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Abstract. In health care, the trend of evidence-based medicine,
has led medical specialists to develop medical guidelines,which are
large nontrivial documents suggesting the detailed steps that should
be taken by health-care professionals in managing the disease in a
patient. In the Protocure project the objective has been to assess the
improvement of medical guidelines using formal methods. This pa-
per reports on some of our findings and experiences in qualitycheck-
ing medical guidelines. In particular the formalisation ofmeta-level
quality criteria for good practice medicine, which is used in con-
junction with medical background knowledge to verify the quality of
a guideline dealing with the management of diabetes mellitus type 2
using the interactive theorem prover KIV. For comparison, analogous
investigations have been performed with other techniques including
automatic theorem proving and model checking.

1 Introduction

Computer-based decision support in health-care is a field with a long
standing tradition, dealing with complex problems in medicine such
as diagnosing disease and assisting in the prescription of appropriate
treatment. The trend of the last decades has been to base clinical de-
cision making more and more on sound scientific evidence, i.e; this
has been calledevidence-based medicine[41, 45]. In practice this has
led organisations of medical specialists in particular areas to develop
medical guidelines, i.e., structured documents suggesting the detailed
steps that should be taken by health-care professionals in managing
the disease of a patient, to promote standards of medical care. Eth-
ical concerns about evidence-based medicine have been raised [11]
and there is a potential risk that medical guidelines do harmwhen
improperly developed [44]. However, guidelines have also shown to
improve health-care outcomes [44] and may even reduce the costs of
care up to 25% [8].

Researchers in Artificial Intelligence have picked up on thein-
creasing use of medical guidelines and are working towards offer-
ing computer-based support in the development and deployment of
guidelines using computer-oriented languages and tools [10, 30].
This has given rise to the emergence of a new paradigm for the
modelling of complex clinical processes as a ‘network of tasks’,
where a task consists of a number of steps, each step having a spe-
cific function or goal [15, 28]. Examples of languages that support
task models, and which have been evolving since the 1990s, include
PROforma [16, 17], Asbru [37, 40], EON [42, 43], and GLIF3 [28].
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In this work, medical guidelines are considered as real-world exam-
ples of structured documents, which can benefit from formalisation,
although experience has shown that looking upon medical guidelines
as formal objects is a nontrivial task [29].

One of the reasons for this is that medical guidelines shouldnot
be considered static objects as they are changed on a regularbasis
as new scientific evidence becomes available. Rapidly changing and
evolving evidence makes it difficult to adjust guidelines insuch a
way as to keep them up to date. As a consequence, computer-based
support of guideline development should also be concerned with the
updating of guidelines, i.e., indicate where guidelines should be up-
dated in light of new evidence.

In this article, we approach this problem by applying formalmeth-
ods to checking the quality of medical guidelines. Here, we are
mainly concerned with checking ofgeneralquality criteria of good
practice medicine a guideline should comply to. This has been called
the meta-level approach to quality checking of medical guidelines
[24]. For example, a guideline should preclude the prescription of
redundant drugs, or advise against a prescription of a treatment that
is less effective than some alternative. Newly obtained evidence may
invalidate properties of a guideline, because, for example, new pa-
tient management options have arisen or financial costs havede-
creased through new developments in drug therapy.

A solid foundation for the application of formal methods to the
quality checking of medical guidelines can already be foundin liter-
ature. In [15, 25] logical methods have been used to analyse proper-
ties of guidelines. We have shown in [24] that the theory of abductive
diagnosis can be taken as a foundation for the formalisationof qual-
ity requirements of a medical guideline in temporal logic. This re-
sult has been used in verifying quality requirements of goodpractice
medicine of alternative treatments [21].

The contribution of this paper, is that we formalise qualityrequire-
ments of medical guidelines which include, besides separate treat-
ments, also the temporal relations between separate treatments, by
which we mean the order in which they are prescribed. Second,us-
ing our quality requirements and medical background knowledge,
we interactively verify a guideline dealing with the management of
diabetes mellitus type 2. More specifically, we model the guideline
as a ‘network of tasks’ using the language Asbru and, additionally,
verify meta-level properties for this model using KIV, an interac-
tive theorem prover [6]. To the best of our knowledge, verification
of a fully formalised guideline, as a network of tasks, usingmedi-
cal background knowledge has not been done before. The presented
framework provides a sound formal foundation for further research
in quality checking of medical guidelines and the temporal relations
among different treatments involved.



The remainder of this paper is structured as follows. Section 2
gives an introduction to the Protocure project and the methodology
employed within the project.3 Section 3 gives an introduction to med-
ical guidelines. Section 4 gives an overview of Asbru, the guideline
representation language used throughout our work. Section5 dis-
cusses in more detail the approach to formal verification of medi-
cal guideline. It discusses the main elements of a guidelinea formal
language should address and discusses the three types of knowledge
involved: background knowledge, the treatment order in theguide-
line, and the quality requirements. Section 6 discusses in more de-
tail how to formalise these three knowledge types in the context of
diabetes mellitus type 2. Section 7 discusses in more detailhow to
translate everything into the KIV system. Section 8 gives the results
with interactive verification with the theorem prover KIV.

2 Protocure: Improving medical guidelines by
formal methods

The aim of the Protocure project has been to take the formalisation
of guidelines one step further, by using guideline representation lan-
guages for modelling medical guidelines as formal objects and in-
tegrating them with formal methods for quality checking. The main
objective of the Protocure project was the assessment of guideline
improvement using formal methods, which has been done usingthe
methodology shown in Figure 1 [2]. Initially, a medical guideline is
selected, which is then gradually transformed into a formalrepresen-
tation. This transformation basically consists of two phases. Firstly,
the guideline is modelled in the Asbru language, which is a language
specifically designed for the modelling of medical guidelines. Asbru
is described in detail in Section 4. Secondly, the Asbru model of the
guideline is transformed in a formal language that can be used for
verification. Formal languages, tools, and techniques thathave been
used within the Protocure project are (1) KIV, an interactive theorem
prover that uses a variant of temporal logic, (2) Otter, an automatic
theorem prover, and (3) SMV, a model checker that uses computa-
tion tree logic and linear temporal logic. These are described in more
detail in forthcoming sections.
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Figure 1. The process of guideline formalisation and verification as done in
the Protocure project.

Closely related to the modelling of the guideline is the modelling
of the properties one wants to check for the guideline under study.
Several sources can be used to obtain such properties, whichthen
also need to be translated into a formal language that will beused for
verification. The simplest properties, so-calledstructural properties
[12], are those properties that ensure that the Asbru model created is
correct, e.g., reachability of all states. More complex properties deal
with the medical intentions one wants to obtain when using a guide-
line. These can be derived from the guideline text or for example

3 http://www.protocure.org

from quality indicators independently developed from the guideline
[18]. Such properties need interpretation and were found tobe harder
to formalise. In this paper, we look, among others, at a specific type
of such complex properties, namely meta-level quality requirements,
which state requirements for general good medical practice.

3 Medical guidelines

Guidelines, medical guidelines, or practice guidelines are all com-
monly used abbreviations for the full term ‘clinical practice guide-
line’. An often cited definition of guidelines is the one by Field and
Lohr [14]:

Clinical practice guidelines are systematically developed state-
ments to assist practitioner and patient decisions about appro-
priate health care for specific clinical circumstances.

Though ‘protocol’ is often synonymously used for ‘guideline’, a
protocol gives detailed statements abouthow one should act in
daily practice, whereas a guideline gives more general scientifically
founded statements aboutwhat should be done. Protocols are often
seen as more detailed, practice-oriented versions of a guideline [27].
In this work the focus is on medical guidelines.

