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ABSTRACT

In this paper, we compare two state-of-the-art classification techniques characterizing masses as either benign
or malignant, using a dataset consisting of 271 cases (131 benign and 140 malignant), containing both a MLO
and CC view. For suspect regions in a digitized mammogram, 12 out of 81 calculated image features have been
selected for investigating the classification accuracy of support vector machines (SVMs) and Bayesian networks
(BNs). Additional techniques for improving their performance were included in their comparison: the Manly
transformation for achieving a normal distribution of image features and principal component analysis (PCA) for
reducing our high-dimensional data. The performance of the classifiers were evaluated with Receiver Operating
Characteristics (ROC) analysis. The classifiers were trained and tested using a k-fold cross-validation test method
(k=10). It was found that the area under the ROC curve (Az) of the BN increased significantly (p=0.0002)
using the Manly transformation, from Az = 0.767 to Az = 0.795. The Manly transformation did not result in
a significant change for SVMs. Also the difference between SVMs and BNs using the transformed dataset was
not statistically significant (p=0.78). Applying PCA resulted in an improvement in classification accuracy of the
naive Bayesian classifier, from Az = 0.767 to Az = 0.786. The difference in classification performance between
BNs and SVMs after applying PCA was small and not statistically significant (p=0.11).

Keywords: Methods: classification and classifier design, pre-processing, Modalities: mammography, Diagnostic
task: diagnosis

1. INTRODUCTION

Machine learning techniques to diagnose breast cancer is a very active research area. Several computer-aided
diagnosis (CAD) systems have been developed to aid radiologists in mammographic interpretation. These CAD
systems analyze mammographic abnormalities and classify lesions as either benign or malignant in order to
assist the radiologist in the diagnostic decision making. Some of them are based on Bayesian networks learned
on mammographic descriptions provided by radiologists1 or on features extracted by image processing.2 Another
classification technique that is widely used for the diagnosis of breast tumors are support vector machines.3–6

The theoretical advantage of SVMs is that by choosing a specific hyperplane among the many that can separate
the data in the feature space, the problem of overfitting the training data is reduced. They are often able to
characterize a large training set with a small subset of the training points. Also, SVMs allow us to choose features
with arbitrary distributions, and we do not need to make any independence assumptions. The advantage of
Bayesian networks is that statistical dependences and independences between features are represented explicitly,
which facilitates the incorporation of background knowledge. In this study we compare both classification
methods and use two techniques, namely dimension reduction by principal component analysis (PCA) and a
transformation for achieving a normal distribution of image features, to further improve the accuracy rate of the
classifiers. Recently, the combination of PCA and support vector machines (SVMs) has been used in medical
imaging, where principal component analysis is applied to extracted image features and the results are used to
train a SVM classifier, but not specifically for mammograms.7

Further author information: (Send correspondence to Maurice R.M. Samulski)
M.R.M. Samulski, e-mail: m.samulski@rad.umcn.nl, telephone: +31 24 3619811, fax: +31 24 3540866

Medical Imaging 2007: Computer-Aided Diagnosis, edited by Maryellen L. Giger, Nico Karssemeijer,
Proc. of SPIE Vol. 6514, 65141J, (2007) · 1605-7422/07/$18 · doi: 10.1117/12.709679

Proc. of SPIE Vol. 6514  65141J-1



Segmentation

Gradient feature

Stellateness
feature

Likelihood
image

Region
segmentationClassification0.92 0.67

Local maxima
detection

Figure 1: Schematic overview of the CAD scheme employed in this paper. First the mammogram is segmented
into breast tissue, background tissue and the pectoral muscle. We then calculate at each location two stellateness
features for the detection of spiculation and two gradient features for the detection of a focal mass. A neural
network classifier combines these features into a likelihood of a mass at that location, resulting in a likelihood
image. The most suspicious locations on the likelihood image (bright spots) are selected and used as seed
points for the region segmentation. After that, features are calculated for each segmented region. Finally a
second classifier combines these features into a malignancy score that represents the likelihood that the region
is malignant.

