quadrant corresponds with a true
minimum. All data points that lie outside of the top left
quadrant are experiments in which a local minimum could
not be re-observed. The volume of the data points outside
of the top left quadrant represents the probability of not
re-observing a local extremum (cf. Equation (18)).

(a) (b)

Fig. 8. (a) Empirical data of a general correlated bivariate normal.
(b) The same data after transformation, corresponding to an un-
correlated bivariate normal distribution with zero means and unit
variances on the right. The lines in (b) correspond with the z- and
y-axis in (a) after transformation.

To compute the volume of interest, we first transform the
empirical data to obtain data with an uncorrelated bivari-
ate normal distribution using Equation (22), which results
in the empirical data of Figure 8(b). As the area for in-
tegration also transforms when transforming the empirical
data, we need to re-compute the area for integration in the
uv-plane (cf. Figure 8(b)).

The final step in our method is shown in detail in Fig-
ure 9. As explained in Figure 4, we need to divide the area
of integration in the uv-plane in a number of polygons, such
that these polygons can be integrated using the method of
Owen (1956). These polygons are such that given two ver-
tices, the polygon is bounded by the line segment between
those two vertices, and the two lines through the origin O
and a vertex. For example, in Figure 9 the area of integra-
tion (cf. the shaded area in Figure 4(b)) is subdivided into
two polygons. One polygon is bounded by the line between
(u,v) and (u',v"), the line through O and (u,v), and the
line through O and (v/,v"). The other polygon is bounded
by the line between (u’,v’") and (u”,v"), the line through
O and (v/,v'), and the line through O and (u”,v”). The
volume of the area not covered by these polygons rapidly

3 Infinite summations can be bounded as their tails rapidly converge
to zero. If one wants to obtain a certain error bound in the truncation
one can also derive a value for the upper bound (Lindeberg, 1990).



Fig. 9. Detailed construction to compute the volume bounded by the
solid lines according to the method of Owen (1956) for an uncorre-
lated bivariate normal distribution, for which almost all data points
are bounded by the given circle.

converges to zero when points (u,v) and (u”,v") are taken
further away from the origin.

To construct the points (u,v), (v/,v"), and (u”,v”) in the
uv-plane, we take the following three points in the xy-plane
(iC,y) = (O,H), (ZC/,y/) = (070)7 and (x”,y”) = (—n,O) for
sufficiently large n (e.g., n = 1000) and use the transforma-
tion in Equation (22), which we used to normalise the bi-
variate distribution, to map those points to the correspond-
ing points in the wv-plane (u,v), (v/,v"), and (u”,v").

The volume of both polygons can now be computed using
Equations (24) and (20) derived by Owen (1956). Firstly,
given a polygon, one computes the values for h, a1, and as
using Equation (24) and the vertices of the polygon (e.g.,
(u,v) and (u/,v")). Secondly, one computes the volume us-
ing the values of h, ai, and as in Equation (24). When the
intersection point C; of the line segment between the two
vertices used and the line perpendicular through the origin
lies between the two vertices, the two T-values are added.
When C; does not lie between the two vertices the T-values
are subtracted (cf. Figure 9).

For the empirical data of Figure 8 we obtained an er-
ror probability of 0.0018 using the method presented. This
value has been empirically verified by counting the number
of data points (out of 10* experiments) outside the top left
quadrant, which gave an empirical estimate of 0.0016.

6. Related Work

Scale-space theory was first pioneered in the work of
Tijima (1962), but was inaccessible for Western researchers
as it was published in Japanese. In the western world, the
concept was first introduced by Witkin (1983) and indepen-
dently developed by Koenderink to a complete multi-scale
theory (Koenderink, 1984). Since then, several researchers

have derived the unique solution of the Gaussian kernel for
a scale-space representation for continuous signals. Linde-
berg introduced the notion of semi-group structure (Linde-
berg, 1990), i.e., the convolution of two scale-space kernels
results in a scale-space kernel

K(:581) % K(552) = K(:581 + s2) (25)

which implies that the structure decreases between any two
levels when the scale parameter increases

S1 S 52 imphes #extramaL(t; 51) S #eztremaL(t; 52) (26)

Lindeberg showed that a sampled Gaussian kernel does not
fulfil the semi-group property and developed a complete
scale-space theory for discrete signals (Lindeberg, 1990)
and showed that for a one-dimensional discrete signal, the
discrete analogue of the Gaussian kernel

T(n;s) =e 'I,(t) (27)

where I,, are the modified Bessel functions of integer or-
der is the unique solution that satisfies the scale-space ax-
ioms and semi-group property. Here, we have taken the
common approach (Lindeberg, 1990) of a sampled Gaus-
sian kernel as these kernels are almost similar for o > 1
(ter Haar Romeny, 2002). The derived results also hold for
the discrete analogue of the Gaussian kernel as this merely
means that the indexed variables k,, are replaced by differ-
ent values.

By interpreting two subsequent points in a signal with
Gaussian distributed noise as a stochastic process we de-
rived the bivariate Gaussian distribution G(ur,Xr) and
showed that the error for not detecting local extrema be-
tween two subsequent points to be equal to an integration
over G(ur,>¥r). This is one of many examples of bivari-
ate Gaussian integration for practical problem solving that
abound the literature (e.g., (Smith, 1953)). Tables for inte-
grating the bivariate Gaussian over a rectangle with sides
parallel to the axes were already known a century ago (e.g.,
(Pearson, 1931)). Cadwell extended these results by pre-
senting a method for computing the volume of an uncorre-
lated bivariate Gaussian over any polygon (Cadwell, 1953).
In the work of Owen (1956) formulas were derived for com-
puting volumes of the general correlated bivariate normal,
which we use in this paper. Basically, the method of Owen
(1956) consists of two steps. First, transform the correlated
bivariate Gaussian into an uncorrelated Gaussian. Second,
compute the polygon of interest after transformation and
compute the volume over the transformed polygon for the
uncorrelated Gaussian. For the probability of not detecting
local extrema due to noise and/or smoothing we are able
to formulate this procedure into an algorithm.