An example of a fragment of a guideline is shown in Figure 2. It
is part of the guideline for general practitioners about thetreatment
of diabetes mellitus type 2 [34]. General practitioners’ guidelines are
normally quite compact. Guidelines for medical specialists are often
large – they can be as large as 100 pages – but even then they consists
of sections similar to our example. Translating a guidelineinto a clear
and structured fragment such as in Figure 2 can take a lot of effort;
however, the formalisation of a guideline is not the main focus of the
work presented, which is about verification of a formalised guideline.

– Step 1: diet.
– Step 2: if Quetelet index (QI)≤ 27, prescribe a sulfonylurea drug;

otherwise, prescribe a biguanide drug.
– Step 3: combine a sulfonylurea drug and biguanide (replaceone

of these by aα-glucosidase inhibitor if side-effects occur).
– Step 4: one of the following:

• oral antidiabetic and insulin
• only insulin

Figure 2. Tiny fragment of a clinical guideline on the management of dia-
betes mellitus type 2. If one of the stepsk = 1, 2, 3 is ineffective, the man-
agement moves to stepk + 1

The diabetes mellitus type 2 guideline provides practitioners with
a clear structure of recommended actions to be taken for the control
of the glucose level. This kind of information is typically found in
medical guidelines in the sense that medical knowledge is combined
with information about order and time of treatment (e.g., sulfony-
lurea in step 2), about patients and their environment (e.g., Quetelet
index lower than or equal to 27), and finally which drugs are tobe ad-
ministered to the patient (e.g., a sulfonylurea drug). Whenverifying
the quality of a guideline, the formal language used should at least
address these elements. We come back to these elements in more de-
tail in Section 5.1.

4 Medical guidelines in Asbru

Much research has already been devoted to the development ofrep-
resentation languages for medical guidelines. Most of themlook at
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guidelines consisting of a composition of actions, whose execution
is controlled by conditions [27]. However, most of them are not for-
mal enough for the purpose of our research as they often incorporate
free-text elements which do not have a clear semantics. Exceptions
to this are PROforma[16, 17] and Asbru [37, 40]. The latter has been
chosen in our research as a basis to formalise a medical guideline.

4.1 Introduction to Asbru

A medical guideline is considered in Asbru as a hierarchicalplan.
The main components of an Asbru plan are intentions, conditions,
plan-body, and time annotations. Furthermore, a plan can have argu-
ments and can alter the value of variables.

The intentionsare the high-level goals of a plan. Intentions can be
expressed in terms of achieving, maintaining, or avoiding acertain
state or action. The states or actions to which intentions refer can be
intermediate or final (overall). In total there are twelve possible forms
of intentions built up by combining elements from the sets{achieve,
maintain, avoid}, {intermediate, overall}, and{state, action}.

Conditionscan be associated to a plan to define different aspects
of its execution. The most important types of condition are:(1) filter
and setup conditions,4 which must be true before a plan can start,
(2) abort conditions, which define when a plan must abort, and(3)
complete conditions, which define when a started plan finishes suc-
cessfully. Conditions can be ‘over-ridable’ (i.e., healthpersonnel can

4 filter conditions are conditions about values that cannot change value, e.g.,
sex= male, whereas setup conditions are conditions about values thatmay
change, e.g., glucose level.

manually satisfy the condition) or ‘require confirmation’ (i.e., condi-
tions must be explicitly confirmed before they are satisfied).

Theplan-bodycontains the actions, sub-plans, or both to be exe-
cuted as part of the plan. The main types of plan-body are: (1)user-
performed: an action has to be performed by a user, which requires
interaction, which is not further modelled, (2) single-step: an action
which can be either an activation of a sub-plan, an assignment of a
variable, a request for an input value, or an if-then-else statement,
(3) sub-plans: a set of plans to be performed in a given order,either
sequentially, in parallel, in any-order, or unordered, and(4) cyclical
plans: a repetition of actions over a time period. In case of sub-plans,
it is also required to specify a waiting strategy to describewhich of
the sub-plans must be completed for the super plan to complete, e.g.,
all sub-plans should be executed (wait-for all ).

Time annotationscan be associated to various Asbru elements,
e.g., intentions, conditions, plan activations. A time annotation speci-
fies (1) in which interval things must start, (2) in which interval things
must end, (3) their minimal and maximal duration, and (4) a refer-
ence time point.

4.2 The semantics of Asbru

To help in the understanding of Asbru we review here the semantics
of Asbru in a semi-formal statechart notation [5]. In Asbru,plans
are organised in a hierarchy, where a plan may include a number of
sub-plans. The semantics of Asbru is defined in [3] by flattening the
hierarchy of plans and using one top level control to executeall plans
synchronously. Within each top level step, a step of every plan is ex-
ecuted. Whether a plan is able to progress depends on its conditions.



The plan state model shown in Figure 3 defines the semantics ofthe
main plan hierarchy. The ‘PlanControl’ is divided into a selection
phase, an execution phase, and a termination phase. Each plan goes
into the ‘Considered’ state when it receives aconsidersignal. In this
state itsfilter conditionis checked. If it evaluates to true, control ad-
vances to the state ‘Possible’. Then the setup condition is checked
and if it is passed, control advances to the execution phase.If the fil-
ter condition is not satisfied or the setup condition is not satisfiable
anymore (i.e., it is not possible to satisfy the condition inthe future,
because a deadline has passed), the plan is rejected. The same hap-
pens, if the super-plan terminates. In the execution phase the plan
waits for an external signalactivate, to be sent by its super-plan.

In state ‘Activated’, the sub-plans are executed, which canbe se-
quentially, in parallel, unordered, or in any order, and each order
determines a different controlling statechart [3]. A plan can syn-
chronise its sub-plans using the signalsconsiderandactivate. Ad-
ditional control to propagate execution states of a sub-plan to its
parent and vice versa is also present, e.g., the abortion of amanda-
tory sub-plan enforces the parent-plan also to abort. Sub-plans can
either be completed successfully or aborted, e.g., in the case of
emergency patient readings.

The complete technical definitions, in addition to the semantics of
the other constructs that are not shown here, can be found in [5].

5 Verification of medical guidelines

5.1 Requirements for the verification of guidelines

To be able to verify quality criteria of medical guidelines using for-
mal methods, we need to have a language that can be used to express
quality criteria that can be related to the key elements in a guideline.
In Section 3, we stated that the key elements in medical guidelines
are (at least) order in time, patients, and interventions. Here, we
discuss our choices for a language for the formal representation of
those key elements, used in the remainder of the paper.

Time: As medical management is a time-oriented process, diagnos-
tic and treatment actions described in guidelines are performed in
a temporal setting. It has been shown previously that the step-wise,
possibly iterative, execution of a guideline can be described by means
of temporal logic [25]. This is a modal logic [13], where relationships
between worlds in the usual possible-world semantics of modal logic
is understood as time order. In this paper, we will use a variant of
this logic, based on future-time linear temporal logic. Thelanguage
of this logic is first-order logic augmented with the temporal opera-
tors listed in Table 1. The semantics of this language is given by a set
D, representing the universe of discourse, a set of interpretationsIt
for interpreting statements from the first-order logic, anda function
succ, wheresucc(t) is the set of zero or one successors of time points
of t. First-order expressionsϕ at timet are interpreted usingIt in the
domainD; for example,t � ϕ means thatϕ is satisfied at timet
w.r.t. It andD [13].

Note that thelast modality can only hold in models where at some
point following the successor function, no successor exists. In all
other models,last will never hold. Also note that some operators can
be defined in terms of other operators, e.g.,2 ϕ ≡ ¬ 3 ¬ ϕ and
last ≡ • ⊥. A more expressive logic can be gained by including, for
example, theuntil operator, whereϕ until ψ denotes that eventu-
ally ψ holds and before thatϕ holds. However, as such operators are
not used in this paper, they have been omitted.