2. MATERIALS AND METHODS

The digitized mammograms that were used in this study have been obtained from the Dutch Breast Cancer
Screening Program. In this program two mammographic views of each breast were obtained in the initial
screening: the medio-lateral oblique (MLO) view and a cranio caudal (CC) view. In this study 271 cases were
used. Of these cases, 131 were benign and 140 were malignant. All cases had four-view mammograms.
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To each image in the dataset a CAD scheme was applied that was previously developed in our group.8 The
CAD scheme consists of the following steps (Figure 1):

• Segmentation of the mammogram into breast tissue, pectoral muscle (if image is a MLO view), and back-
ground area

• Initial detection step resulting in a likelihood image and a number of suspect image locations (local maxima)

• Region segmentation, by dynamic programming, using the suspicious locations as seed points

• Final classification step to classify regions as true abnormalities and false positives.

These steps will be described in more detail in the following subsection.

2.1. Likelihood detection

Segmentation of the mammogram The first step of our CAD scheme is the segmentation of an image into breast
tissue and background, using a skin line detection algorithm. Additionally, it finds the edge of the pectoralis
muscle if the image is a MLO view.9 After these steps, a thickness equalization algorithm is applied to enhance
the periphery of the breast.10 A similar algorithm is used to equalize background intensity in the pectoralis
muscle, to avoid problems with detection of masses located on or near the pectoral boundary.

Initial mass detection step In this step we use a pixel-level method: for each pixel inside the breast area there are
a small number of features calculated that represent presence of a central mass and the presence of spiculation.11

A neural network classifies each pixel using these features and assigns a level of suspiciousness to it. The neural
network is trained using pixels sampled inside and outside of a representative series of malignant masses. The
result is an image in which pixel values represents the likelihood that a malignant mass or architectural distortion
is present. This likelihood image is then slightly smoothed and a local maxima detection is performed. A local
maximum is detected when the likelihood is above a certain threshold and no other nearby locations have a
higher likelihood value. This results in a number of suspicious locations. Finally an algorithm searches for local
maxima that are located closer than 8 mm together and remove multiple candidate locations to avoid multiple
suspicious locations on the same lesion.

Region segmentation Each of the detected local maxima in the previous step are used as seed points for region
segmentation, based on dynamic programming.12

Final classification For each segmented region, 81 features are calculated related to lesion size, roughness of the
boundary, linear texture, location of the region, contour smoothness, contrast, and other image characteristics.

In the conducted experiments we used a subset of 12 features out of 81 features. They were selected using
a k-nearest neighbor (KNN) algorithm and sequential forward procedure to find the most useful features for
classifying lesions as benign or malignant. The procedure is described in detail in previous research.4 We will
give a short description of the used features in the following subsection.

2.2. Region features

Spiculation features Malignant mammographic densities are often surrounded by a radiating pattern of linear
spicules. For the detection of these stellate patterns of straight lines directed toward the center pixel of a lesion,
two features have been designed by Karssemeijer and te Brake.11 The idea is that if an increase of pixels pointing
to a given region is found then this region may be suspicious, especially if, viewed from that region, such an
increase is found in many directions. The first feature Stellateness 1 is a normalized measure for the fraction
of pixels with a line orientation directed towards the center pixel. We call this set of pixels F . For calculating
the second feature Stellateness 2, the circular neighborhood is divided into 24 angular sections. This feature
measures to what extent the pixels in set F are uniformly distributed among all angular sections. Also the mean
values of Stellateness 1 and Stellateness 2 inside the region are included in the subset.

Region Size Some features depend on the size of the lesion, like the contrast feature. Bigger lesions have a
higher contrast than smaller lesions. This morphological feature captures this difference.
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Compactness Compactness represents the roughness of an object’s boundary relative to its area. This feature
is included because benign masses often have a round or oval shape compared to a more irregular shape of
malignant masses. Compactness (C) is defined as the ratio of the squared perimeter (P ) to the area (A), i.e.,

C =
P 2

A

The smallest value of compactness is C = (2πr)2

πr2 = 4π which is for a circle. For more complex shapes, the
compactness becomes larger. In our dataset this feature is normalized by dividing the compactness by 4π.