Closely related to our approach of investigating deter-
ministic and stochastic aspects of re-observing (features of)
a continuous signal given noisy, discretely sampled data is
the work of Astrom and Heyden (1999). However, Astrém
and Heyden (1999) investigates the problem of noisy edge-
detection, i.e., where the first-order derivative of the signal



is maximal, whereas we investigate the problem of noisy ex-
trema detection, i.e., where the first-order derivative of the
signal is zero. Furthermore, Astrom and Heyden (1999) de-
rives results for the estimated variance of the detected edge,
in terms of, among others, parameters of camera blurring
and intensity jump. In this article, the approach taken is
less complex, resulting in precise probabilities for the error
of not re-observing a local extremum for each value of the
scale-space parameter.

7. Practical Considerations

In practice, it is of course not possible to compute the bi-
variate Gaussian distribution, which is needed to compute
the error probabilities, by running a large number of experi-
ments, and therefore needs to be estimated. The covariance
matrix ¥z, is completely specified in terms of 03 and k,
(cf. Equation (17)). By considering a large number of differ-
ent gene profiles from the same microarray experiment, one
can select those genes that show the least amount of change
in expression values and use their variance to get an upper
bound for the value of 03. The underlying assumption is
that these genes are dormant and have no role in the sam-
ples under study, i.e., these genes should have a constant
expression profile without noise present. The values for &,
are easily computed when a scale s has been selected. The
vector iz, can be estimated by evaluating the scale-space
representation of the signal under study in the two points
of interest for the detection of an extremum. Both esti-
mates for pr, and ¥z, can be combined to get an estimate
for the bivariate Gaussian distribution G(ur,, ¥z, ). Using
this distribution, the rest of the method presented can be
used without change to compute the error probabilities.

Summarising, to compute the error probability of not
detecting a local minimum, algorithm E, which is shown
below, can be used:

Algorithm E (Error probability local minimum). This
algorithm computes the error probability of not measuring
a local minimum of a signal g, given values for the scale
parameter s, variance ag, and points of interest 7, t;41.

E1. [Initialise.] Construct for signal g its scale-space repre-
sentation Ly(+; s) = Ky*g (cf. Equation 6)), with K the
first-order derivative of the Gaussian kernel (cf. Equa-
tion (5)). Furthermore, define functions u(zx,y), v(z,y)
as in Equation (22) using the values given (cf. Equa-
tion 23)), with p, = (Ks * g)(t1), py = (Ks % g)(t141)-

E2. [Vertices.] Define the three vertices A = (0,1000),
B =(0,0), and C = (—1000,0). Next, compute the ver-
tices A’, B’, and C’ using functions u(z,y) and v(z,y),
ie, A" = (u(A4),v(A)) = (u(0,1000), v(0, 1000)).

E3. [Volume 1.] Compute h,a1,as using Equation (24)
with vertices A’, B’. Set volumey := T'(h, a2) + T (h,a).

E4. [Volume 2.] Compute h,a1,as using Equation (24)
with vertices B’, C". Set volumes := T'(h, az) +T'(h,a1).

E5. [Error probability.] Return volume; + volumes. O

Although, similar results can also be obtained by sam-
pling from the bivariate Gaussian distribution given the
values as provided to Algorithm E, the algorithm gives a
computationally cheap method to compute (nearly) precise
probability values. The infinite sums that are used within
the calculations of Algorithm E can be implemented using
small upper bounds to produce good approximations.

8. Conclusions and Further Work

This study began with the premise that an approach for
predicting functional relations from gene expression pro-
files should have a clear underlying methodology for feature
extraction and should be accompanied with a characteri-
sation of its performance w.r.t. the inherent noise present
in gene expression data sets. Here, we started the analysis
from the fundamental theory of scale-space for formulating
criteria for detecting local extrema. It was shown that inter-
preting the measurement of a local extrema in scale-space
as a stochastic process behaves like a bivariate Gaussian
distribution. The error of not re-observing the extremum
due to noise could be rephrased in terms on an integral over
the tails of this distribution. Finally, we demonstrated how
to use integration techniques developed in the 50s for an ex-
act computation of these error probabilities. This resulted
in an exact value that characterises the quality of the mea-
surements that are used in predicting functional relations
between genes.

The current study has laid a fundamental basis for pre-
dicting functional relations between gene expression pro-
files based on local extrema that allows one to focus on the
most probable predictions for further analysis.

Some issues fell outside the scope of this article and
will be dealt with in future research. Firstly, the current
approach allows one to compute the error probability for
each value of the scale-space parameter, but does not give
any indications how to choose the ‘best’ scale for practi-
cal purposes (Lindeberg, 2004). Secondly, no comparison
was made between results obtained for different scale-space
levels. (The analysis of structures through scale-space is
also referred to as ‘deep structure’ in literature (Lindeberg,
1994).) Often, different possibly conflicting criteria need to
be fulfilled in order to obtain the best trade-off between un-
certainty (variance) and location accuracy (Janssen et al.,
2002).
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