This logic allows one to look at guidelines formally at a particular
abstraction level. In Section 8, we show this logic to be suitable for

quality checking of medical guidelines; however, it is possible to
add more fine-grained temporal operators if they are needed.

Patient groups: Although in practice a guideline is used for the
management of a particular patient, recommendations in guidelines
are always written with a certainpatient group in mind – not
just a single patient. Patient groups are groups of patientsthat
share common characteristics about their current state or previous
states. One can abstract from the actual situation of a patient by
providing a logical language that refers to one or more situations,
including the necessary common characteristics, without fixing all
the details. Typical elements for describing the state of patients
are symptoms, signs, and test outcomes. Here we have chosen to
use predicate logic with equality and unique names assumption
[32]. For example, the literal ‘Condition(hyperglycaemia)’ is used
to represent the patient group of all patients that currently have
the condition of hyperglycaemia. Subgroups of patient groups
can be specified by using a conjunction with additional literals,
e.g., ‘Condition(hyperglycaemia) ∧ QI ≤ 27’ specifies the pa-
tient group of patients who have hyperglycaemia and also have a
Quetelet index less than or equal to 27. We sometimes represent the
conjunction also in set form, e.g., the latter conjunction becomes
‘{Condition(hyperglycaemia),QI ≤ 27}’.

Interventions and treatments: An intervention is the act of inter-
vening, interfering, or interceding with the intent of modifying the
outcome. In medicine, interventions include all medical actions that
influence the state of a patient or his environment. A treatment is
usually restricted to methods that provide a cure for an illness or
disability, however, the terms intervention and treatmentare often
used synonymously. We have chosen to represent the domain ofin-
terventions by a countable set. Subsets of this set are interpreted as
treatmentsin which each intervention of the set is applied. Interven-
tions which are not an element of the treatment are assumed not to
be applied. We abstract from medical management details such as
changing drug dosages.

5.2 Verification approach

Medical guidelines give recommendations based on the best avail-
able evidence. Although diabetes mellitus type 2 is a complicated
disease, the guideline fragment shown in Figure 2 is not. This in-
dicates that much knowledge concerning diabetes mellitus type 2
is missing from the guideline. Verifying whether a guideline fulfils
some property therefore additionally needs the specification ofback-
ground knowledge.

The ideas that we use here to verify quality requirements formedi-
cal guidelines are inspired by previous work, where a distinction was
made between the different types of knowledge that are involved in
defining quality requirements [21]. We assume that there areat least
three types of knowledge involved in detecting the violation of good
medical practice:

1. Knowledge concerning the (patho)physiological mechanisms un-
derlying the disease, and the way treatment influences thesemech-
anisms. The knowledge involved could be for example causal or
empirical in nature, and is an example ofobject-knowledge.

2. Knowledge concerning the recommended treatment in everystep
of the guideline and how the choice for each treatment is affected
by the state of the patient, i.e., the order information fromthe med-
ical guideline. This is also an example ofobject-knowledge.



Table 1. Used temporal operators;t stands for a time instance

Notation Interpretation Formal semantics
2 ϕ ϕ will always be true t � 2 ϕ⇔ ∀t′ ≥ t : t′ � ϕ
3 ϕ ϕ will eventually be true t � 3 ϕ⇔ ∃t′ ≥ t : t′ � ϕ
◦ ϕ execution does not terminate and the next state satisfiesϕ t � ◦ ϕ⇔ ∃ t′ ∈ succ(t) : t′ � ϕ
• ϕ either execution terminates or the next state satisfiesϕ t � • ϕ⇔ ∀ t′ ∈ succ(t) : t′ � ϕ
last the current state is the last t � last ⇔ succ(t) = ∅

3. Knowledge concerning good practice in treatment selection; this
is meta-knowledge.

The first type of object-knowledge will be calledbackground
knowledge. The second type of object-knowledge is the order in-
formation from the medical guideline, which can be considered a
network of tasks or a hierarchical plan. The plan prescribestreat-
ment which influences the (patho)physiological mechanisms, which
results in information about patient groups that can be usedby the
plan to make the best possible decision in subsequent step ofthe pro-
tocol. Incompleteness of background knowledge may lead to insuffi-
cient knowledge about a patient, which may result in a plan making
a non-deterministic choice. Of course, the guideline should recom-
mend the collection of data when possible if this data is crucial for
decision making.

The third type of knowledge, the meta-knowledge, includes gen-
eral knowledge about good practice medicine, for example, prefer-
ring a treatment over another if it uses a smaller number of drugs and
has an equal effect on the patient. This knowledge will be formalised
by quality requirements, i.e., (reasoning) patterns that specify the be-
haviour of treatment selection given certain patient data.These qual-
ity requirements can be used as proof obligations in the verification
of medical guidelines.

In the following section, the three types of knowledge involved
(background knowledge, medical guideline, and quality require-
ments) are described in more detail in the context of diabetes mellitus
type 2 and a formalisation in terms of temporal logic as discussed in
Section 5.1 is given. In Section 8 the quality requirements are verified
with the interactive theorem prover KIV.

6 Formalisation diabetes mellitus type 2 guideline

6.1 Background knowledge

In diabetes mellitus type 2 various metabolic control mechanisms are
deranged and many different organ systems may be affected. Glucose
level control, however, is the most important mechanism. Atsome
stage in the natural history of diabetes mellitus type 2, thelevel of
glucose in the blood is too high (hyperglycaemia) due to decreased
production of insulin by the B cells. Oral anti-diabetics either stimu-
late the B cells in producing more insulin (sulfonylurea) orinhibit the
release of glucose from the liver (biguanide). Effectiveness of these
oral diabetics is dependent on the condition of the B cells. Finally, as
a causal treatment, insulin can be prescribed. The mechanisms have
been formalised in terms of temporal logic in previous work [21],
and is shown in Figure 4.

For example, axiom (1) denotes the physiological effects ofinsulin
treatment, i.e., administering insulin results in an increased uptake of
glucose by the liver and peripheral tissues. Axiom (8) phrases under
what conditions you may expect the patient to get cured, i.e., when
the patient suffers from hyperglycaemia and insulin production of his

(1) Drug(insulin) → ◦ (uptake(liver, glucose) = up∧
uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up→ release(liver, glucose) = down
(3) (Drug(SU) ∧ ¬capacity(b-cells, insulin) = exhausted)

→ ◦ secretion(b-cells, insulin) = up
(4) Drug(BG) → ◦ release(liver, glucose) = down
(5) (◦ secretion(b-cells, insulin) = up∧

Condition(hyperglycaemia) ∧
capacity(b-cells, insulin) = subnormal∧ QI ≤ 27)
→ ◦ Condition(normoglycaemia)

(6) (◦ release(liver, glucose) = down∧ QI > 27 ∧
capacity(b-cells, insulin) = subnormal∧
Condition(hyperglycaemia))
→ ◦ Condition(normoglycaemia)

(7) ((◦ release(liver, glucose) = down∨
◦ uptake(peripheral-tissues, glucose) = up) ∧
capacity(b-cells, insulin) = nearly-exhausted∧
◦ secretion(b-cells, insulin) = up∧
Condition(hyperglycaemia))
→ ◦ Condition(normoglycaemia)

(8) (◦ uptake(liver, glucose) = up∧
◦ uptake(peripheral-tissues, glucose) = up∧
capacity(b-cells, insulin) = exhausted∧
Condition(hyperglycaemia))
→ ◦ (Condition(normoglycaemia)∨Condition(hypoglycaemia))

(9) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia))∧¬(Condition(normoglycaemia)∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Figure 4. Background knowledgeBDM2 of diabetes mellitus type 2.
Drug(x) holds iff drugx is being administered at that moment in time. The
⊕ operator denotes the exclusive OR operator.