Linear Texture Normal breast tissue often has different texture characteristics than tumor tissue. Therefore
Karssemeijer and te Brake11 have developed a texture feature that represents presence of linear structures inside
the segmented region. Malignant lesions tend to have less linear structures than normal tissue or benign lesions.

Relative Location The relative location of a lesion is important since more malignancies develop in the upper
outer quadrant13 of the breast toward the armpit. Therefore, some features have been constructed that represent
the relative location of a lesion using a new coordinate system.14 This internal coordinate system is different for
MLO and CC views. In MLO views the pectoral edge is used as the y-axis. The x-axis is determined by drawing
a line perpendicular to the y-axis where the distance between the y-axis and the breast boundary is maximum.
We assume that the end of this line is close to the nipple. In CC views the chest wall is used as y-axis. In this
internal coordinate system we calculate the x- and y-location of the centre of the segmented region and normalize

with the effective radius of the breast r =
√

A
π , where A is the size of the segmented breast area. In this way,

positions of cancers in different mammograms can be compared.

Maximum Second Order Derivative Correlation This border feature indicates the smoothness of the
contour and is especially useful to discriminate between benign and malignant lesions. Most benign lesions have
a well-defined contour and the margins of these lesions are sharply confined with a sharp transition between the
lesion and the surrounding tissue which indicates that there is no infiltration.14

Contrast Regions with high contrast or a higher intensity than other similar structures in the image are more
likely to be a mass since tumor tissue on average absorbs more X-rays than fat and also slightly more than
glandular tissue. The distance measure we used to indicate differences in contrast is the squared difference in
intensity between the segmented region and its surround, divided by both standard deviations,

(Y (R) − Y (S))2

σY (R) + σY (S)

where R is the set of pixels in the segmented region, S is the set of pixels in the surroundings of the segmented
region. Y (X) is the mean grey level of the pixels in set X, and σY (X) is the grey level standard deviation of the
pixels in set X.

Number of Calcifications The presence of clustered microcalcifications is one of the most important signs of
cancer on a mammogram. They occur in about 90% of the non-invasive cancers. Therefore we include a feature
representing the number of calcifications found in the segmented region.

2.3. Statistical analysis

For every feature the first four moments of the distribution of feature values in the dataset have been computed.
These are shown in Table 1. The third moment, skewness, is a measure of the lack of symmetry. The skewness
for a normal distribution is zero, and any near-symmetric data should have a skewness near zero. The fourth
moment, also called kurtosis, is a measure of whether the data are peaked or flat relative to a normal distribution.
The kurtosis for a standard normal distribution is three.

Combining the 12 features of the MLO views with the 12 features of the corresponding CC views gives a
total of 24 features per case. The continuous output of the classifier is analyzed using ROC methodology, using
the LABROC program15 of Metz et al. The statistical significance of the difference between ROC curves was
tested using the CLABROC program16 of Metz et al. The classifiers were trained and tested using a k-fold

Proc. of SPIE Vol. 6514  65141J-4



Mean Std dev Min Max Skewness Kurtosis
Benign (cases: 258)
Stellateness 1 1.1256 0.1710 0.7800 2.1400 2.3002 13.4307
Stellateness 2 1.0241 0.1160 0.8300 2.1900 4.7815 44.8670
Stellateness 1 Mean 1.1189 0.1316 0.8600 1.5630 0.8565 3.6986
Stellateness 2 Mean 1.0215 0.0713 0.8380 1.2990 0.5482 3.6256
Region Size 0.4070 0.3915 0.0200 3.4510 3.0272 17.9799
Contrast 0.5502 0.2558 0.1260 2.0110 1.9986 9.8575
Compactness 1.2141 0.0906 1.0470 1.5600 0.9308 3.8448
Linear Texture 0.1750 0.1444 0.0130 1.0240 2.2365 10.1391
Relative Location X 0.6705 0.3024 -0.0670 1.5470 0.0470 2.7819
Relative Location Y 0.2160 0.4262 -0.9680 1.2990 -0.2289 2.4769
Max. 2nd order Drv Corr. 0.6800 0.1008 0.4520 0.9060 0.0436 2.3011
Number of Calcifications 0.7871 2.6723 0.0000 19.0000 3.8831 19.2635