B cells are exhausted, an increased uptake of glucose by the liver and
peripheral tissues results in the patient condition changing to normo-
glycaemia.

6.2 Asbru model

In Asbru, plans are hierarchically organised in which a planrefers to
a number of sub-plans. The overall structure of the Asbru model of
our running example (Figure 2), is shown in Figure 5. The top level
plan ‘TreatmentsandControl’ sequentially executes the four sub-
plans ‘Diet’, ‘SU or BG’, ‘SU andBG’, and ‘Insulin Treatments’,
which correspond to the four steps of the guideline fragmentin Fig-
ure 2. The sub-plan ‘InsulinTreatments’ is further refined by two
sub-plans ‘Insulinand Antidiabetics’ and ‘Insulin’, which can be ex-
ecuted in any order.

The Asbru specifications of two plans in the hierarchy, namely
‘SU or BG’ and ‘Insulin Treatments’ are defined as in Figure 6.

In the case of ‘SUor BG’ there is a relationship between the
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SU_and_BG Insulin_TreatmentsDiet SU_or_BG

InsulinInsulin_and_Antidiabetics

Figure 5. Asbru plan hierarchy of the diabetes mellitus type 2 guideline.

plan ‘SU or BG’
effects

(QI ≤ 27→ SU∈ Drugs)∧
(QI > 27→ BG∈ Drugs)

abort condition
‘condition = hyperglycaemiaconfirmation required ’

complete condition
condition = hypoglycaemia∨
condition = normoglycaemia

plan ‘Insulin Treatments’
body anyorder wait for one

‘Insulin and Antidiabetics’
‘Insulin’

Figure 6. Asbru specifications of two treatments recommended in the dia-
betes mellitus type 2 guideline.

Quetelet index (QI) and the drug administered. If the Quetelet index
is less or equal than 27 then SU is administered, else BG is admin-
istered. The plan ‘SUor BG’ corresponds to step 2 in the guideline
fragment of Figure 2, which completes if the patient condition im-
proves, i.e., the patient no longer has hyperglycaemia. This is rep-
resented by thecomplete condition. The plan ‘SUor BG’ aborts
when the condition of the patient does not improve, which is repre-
sented by theabort condition. It requires a manual confirmation to
ensure that some time passes for the drugs to have an impact onthe
patient condition.

The plan ‘InsulinTreatments’ consists of two sub-plans, which
correspond to the two options of step 4 in the guideline fragment of
Figure 2, i.e., either insulin is administered or insulin and antidiabet-
ics are administered.

6.3 Quality requirements

Here, we give a formalisation of good practice medicine of medi-
cal guidelines. This extends previous work [21], which formalised
good practice medicine on the basis of a theory of abductive reason-
ing of single treatments. The context of the formalisation given here
is a fully formalised guideline, which consists, besides a number of
treatments, of a control structure that uses patient information to de-
cide on a particular treatment. This contrast with [21], which used a
context of a singly chosen treatment.

Firstly, we formalise the notion of aproper guideline according
to the theory of abductive reasoning. LetB be medical background
knowledge,P be a patient group,N be a collection of intentions,
which the physician has to achieve, andM be a medical guideline.

ThenM is called aproper guideline for a patient groupP , denoted
asM ∈ PrP , if:

(M1) B ∪M ∪ P 6|= ⊥ (the guideline does not have contradictory
effects), and

(M2) B ∪M ∪ P |= 3N (the guideline eventually handles all the
patient problems intended to be managed)

Secondly, we formalise good practice medicine of guidelines. Let
�ϕ be a reflexive and transitive order denoting a preference relation
withM �ϕ M

′ meaning thatM ′ is at least as preferredtoM given
criterionϕ. With ≺ϕ we denote the order such thatM ≺ϕ M ′ if
and only ifM �ϕ M

′ andM ′ 6�ϕ M . When bothM �ϕ M
′ and

M ′ �ϕ M hold or whenM andM ′ are incomparable w.r.t.�ϕ we
say thatM andM ′ areindifferent, which is denoted asM ∼ M ′. If
in addition to (M1) and (M2) condition (M3) holds, with

(M3) Oϕ(M) holds, whereOϕ is a meta-predicate standing for an
optimality criterion or combination of optimality criteria ϕ de-
fined as:Oϕ(M) ≡ ∀M ′ ∈ PrP : ¬(M ≺ϕ M

′),

then the guideline is said to bein accordance with good practice
medicinew.r.t. criterionϕ and patient groupP , which is denoted as
Goodϕ(M,P ).

A typical example forOϕ is consistency of the recommended
treatment order w.r.t. a preference relation�ψ over treatments, i.e.,
Oϕ(M) holds if the guidelineM recommends treatmentT before
treatmentT ′ whenT ′ ≺ψ T holds. For example, in diabetes mel-
litus type 2, a preference relation over treatments would beto min-
imise (1) the number of insulin injections, and (2) the number of
drugs involved. This results, among others, in the following prefer-
ences: sulfonylurea drug∼ biguanide drug, and insulin�ψ insulin
and antidiabetic�ψ sulfonylurea and biguanide drug�ψ sulfony-
lurea or biguanide drug�ψ diet. A guidelineM would then be in
accordance with good practice medicine if it is consistent with this
preference order�ψ, e.g., ifM first recommends diet before a sul-
fonylurea or biguanide drug.

7 Specification in KIV

Previous sections have given the temporal logic formalisation of the
background knowledge of diabetes mellitus type 2, the quality re-
quirements, and the Asbru model of the medical guideline fordi-
abetes mellitus type 2. In this section we discuss how these ele-
ments can be translated into KIV representations, so that they be-
come amendable to verification.

7.1 Introduction to KIV

KIV is an integrated development environment to develop systems
using formal methods [6]. The specification language of KIV is based
on higher-order algebraic specifications. Reactive systems can be de-
scribed in KIV by means of state-charts or parallel programs; here
we use parallel programs. Parallel programs are modelled asfollows.
Let e denote an arbitrary (first-order) expression andvd a dynamic
variable (see below), then constructs for parallel programs include:
vd := e (assignments), if ψ then φ1 elseφ2 (conditionals), while
ψ do φ (loops), var vd = e in φ (local variables), patom φ end
(atomic execution), φ1

f
φ2 (interleaved execution), and[p#(e; vd)]

(call to procedurep with value parameterse and reference parame-
tersvd). The semantics of this extended language is defined in [1].

The correctness of systems is ensured by constructing proofs in
an interactive theorem prover which is based on higher orderlogic



with special support for temporal logic, i.e., future-timelinear tem-
poral logic [4]. The logic of Table 1 is extended with static variables
vs, which are variables that are mapped to the same element in the
universe of discourse at each time point. Dynamic variablesvd, such
as program variables, may have different interpretations at different
time points. In the upcoming sections, the use of static variables will
be explicitly mentioned. A speciality of KIV is the use of primed and
double-primed variables: a primed variablev′d represents the value
of this variable after a system transition, the double-primed variable
v′′d is interpreted as the value after an environment transition. System
and environment transitions alternate, withv′′d being equal tovd in
the successive state (cf. Figure 7 and Section 8.1).

V V’ V"

system

transition

environment

transition

Asbru model

of guideline

+ Effects

Background

Knowledge

Figure 7. The relation between unprimed and primed variables as two dis-
tinct transitions: the system transition (including the Asbru model and its ef-
fects) and the environment transition (including the background knowledge).

7.2 Specification methodology in KIV

The guideline and patient can be looked upon as a system (guideline)
that interacts with the environment (patient). KIV allows aclear dis-
tinction between system and environment transitions by using primed
and double-primed variables. Therefore, the Asbru model isonly al-
lowed to map variables into primed variables, whereas the environ-
ment is only allowed to map primed variables into double primed
variables. System and environment transitions alternate (Figure 7).

However, system transitions in Asbru may involve a large number
of steps (e.g., signals, plan state changes) before the model reaches
a stable state from which no further step can be made unless time
progresses or the environment changes. Asbru is mainly a control
oriented language and many control steps are not consideredto take
any real time at all. In an interactive theorem prover like KIV, this be-
haviour can be modelled by the introduction of two transition types,
micro-stepsand macro-steps[36]. Micro-steps are technical Asbru
steps where time and environment are not allowed to change. Macro-
steps are temporal steps in which interaction can occur withthe envi-
ronment (e.g., plan activations) and are only executed whenthere are
no micro-steps possible. The variable ‘Tick’, controlled by the sym-
bolic execution of the Asbru semantics, holds when a macro-step
occurs.

In KIV, system descriptions are represented by means of a setof al-
gebraic specifications. These algebraic specifications canbe enriched
with additional algebraic structures, which form a dependency struc-
ture between the different specifications. To maximise re-usability,
several layers are used for representing our framework in KIV. The
lowest layer in this dependency structure consists of standard data
structures like Booleans and sets, which are typically obtained from
libraries in KIV. On top of that, all data structures are represented
necessary for representing the semantics of Asbru. The remaining
layers consist of the structures dependent on the specific guideline
under study. On top of the standard data structures, additional data
structures are represented. For the diabetes case study, the data types

Standard data structures

Asbru Semantics Guideline specific data types

Guideline specific control stucture

Background knowledge

Figure 8. Dependency structure of Asbru specifications withA → B de-
noting thatA depends onB

are modelled as enumeration types. On top of the asbru semantics
and data structures the background knowledge is represented. The
top layer consists of the control structure of the guideline, which is
the structure of Figure 5 in the diabetes case study (cf. Figure 8).

7.3 Specification of background knowledge in KIV

The background knowledge is translated into algebraic specifications
in KIV. All background knowledge axioms have been reformulated in
terms of preconditions and postconditions. Every element that refers
to the current point in time is interpreted as a preconditionand each
element that refers to the next point in time is interpreted as a post-
condition. The values of these elements are stored in a data structure,
denoted by ‘Patient’. The patient is modelled by a sequence of pairs
[v, c], wherev is the name of a variable andc a constant denoting
the value of that variable, depending on the point in time. Updates to
the patient record are done by appending a pair to the end of the se-
quence. Moreover, the most recent value of a variablev in a sequence
s is given by the terms[v]. An example of the final translation can be
found in Figure 9.

predicates
Knowledge :patient× patient;

axioms
BDM2-1:

Knowledge(pre, post) → (insulin∈ pre[treatment] →
post[uptake(liver,glucose)] = up∧
post[uptake(peripheral-tissues, glucose)] = up)

BDM2-8:
Knowledge(pre, post) → (post[uptake(liver,glucose)] = up

∧ post[uptake(peripheral-tissues,glucose)] = up)
∧ pre[capacity(b-cells,insulin)] = exhausted
∧ pre[condition] = hyperglycaemia→
post[condition] = normoglycaemia)

Figure 9. Background knowledge in KIV as a first order predicate using
pre- and postconditions, i.e.,pre andpostare shorthand notations for patient
data structures withpre[v] = c andpost[v] = c referring to the conditionv =
c of the patient in the current and next state respectively. The use ofpre
andpost variables is necessary to parameterise the background knowledge
for arbitrary patient data structures. In addition, two translated rules from
the background formalisation in [21] are shown with BDM2-i representing
Axiom (i) (cf. Figure 4).

7.4 Specification of Asbru in KIV

As each Asbru plan has a strict format, an algebraic function‘mk-
asbru-def’ has been defined for the translation of Asbru plans into



KIV specifications. By calling ‘mk-asbru-def’ with the parameters
that constitute a plan, translation of any guideline in Asbru becomes
straightforward. The parameters consist of the various conditions that
control plan state changes, the control type of sub-plans, alist of
sub-plans, a retry value (for aborted plans), a wait-for condition (for
mandatory sub-plans), and an optional wait-for flag (whether to wait
for sub-plans). As there are quite a number of parameters, default
values are provided to ease specification.

The Asbru semantics is implemented as a parallel program,
parametrised with a given Asbru model. Temporal propertiesof this
program are proven using symbolic execution and induction [1].

7.5 Specification of quality requirements in KIV

With the help of KIV, we have verified that the diabetes guideline is
proper, i.e., that the guideline satisfies conditions (M1) and (M2) as
defined in Section 6.3, which is discussed in detail in Subsections 8.1
and 8.2. Meta-level quality requirements are verified in KIVusing a
sequentΓ ⊢ Σ where the succedentΣ is some instantiation of (M3)
and the antecedentΓ is a fixed structure that consists of the initial
state of the patient and the Asbru model, the Asbru model, theef-
fects of treatments, the background knowledge, and the environment
assumptions. The sequent in Figure 10 is an example specification in
KIV of the quality requirement that each patient is eventually cured
from hyperglycaemia.

/* Initial state of patient */
Patient[condition] = hyperglycaemia,
/* Initial state of guideline */
AS[Treatmentsand Control] = inactive, . . . ,
/* Asbru model */
[asbru#(Treatmentsand Control; AS, P )],
/* Effects */
2 (AS[SU or BG] = activated↔

BG ∈ Patient′[treatment] ∧ . . .),
/* Background knowledge */
2 Knowledge(Patient′,Patient′′)
/* Environment assumption */
2 (AS′′[Treatmentsand Control] =

AS′[Treatmentsand Control] ∧ . . .)
⊢

/* Property */
3 (Patient[condition] = hypoglycaemia∨

Patient[condition] = normoglycaemia)

Figure 10. Specification in KIV of the quality requirement that each patient
is eventually cured from hyperglycaemia.

Theinitial stateof thepatientand theAsbru modelare represented
using additional data structures [35]. The patient data is represented
in a data structure ‘patient-data-history’, which in Figure 10 is set to
the patient group{Condition(hyperglycaemia)}. The initial state of
the Asbru model is represented using a data structure ‘AS’ oftype
‘asbru-state’, which keeps track of all plan states over time, and in
which initially each plan is set to inactive. TheAsbru modelof the
guideline describes the control structure, and its specification in KIV
has already been discussed in Section 7.4. Theeffects of treatments
specify in KIV the behaviour of plans in the Asbru model. Thisis
a direct translation of theeffectsattribute used in the Asbru model,
which specifies the expected behaviour of plans (cf. Section6.2). In
our diabetes case study the effects of plans are the administration of

a certain drug as soon as the plan becomes activated, which may de-
pend on the value of other variables like the Quetelet index (cf. Sec-
tion 6.2). Thebackground knowledgeis represented in the sequent
using the first-order predicate ‘Knowledge’ and has alreadybeen dis-
cussed in Section 7.3. The environment is in principle allowed to
change every variable arbitrarily. Theenvironment assumptionsre-
strict the behaviour of the environment. These restrictions (1) forbid
the environment to change some variable, (2) force the environment
to deterministically change a variable (e.g., advancing a clock), and
(3) guarantee certain variable assignments in a nondeterministic way
(e.g., the existence of a value when a signal is sent).

8 Verification using KIV

8.1 Consistency of background knowledge

Property (M1) ensures that the formal model including the Asbru
guideline and the background knowledge is consistent. The initial
state is – in our case – described as a set of equations and it has
been trivial to see that they are consistent. The guideline is given as
an Asbru plan. The semantics of any Asbru plan is defined in a pro-
gramming language where every program construct ensures that the
resulting reactive system is consistent: in every step, theprogram ei-
ther terminates or calculates a consistent output for arbitrary input
values. The Asbru plan, thus, defines a total function between un-
primed and primed variables in every step (Figure 7). The formula
defining the effects maps the output variables of the guideline to in-
put variables of the patient model. Again, it has been trivial to see
that this mapping is consistent.