Malignant (cases: 274)
Stellateness 1 1.2273 0.1730 0.8200 1.7300 0.5060 3.0005
Stellateness 2 1.0827 0.0965 0.7900 1.3500 0.1468 2.8634
Stellateness 1 Mean 1.2357 0.1736 0.8290 1.7740 0.6844 3.1281
Stellateness 2 Mean 1.0868 0.0946 0.8530 1.4140 0.4533 3.0175
Region Size 0.4471 0.3272 0.0160 1.8040 1.2728 4.4259
Contrast 0.6272 0.2777 0.0110 1.5090 0.7688 3.2074
Compactness 1.2111 0.0983 1.0410 1.7080 1.5022 6.3482
Linear Texture 0.1578 0.1161 0.0040 0.9490 2.2258 11.5829
Relative Location X 0.6130 0.3046 -0.0710 1.3080 0.0140 2.3298
Relative Location Y 0.2080 0.4449 -0.9770 1.2180 -0.2483 2.7594
Max. 2nd order Drv Corr. 0.6354 0.0951 0.4040 0.9320 0.1608 2.9336
Number of Calcifications 2.0645 6.7471 0.0000 50.0000 4.4524 25.7707

Table 1: Statistics of benign and malignant cases in the used dataset

cross-validation test method (k=10), in which each of 10 different combinations of training and test data sets
included 244 and 27 cases, respectively. For each test partition, the classification accuracy was evaluated as the
area Az under the ROC curve.

2.4. Classifiers

2.4.1. Naive Bayesian classifier

The naive Bayesian classifier (Figure 2) is a Bayesian network with a limited topology17 applicable to learning
tasks where each instance is described by a conjunction of feature values and a class value. To learn the Bayesian
network a set of training examples has to be provided. Classification using this Bayes’ probability model is done
by picking the most probable hypothesis which is also known as the maximum a posteriori. The corresponding
classifier function can be defined as follows:

CMAP = arg max
cj∈C

P (cj |f1, f2, . . . , fn) (1)

where {f1, f2, . . . , fn} is the set of feature values that decribe the new instance, and CMAP is the most
probable hypothesis. Using Bayes theorem, Equation 1 can be rewritten as follows:

CMAP = arg max
cj∈C

P (cj)P (f1, f2, . . . , fn|cj)
P (f1, f2, . . . , fn)

= arg max
cj∈C

P (cj)P (f1, f2, . . . , fn|cj) (2)

Using training data the two terms P (cj) and P (f1, f2, . . . , fn|cj) have to be calculated. The class prior probability
P (cj) can be easily estimated by counting the frequency of occurence of the class value cj in the training data.
However, estimating the different P (f1, f2, . . . , fn|cj) terms is difficult and is only possible if a huge set of training
data is available. To dramatically simplify the classification task we can use the following simplifying assumption:
each feature fi is conditionally independent of every other feature fj for i �= j. This fairly strong assumption
of independence leads to the name naive Bayes, with the assumption often being naive in that, by making this
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Figure 2: A graphical representation of a naive Bayesian classifier

assumption, the algorithm does not take into account dependencies that may exist. By using the conditionally
independence assumptions we can express Equation 2 as:

CMAP = arg max
cj∈C

P (cj)
n∏

i=1

P (fi|cj) (3)