The background knowledge defines our patient model. We con-
sider the patient to be part of the environment which is the relation
between the primed and the double primed variables in every step. If
the patient model ensures that for an arbitrary primed statethere ex-
ists a double primed state, the overall system of alternating guideline
and environment transitions is consistent: given an initial (unprimed)
state, the guideline calculates an output (primed) state; the effects
define a link between the variables of the guideline and the variables
of the patient model; the patient model reacts to the (primed) output
state and gives a (double primed) state which is again input to the As-
bru guideline in the next step. In other words, the relation between
the unprimed and the double primed state is the complete state transi-
tion. The additional environment assumptions referring tothe Asbru
environment do not destroy consistency as the set of restricted vari-
ables of the environment assumption is disjunct to the set ofvariables
of the patient model.

It remains to ensure consistency of the background knowledge
which we defined as a predicate ‘knowledge’. Consistency canbe
shown by proving the property

∀pre. ∃post. ‘knowledge’(pre, post)

which ensures that the relation is total. In order to prove that this
property holds an example patient has been constructed. Verifying
that the example patient is a model of the background knowledge has
been fully automatic.

8.2 Successful treatment

In order to verify property (M2), i.e., the guideline eventually man-
ages to control the glucose level in the patient’s blood, a proof has
been constructed. The verification strategy in KIV is symbolic ex-
ecution with induction [1]. The plan state model introducedin [3]



defines the semantics of the different conditions of a plan and is im-
plemented in KIV by a procedure called ‘asbru’, which is symbol-
ically executed. Each plan can be in a certain state, modelled with
a variable ‘AS’ (i.e., ‘inactive’, ‘considered’, ‘ready’,‘activated’,
and ‘aborted’ (or ‘completed’)) and a transition to anotherstate de-
pends on its conditions. In the initial state, the top level plan ‘Treat-
mentsand Control’ (abbreviated ‘tc’) is in ‘inactive’ state. After ex-
ecuting the first step, the plan is ‘considered’, after whichexecution
continues as described in [3]. The execution is visualised in a proof
tree (cf. Figure 11), where the bottom node is the start of theexecu-
tion and splits if there is a case distinction.

Patients whose capacity of the B cells is ‘normal’ are cured with
diet, while for other patients diet will not be sufficient. Inthis case,
we assume that the doctor eventually aborts the diet treatment. We
use induction to reason about the unspecified time period in which
diet is applied. As an invariant,

Patient[‘capacity(B-cells,insulin)’] 6= normal

is used. In the next step, the doctor has either aborted ‘diet’ or ‘diet’
is still active. In the second case, induction can be applied. When
‘diet’ is aborted, ‘tc’ sequentially executes the next plan, which is
‘SU or BG’ (cf. Figure 5).

The second treatment ‘SUor BG’ goes, as each Asbru plan,
through a sequence of states, i.e., ‘inactive’, ‘considered’, ‘ready’,
‘activated’, and ‘aborted’, and thus becomes first ‘considered’ and
after some steps becomes ‘activated’ (cf. Figure 11). In this case, ei-
ther SU or BG is prescribed, depending on the Quetelet index QI.
For a patient whose B cell capacity is ‘subnormal’, the background
knowledge ensures that the condition of the patient improves. Thus,
for the rest of the proof we can additionally assume that

Patient[‘capacity(B-cells,insulin)’] 6= subnormal

After ‘SU or BG’ aborts, the third treatment (‘SUand BG’) is exe-
cuted in similar fashion, where patients with nearly exhausted B cell
capacity are cured. Thus, after aborting the first three treatments the
precondition concerning the B cell capacity can be strengthened to

Patient[‘capacity(B-cells,insulin)’] 6= ‘normal′

∧ Patient[‘capacity(B-cells,insulin)’] 6= ‘subnormal′

∧ Patient[‘capacity(B-cells,insulin)’] 6= ‘nearly-exhausted′

which, under the assumption that the only possible values ofthe
capacity are normal, subnormal, nearly-exhausted, and exhausted,
yields:

Patient[‘capacity(B-cells,insulin)’] = exhausted

This statement together with the background knowledge ensures that
the prescription of insulin, which is prescribed in both final treat-
ments ‘Insulin’ and ‘Insulinand Antidiabetics’, finally cures the pa-
tient.

8.3 Optimality of treatment

With respect to property (M3), an optimality criterion of the guide-
line is that no treatments are prescribed that are not in accordance
with good practice medicine (Section 6.3), i.e., some preference re-
lation� between treatments exists and the guideline never prescribes
a treatmentT such thatT � T ′ andT ′ cures the patient group under
consideration.

In our case study the preference for treatments is based on the min-
imisation of (1) the number of insulin injections, and (2) the number

tc is inactive
tc is considered

diet is aborted

invariant is introduced

  and induction is applied
diet is still activated

case distinction about
  B−cell capacity

patient with normal
capacity is cured  

tc is activated

diet is considered

diet is activated

patient with subnormal
capacity is cured  

su_or_bg is aborted

su_or_bg is considered
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Figure 11. Overview of the proof that the guideline eventually managesall
patient problems, which is explained in Section 8.2.



of drugs involved (cf. Section 6.3). We have defined this using a re-
flexive, transitive order≤ such that for all treatmentsT , it holds that
insulin ≤ T andT ≤ diet. Furthermore, the treatments prescribing
the oral anti-diabetics sulfonylurea and biguanide are incomparable.
The proof obligation is then as follows:

2(∀T :Good≤(T, Patient) → T ≤ Patient[‘treatment’])

whereGood≤(T, Patient) denotes thatT is a treatment according
to good practice medicine forPatient, as defined in [24]. To prove
this, the following axiom was added to the system:

2Patient[‘QI’ ] = Patient′′[‘QI’ ]

i.e., the Quetelet index does not change during the run of theprotocol.
This axiom is needed, because the decision of prescribing a treatment
is not exactly at the same time as the application of the treatment and
therefore the decision of prescribing this treatment couldbe based on
a patient with a different Quetelet index than the patient that actually
takes the drugs.

Proving this property in KIV was done in approximately 1 day us-
ing several heuristics for the straightforward parts. The theorem was
proven using two lemmas for two specific patient groups. In total, it
took approximately 500 steps, of which nearly 90% were done auto-
matically, to verify this property.

8.4 Order of treatments

Finally, another instance of (M3) was proven. This propertyphrases
that the order of any two treatments in the protocol is consistent with
the order relation as we have defined in Subsection 6.3. In other
words, in case a patient may receive multiple treatments, the less
radical treatments are tried first. The formalisation of theproperty in
KIV was done as follows:

2∀T (T ick ∧ T = Patient[‘treatment’]
→ 2(last ∨ (T ick→ ¬(T ≤ Patient[‘treatment’]))))

At each time, the current treatment is bound to a static variable (i.e.,
unchanged by symbolic execution)T , which can be used to compare
against subsequent steps in the protocol. For any future steps, we re-
quire that either the protocol completes (last holds) or that activated
treatments are not more preferred thanT . The additional ‘Tick’ vari-
able is needed in the formalisation to abstract from technical system
steps.

This property also had a high degree of automation with roughly
800 steps in total. The reason for this slightly higher number of steps
is due to nested temporal operators.

9 Discussion

As the interest in medical guidelines continues to grow, there is a
need for criteria to asses the quality of medical guidelines. An impor-
tant method for the appraisal of medical guidelines was introduced
by the AGREE collaboration [9]. A solid foundation for the applica-
tion of formal methodsto the quality checking of medical guidelines,
using simulation of the guideline [15, 31] and theorem proving tech-
niques [25], can also be found in literature.

In [25], logical methods have been used to analyse properties of
guidelines, formalised as task networks. In [24], it was shown that
the theory of abductive diagnosis can be taken as a foundation for
the formalisation of quality requirements of a medical guideline in

temporal logic. This result has been used to verify quality require-
ments of good practice medicine of treatments [21]. However, in the
latter work, the order between treatment depending on the condition
of the patient and previous treatments was ignored. In this paper, we
consider elements from both approaches by including medical back-
ground knowledge in the verification of complete networks oftasks.
This required a major change to the previous work with respect to the
formulation of quality criteria, because quality is now defined with
respect to a complete network of tasks instead of individualtreat-
ments as presented in [24].

Compared to previous work concerning the verification of net-
works of tasks, the meta-level approach we have presented here
has a number of advantages. In the meta-level approach, quality is
defined independently of domain specific knowledge, and, conse-
quently, proof obligations do not have to be extracted from exter-
nal sources. One successful attempt of the latter was reported in
[18], where quality criteria are formalised on the basis of instru-
ments to monitor the quality of care in practice, i.e., medical in-
dicators. Firstly, the question is whether these indicators, based on
compliance with medical guidelines, coincide with the quality of
the guideline itself. Secondly, it has been our experience that it is
far from easy to find suitable properties in external sources, because
these sources may not be completely applicable, e.g., typically, other
guidelines may address different problem in the managementof the
same disease. Thirdly, many useful quality criteria of guidelines are
implicit, making this approach fundamentally limiting. Inthis sense,
the meta-level approach provides a more systematic method for the
formulation of proof obligations and, thus, verification ofmedical
guidelines.

In summary, in this study we have setup a general framework for
the verification of medical guidelines, consisting of a medical guide-
line, medical background knowledge, and quality requirements. A
model for the background knowledge of glucose level controlin dia-
betes mellitus type 2 patients was developed based on a general tem-
poral logic formalisation of (patho)physiological mechanisms and
treatment information. Furthermore, we developed a theoryfor qual-
ity requirements of good practice medicine based on the theory of
abductive diagnosis. This model of background knowledge and the-
ory of quality requirements were then used in a case study in which
we verified several quality criteria of the diabetes mellitus type 2
guideline used by the Dutch general practitioners. In the case study
we use Asbru to model the guideline as a network of tasks and KIV
for the formal verification.

In the course of our study we have shown that the general frame-
work that we have setup for the formal verification of medicalguide-
lines with medical background knowledge is feasible and that the
actual verification of the proposed quality criteria can be done with a
high degree of automation. We believe both the inclusion of medical
background knowledge and task networks to be necessary elements
for adequately supporting the development and management of med-
ical guidelines.

10 Comparison with other formal verification
techniques

Formal methods: Verification using symbolic calculation can
be mechanised using the methods of several types of reasoning,
such as model checking, constraint solving, theorem proving, etc.
Figure 12 shows a range of formal methods ranging from cheap
to incomplete to very expensive and complete (loosely basedon
a picture by Rushby). The work that is presented in this paperis



of the latter kind, which has certain advantages, e.g., it provides
insight in the proof structure. For each case, it is relatively easy
to inspect the proof tree and to find out the reason why a certain
quality criterion holds. On the other hand, KIV is a tool witha very
expressive logic, which may result in an additional overhead when
verifying quality criteria of medical guidelines. Thus, itmakes sense
to look at cheaper methods for verification of medical guidelines.
This is particularly important when guidelines are rapidlyupdated,
where fully automated formal methods are most realistic. Below,
work on model checking and automated theorem proving of medical
guidelines is briefly discussed.

invisible
formal
methods

model
checking

ASSURANCE

EFFORT

theorem proving
interactive

automated
theorem proving

Figure 12. A spectrum of formal methods for formal verification allowing
a tradeoff in the properties one can verify (assurance dimension) against the
effort one needs to invest to obtain results (effort dimension).

Model checking: Model checking is an effective technique for veri-
fying properties of a formal system. In model checking, a specifica-
tion about a model, which is usually some form of transition system,
is expressed as (temporal) logic formulas, and efficient algorithms
traverse the states of the system to verify whether the specification
holds or not. Extremely large state-spaces can be traversedin a short
amount of time. The first model checkers verified the correctness of
discrete state systems, but have been extended to also deal with real-
time and probabilistic reasoning.

In the Protocure project, a mapping has been developed for auto-
matically transforming guidelines in the Asbru language into SMV
for model checking purposes [7]. As the mapping is made into SMV,
this transformation abstracts from the notion of time. Hence, not ev-
ery property can be verified using SMV [26]. Model checking has
been found to be very useful when constructing the Asbru model.
[12] defines a number of structural properties which should be ful-
filled by a good quality Asbru model. By model checking these struc-
tural properties of the Asbru model, one can quickly check the model
during development. Hence, model checking provides a good trade-
off between effort and assurance for these kind of properties, how-
ever, the framework as specified in [7] is unable to deal with more
complex properties that deal for example with time.

In another study [19], model checking has been used to check the
conformance of medical guidelines with medical protocols,which
are local adaptations by hospitals of medical guidelines. Adifferent
view towards medical guidelines was followed in [19] compared to
the program-like view presented in the current paper. As medical
guidelines often omit many details, e.g., common sense reasoning
about first informing a patient before treatment, guidelines are often

under-constrained. In [19] a constraint-based approach isused for
model checking the conformance of medical protocols. Additional
background knowledge can be incorporated in the model checking
approach by using modular model checking [22]. This allows one
to verify a property with respect to a restricted part of the model.
For example, one can restrict the model to those states that adhere
to common sense medical practice, such as the fact that diagnosis
usually occurs before treatment of the patient.

Automated theorem proving: Previously, it was shown that for rea-
soning about models of medical knowledge, for example in thecon-
text of medical expert systems [23], classical automated reasoning
techniques (e.g., [33, 46]) are a practical option. In [20],we studied
the use of automatic theorem proving techniques for qualitychecking
medical guidelines. In this context, reasoning about Asbruplans is
not feasible, however, simple treatment plans can be encoded directly
in temporal logic. Translation of temporal logic yields a restricted
first-order theory, e.g., the temporal formulaGp can be interpreted
as by∀t′ : (t ≤ t′ → p). Such a formalisation is suitable for use in
standard resolution-based theorem provers. Note that in practice, this
is not a fully automated process, as the theorem prover needsto be
guided in the use of (resolution-)strategies and sometimesit is help-
ful to define lemmas. Nonetheless, automated theorem provers re-
quire less interaction than interactive theorem provers. Furthermore,
it is possible to add background knowledge to the system, whereas,
adding background knowledge to a transition system will generally
result in a state explosion making model checking infeasible.
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Appendix A - Specification of Asbru in KIV

This appendix gives a bit more details about the specification of and
reasoning about Asbru plans in KIV. More details about the represen-
tation is described in Protocure deliverables [38, 39] and the technical
report [36].

The syntax of Asbru is defined with several algebraic specifica-
tions in KIV. Figure 13 gives an overview of the specifications and
their dependency structure. The specifications with a box ‘CUT’ at-
tached belong to the library specifications included in KIV and are
not shown in detail. We discuss only some of the more important
design choices in more detail below.

The ‘asbru-clock-basic’ specification defines the data type‘asbru-
clock’, which is a two-component counter, with the first component
being either an integer or infinity, and the second componentbeing a
natural number. The first counter of the clock counts the timesteps
the system has gone through, i.e., the macro-steps (cf. Section 7.2).
An integer is used as the absolute number is unimportant. This allows
lemmas to be inserted at different time points without the difficulty
with natural numbers that there exists some zero time point such that
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asbru−def−basic

plan−type

plan−type−basic

asbru−abstracted
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abstract−condition

condition

condition−basic
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patient−data−history

variables−basic
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abstract−time−annotation−basic

time−annotationgdata−value

data−value time−annotation−basic

interval

abstract−asbru−clock
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Figure 13. Definition of syntax of Asbru plans.



one cannot go back infinitely back in time. The second counteris a
micro-step counter.