The model in this form is much more manageable, since it factors into a so-called class prior probability
P (cj) and independent probability distributions P (fi|cj). These class conditional probabilities P (fi|cj) can be
calculated separately for each variable which reduces complexity enormously. Even with such strong simplifying
assumptions, it does not seem to greatly affect the posterior probabilities, especially in regions near the decision
boundaries which leaves the classification task unaffected. Some papers show that such naive Bayesian classifiers
yield surprisingly powerful classifiers.18

2.4.2. Support vector machines

The SVM algorithm has been introduced by Cortes and Vapnik3 for solving classification tasks and have been
successfully applied in various areas of research. The basic idea of SVM is that it projects datapoints from a
given two-class training set in a higher dimensional space and finds an optimal hyperplane. The optimal one
is the one that separates the data with the maximal margin. SVMs identify the datapoints near the optimal
separating hyperplane which are called support vectors. The distance between the separating hyperplane and
the nearest of the positive and negative datapoints is called the margin of the SVM classifier. The separating
hyperplane is defined as

D(x) = (w · x) + b (4)

where x is a vector of the dataset mapped to a high dimensional space, and w and b are parameters of the
hyperplane that the SVM will estimate. The nearest datapoints to the maximum margin hyperplane lie on the
planes

(w · x) + b = +1 for y = +1
(w · x) + b = −1 for y = −1 (5)

where y = +1 for class ω1 and y = −1 for class ω2. The width of the margin is given by m = 2
||w|| . Computing

w and x is then the problem of finding the minimum of a function with the following constraints:

minimize m(w) =
1
2
(w · w)

subject to constraints yi[w · xi + b] ≥ 1 (6)

In its simplest form, a SVM attempts to find a linear separator, as shown in Figure 3. In practice however, there
may be no good linear separator of the data. In that case, SVMs can project the dataset to a significant higher
dimensional feature space to make the separation easier, using a kernel function to produce separators that are
non-linear. Unfortunately there is no theory about deciding which kernel is the best.19
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Figure 3: Linear separating hyperplanes for the separable case.

2.5. Preprocessing

2.5.1. Manly transformation

Many Bayesian learning algorithms that deal with continuous nodes, including the learning algorithms in Kevin
Murphy’s Bayesian Networks Toolbox,20 are based on the assumption that the features are normally distributed.
Unfortunately, most of the image features we use do not follow a normal distribution. We used Manly’s ex-
ponential transformation to make the non-normal data resemble normal data by reducing skewness, which is a
transformation from y to y(λ) with parameter λ. This transform is most effective if the probability distribution
of a feature can be described as a function which contains powers, logarithms, or exponentials. The transform
is given by:

y(λ) =

{
eλy−1

λ if λ �= 0
y if λ = 0

(7)

The assumption made by this transformation is that y(λ) follows a normal linear model with parameters β
and σ2 for some value of λ. Given a value of λ, we can estimate the linear model parameters β and σ2 as usual,
except that we work with the transformed variable y(λ) instead of y. To select an appropriate transformation
we need to find the optimal value of λ using an optimization criteria. We used a technique based on the normal
probability plot. The data is plotted against a theoretical normal distribution in such a way that the points
should form an approximate straight line if the data is normal distributed. Deviations of this straight line mean
that the data is less normally distributed. We can use that property to plot the correlation coefficient of the
normality plot against a range of λ’s. The lambda resulting in the largest correlation coefficient is chosen.

2.5.2. Principal component analysis

One might think that the use of more features will automatically improve the classification power of the classifier.
However the number of samples needed to train a classifier with a certain level of accuracy increases exponentially
with the number of features. Therefore, we used principal component analysis21 as a preprocessing technique
to reduce the dimensionality of our dataset. The assumption made in PCA is that most of the information is
carried in the variance of the features: the higher the variance in one dimension (feature), the more information
is carried by that feature. The general idea is therefore to preserve the most variance in the data using the least
number of dimensions. One of the major drawbacks of PCA is that it is an unsupervised algorithm, i.e., it does
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Figure 4: An example Manly transformation: (a) histogram of a feature that is Weibull distributed, (b) normality
plot of the feature, (c) histogram of the transformed feature, and (d) normality plot of the transformed feature

not take the class label in account. It can therefore eliminate a dimension that is best for discriminating positive
from negative cases.