The ‘asbru-clock’ enriches the asbru clock, which adds function-
ality for moving back and forward in time. As micro-steps aretech-
nical steps that do not represent real time steps they are notrelated to
concepts such as ‘earlier’ or ‘later’. It is therefore not possible to ad-
dress individual micro-steps, but only to a list of states that has been
reached in between two macro-steps.

The ‘interval-basic’ creates a rudimentary time-intervalusing a
pair of asbru-clocks.

The ‘ostore-sync’ specification adds the specification of the pred-
icate ‘sync’. This is needed to come around difficulties withconcur-
rent access to data types within synchronous parallel execution. In
general synchronous write access from more than one processto one
variable is seen as a clash and the result of such a clash can bede-
fined in a number of ways. For example, the result can be (1) chosen
from the result of one of the processes, (2) arbitrary, (3) the results of
both processes (e.g., when they access different fields in anarray), or
(4) an inconsistency leading to an abort of the program. The ‘sync’
predicate postpones the decision how to react to clashes andallows
it to be specified on the case study level.

The ‘history’ specification is a generic specification with the type
of the included dynamic function left undefined. This allowsone to
define generic simplification rules and reuse them for multiple spec-
ifications. In the Asbru specification the history constructis used for
the variable history, the Asbru state history, and the patient data his-
tory. The selectors in the history are basically time points, but inter-
vals have also been added to increase modularisation.

The most important data structures within the specificationof As-
bru are the ‘asbru state’, ‘patient data’, and ‘patient’. The ‘asbru
state’ stores all configurations of Asbru plans, i.e., theircurrent state
according to the semantics of the state-chart (cf. Figure 3). The ‘pa-
tient data’ stores all the known values about the patient. Note, that
there is a difference between the ‘patient’ data structure and ‘patient
data’ data structure, as the former contains information about theac-
tual conditionof the patient, while the latter represents theknowl-
edgethe medical staff has about the patient. The knowledge may be
outdated as the values in the patient may have changed.

The plan states known by Asbru are defined in the specification
‘plan-state-basic’, which is enriched by ‘plan-state’ to included ad-
ditional concepts to summarise some of the plan states, e.g., ‘termi-
nated’ summarises the states ‘completed’, ‘rejected’, and‘aborted’.
The synchronisation between plans is specified in ‘plan-com’, which
gathers the signals that may be sent from a super-plan to its respec-

asbru-def = mk-asbru-def
(. .filter : asbru-condition;
. .setup : asbru-condition;
. .suspend : asbru-condition;
. .reactivate : asbru-condition;
. .complete : asbru-condition;
. .abort : asbru-condition;
. .type : plan-type;
. .retry : bool;
. .subplans : string-list;
. .wait-for : wait-for;
. .opt-wf : bool;

);

Figure 14. Syntax of Asbru plans using ‘mk-asbru-def’.

tive sub-plans. The signals are represented in internal variables to
shield them from the environment which simplifies the sequents and
their proofs as environmental non-interference does not have to be
specified separately.

The interface to the Asbru specification is an algebraic type‘asbru-
def’ in KIV, which simply defines a structure of the form in Fig-
ure 14. Each Asbru plan is transformed into KIV using the algebraic
function ‘mk-asbru-def’ by filling in the values used by the Asbru
plan for its parameters.

Appendix B - Symbolic execution of Asbru

This appendix gives a bit more details about reasoning aboutAsbru
plans in KIV. More details about the symbolic execution is described
in the Protocure deliverable [35] and technical report [36].

The proof method in KIV is based on a sequent calculus with rules
of the form:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
name.

Rules are applied bottom-up. Rulenamerefines a given conclusion
Γ ⊢ ∆ with n premissesΓi ⊢ ∆i. Furthermore, KIV uses rewrite
rules to rewrite sub-formulas, which are of the form

name : φ↔ ψ,

to replace a formulaφ by an equivalent formulaφ anywhere within
a given sequent.

The idea of symbolic execution of arbitrary temporal formulas
(e.g., Asbru plans) is to normalise the temporal formulas tothe form
τ ∧ ◦φ, which separates the possible first transitions from the tem-
poral formulas describing the system in the next state. The general
pattern of the normal form is given by

τ0 ∧ last∨
_ n

i=1

(∃Xi.τi ∧ ◦φi),

withXi static variables occurring both in transitionτi and systemφi
to capture the link between these formulas. The operatorlast is in-
cluded as the system may also terminate. The rules in KIV to rewrite
arbitrary temporal formulas to normal form are described in[1].

After normalisation, the sequent can be rewritten using therules
dis l andex l to eliminate disjunction and quantification.

φ,Γ ⊢ ∆ ψ,Γ ⊢ ∆

φ ∨ ψ,Γ ⊢ ∆
dis l

φ[X0/X ],Γ ⊢ ∆

∃X.φ,Γ ⊢ ∆
ex l

whereX0 is a fresh static variable with respect to the variables in
free(φ)\{X}∪free(Γ,∆). For the remaining premises

τ0 ∧ last⊢ τi ∧ ◦φi ⊢

the two ruleslst andstpcan be applied

τ [X,X,X/A,A′,A′′ ] ⊢

τ, last ⊢
lst

τ [X1,X2,A/A,A′,A′′ ], φ

τ, ◦φ ⊢
stp

whereX,X1,X2 are fresh with respect to free(τ, φ). Note that rule
lst deals with the situation when execution terminates and all free
dynamic variablesA - no matter if they are unprimed, primed, or
double primed - are replaced by fresh static variableX. The result is
a formula in pure predicate logic with static variables only, which can
be proven with standard first-order reasoning. The rulestpadvances
the trace one step. The values of the dynamic variablesA andA′ in
the old state are stored in fresh static variablesx1 andX2. Double
primed variables are unprimed variables in the next state. Finally, the
leading next operators are discarded and the proof method continues
with the execution ofφi.



Table 2. Notation

Temporal Logic Operators and Statements(Sections 5 and 6)
2 ϕ,3 ϕ, ◦ ϕ, • ϕ, last See Table 1
B Background knowledge
T Treatment
P Patient group
N Medical intentions
M Medical guideline
Drug(x) Holds if and only if drugx is administered at that point in time
SU Sulfonylurea drug
BG Biguanide drug
QI Quetelet index
T �ϕ T

′ TreatmentT ′ is at least as preferred as treatmentT
Goodϕ(T, P ), Goodϕ(M,P ) TreatmentT , respectively, medical guidelineM , is in accordance with good practice medicine for

patientP and criteriaϕ

Asbru (Sections 4 and 6.2)
considered, possible, activated, suspended, aborted, completed Plan states
filter, setup, complete, abort Conditions controlling execution
consider, activate Synchronizing signals

Specification in KIV (Sections 7 and 8)
vs, vd A static, respectively, dynamic variable, which has a constant, respectively changing, interpretation on each time

point
v′d, v′′d v′d is the value ofvd after a system transition,v′′d is the value ofv′d after the environment transition, i.e., the value

of vd in the next state
Knowledge(pre, post) For patient data structurespre andpost, with pre denoting the current state andpostthe next state of the patient,

the predicate Knowledge defines the relation that must hold betweenpre andpost
s[v] The value of variablev in algebraic sequences
s[v, c] Algebraic sequences, wherev is updated with valuec
AS The internal state of the Asbru program
Tick A macro-step in the asbru execution

Appendix C - Notation

Table 2 provides a summary of the notation used in this paper.