3. RESULTS

The dataset we used contained a lot of features that were highly skewed and therefore did not follow a normal
distribution. The learning algorithms in Murphy’s BNT toolbox20 for Bayesian networks with continuous nodes,
assume that within each state of the class the observed continuous features follow a normal distribution. These
continuous nodes have therefore two parameters per class, mean and variance, to represent the characteristics
of the training data. We evaluated the classification performance of the naive Bayes classifier after applying
the Manly transformation on the dataset. The Stellateness Mean and the Maximum Second Order Derivative
Correlation features are approximately normal distributed in their original form and did not perform well when
transformed. We chose therefore to not transform these features. Also the Number of Calcifications feature was
not a useful candidate to transform, because of its discrete nature. Statistical information about the transformed
dataset can be found in Table 2

The calculated area under the ROC curve (Az value) of the Bayesian classifier without transforming the
dataset was 0.767. After applying the Manly transformation it increased to 0.795, which is statistically significant
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Mean Std dev Min Max Skewness Kurtosis
All cases (cases: 542)
Stellateness 1 0.5102 0.0229 0.4351 0.5799 0.0000 3.1743
Stellateness 2 0.4077 0.0095 0.3739 0.4495 0.0000 3.7745
Stellateness 1 Mean 1.1790 0.1653 0.8290 1.7740 0.8638 3.5949
Stellateness 2 Mean 1.0551 0.0902 0.8380 1.4140 0.6548 3.4349
Region Size 0.2148 0.0878 0.0157 0.3706 0.0000 1.9075
Contrast 0.3599 0.0924 0.0109 0.5939 0.0000 2.7383
Compactness 0.2070 0.0002 0.2063 0.2076 0.0000 2.4822
Linear Texture 0.0931 0.0381 0.0040 0.1725 0.0000 2.3284
Relative Location X 0.6312 0.2974 -0.0711 1.5016 0.0000 2.5448
Relative Location Y 0.2404 0.4554 -0.8736 1.5173 0.0000 2.5943
Max. 2nd order Drv Corr. 0.6571 0.1004 0.4040 0.9320 0.1290 2.5924
Number of Calcifications 1.4446 5.2255 0.0000 50.0000 5.4429 39.8079

Benign (cases: 263)
Stellateness 1 0.5029 0.0219 0.4351 0.5799 0.2717 4.1962
Stellateness 2 0.4047 0.0091 0.3806 0.4495 0.5072 5.8195
Stellateness 1 Mean 1.1189 0.1316 0.8600 1.5630 0.8565 3.6986
Stellateness 2 Mean 1.0215 0.0713 0.8380 1.2990 0.5482 3.6256
Region Size 0.2048 0.0882 0.0195 0.3706 0.1791 1.9413
Contrast 0.3463 0.0865 0.1140 0.5939 0.2547 2.8499
Compactness 0.2070 0.0002 0.2063 0.2075 -0.1018 2.4716
Linear Texture 0.0946 0.0396 0.0125 0.1725 -0.0221 2.2135
Relative Location X 0.6601 0.2946 -0.0671 1.5016 0.0159 2.7614
Relative Location Y 0.2437 0.4457 -0.8665 1.5173 -0.0159 2.4540
Max. 2nd order Drv Corr. 0.6800 0.1008 0.4520 0.9060 0.0436 2.3011
Number of Calcifications 0.7871 2.6723 0.0000 19.0000 3.8831 19.2635

Malignant (cases: 279)
Stellateness 1 0.5171 0.0217 0.4456 0.5636 -0.2453 2.9714
Stellateness 2 0.4106 0.0090 0.3739 0.4301 -0.4677 3.4270
Stellateness 1 Mean 1.2357 0.1736 0.8290 1.7740 0.6844 3.1281
Stellateness 2 Mean 1.0868 0.0946 0.8530 1.4140 0.4533 3.0175
Region Size 0.2242 0.0864 0.0157 0.3678 -0.1658 1.9722
Contrast 0.3728 0.0960 0.0109 0.5640 -0.2511 2.8418
Compactness 0.2070 0.0002 0.2063 0.2076 0.0943 2.5107
Linear Texture 0.0917 0.0365 0.0040 0.1722 0.0067 2.4444
Relative Location X 0.6040 0.2975 -0.0711 1.2754 -0.0094 2.3235
Relative Location Y 0.2372 0.4643 -0.8736 1.4087 0.0149 2.6997
Max. 2nd order Drv Corr. 0.6354 0.0951 0.4040 0.9320 0.1608 2.9336
Number of Calcifications 2.0645 6.7471 0.0000 50.0000 4.4524 25.7707

Table 2: Statistics of benign and malignant cases after transformation.

(p=0.0002). For the SVM classifier, the Manly transformation had no noticeable effect on the performance.
Comparing the performance between BNs and SVMs using the transformed dataset showed that the difference
was not statistically significant (p=0.78).

Additionally, we evaluated the classification performance of the naive Bayesian and SVM classifier after
applying dimensionality reduction on our dataset. Figure 5 shows the classification performance of the naive
Bayesian classifier, where horizontally the number of principal components is plotted and vertically the area under
the ROC curve. The principal component vectors were calculated using the training set only. These principal
component vectors are then used to transform both the training and test set. The best result was obtained
with 14 principal components. The performance remained almost constant when adding more dimensions. With
SVMs the best result was obtained with only 6 principal components and decreased gradually if more components
were added which is shown in Figure 6. The difference in classification performance between BNs and SVMs was
statistically insignificant (p=0.11) when we used the optimal number of principal components for the classifier.
In an additional experiment we trained a SVM on all the available features (81 per view). This led to the
classification results shown in Figure 7. The maximum performance was reached in 10 components (Az = 0.811)
but this was not significantly higher than the maximum performance obtained in the experiment with the subset
of the 12 most important features (Az = 0.793).
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Figure 6: Case based performance SVM classifier with ra-
dial kernel function after dimensionality reduction with
PCA, averaged over 5 runs.
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Figure 7: Case based performance SVM classifier with radial kernel function after dimensionality reduction of all features
(81 per view) with PCA, averaged over 5 runs.

4. CONCLUSION

We performed a study to compare two state-of-the-art classification techniques characterizing masses as either
benign or malignant. We evaluated the effectiveness of dimension reduction and normal distribution trans-
formation in improving the classification accuracy. The Manly transformation method significantly improved
classification accuracy of the naive Bayesian classifier. We believe that this is due the fact that, by transforming
the distribution of the non-normal data to a distribution closer to normal, the assumptions of the naive Bayesian
classifier are violated less. We also found that this transformation does not work for all data, i.e., transforming
features that were already approximately normal within their class. We believe that by selecting one gamma for
Manly’s transformation, without looking to the class label, can negatively effect the binormal distribution (i.e.,
two normal distributions: one for benign and another for malignant cases) of the Stellateness Mean features. For
the SVM classifier, the data does not need to be normally distributed which explains why this transformation
did not have effect on the performance of the SVM classifier. After transformation, the difference in performance
of the SVM classifier and the naive Bayesian classifier was not statistically significant. Bayesian networks al-
low incorporating background knowledge, which may be exploited to improve their performance in the future.
Despite the major drawback of principal component analysis, i.e., it can eliminate a dimension that is good for
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discriminating positive cases from negative cases, this unsupervised dimension reduction algorithm improved the
classification accuracy of both classifiers. The performance of the two classifiers after applying PCA was very
similar, with no statistical differences in the area under the ROC curve.
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