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Abstract. We present an EM-algorithm for the problem of learning user
preferences with Gaussian processes in the context of multi-task learning.
We validate our approach on an audiological data set and show that pre-
dictive results for sound quality perception of normal hearing and hearing-
impaired subjects, in the context of pairwise comparison experiments, can
be improved using the hierarchical model.

1 Introduction

Learning user preferences appears in many contexts. Consider, for example, the
case in which the parameters of a medical device such as a hearing aid have to be
tuned such as to adapt them optimally to a user’s preferences. Typically, pref-
erences are learned from the user by repeatedly asking questions, for example,
doing listening experiments in the case of hearing aid fitting. A major obstacle,
however, is that obtaining new observations is often a time consuming process
and a burden on the subject participating.

One approach to this problem is to not consider the parameter estimation for
one subject, but for multiple subjects for similar tasks such that different subjects
can regularize each other by assuming that model parameters are drawn from a
common hyperprior [1, 2]. Using responses from other subjects effectively leads
to an informed prior such that less observations are needed to obtain a good
indication of the user’s preferences.

In this paper, we extend earlier work on multi-task regression with Gaus-
sian processes [3] to the case of multi-task learning of users’ preferences. We
demonstrate the usefulness of our model on an audiological data set collected by
Arehart et. al. [4]. We show that the process of learning users’ preferences can
be significantly improved by using a hierarchical non-parametric model based on
Gaussian processes.

The rest of this paper is organized as follows. Section 2 describes the prob-
abalistic choice model used for preference learning. Section 3 introduces the
Gaussian process framework we use for representing utility functions. Section 4
introduces the hierarchical extension of our Bayesian framework and describes
the Expectation Maximization algorithm for learning a hierarchical prior. Sec-
tion 5 reports experimental results with the hierarchical model for learning user
preferences in the context of listening experiments. Section 6 presents our con-
clusions and directions for future work.
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2 Probabilistic Choice Models

Let X = {x1, . . . ,xN} be a set of N distinct inputs with xi ∈ Rd, i.e., every
input is represented by some features. Let Dj be a set of N j observed preference
comparisons over instances in X, corresponding to subject j,

Dj = {(xi1, . . . ,xiK , k) | 1 ≤ i ≤ N j ,xi· ∈ X, k ∈ {1, . . . ,K}}

where k means that alternative xik is preferred from the K inputs presented to
subject j.

A standard modeling assumption [5, 6] is that the subject’s decision in such
type of forced-choice comparisons follows a probabilistic model defined as follows

P (k;xi1, . . . ,xiK ,θj) =
exp

[
U(xik,θj)

]
Z(θj)

, (1)

with Z a normalization constant

Z(θj) ≡
K∑

k=1

exp
[
U(xik,θj)

]
.

θj is a vector of parameters specific to subject j, and U(xik,θj) represents a
utility function capturing the preference of subject j for option k. Equation (1)
gives the probability that subject j prefers alternative k when given the inputs:
xi1, . . . ,xiK . In this study, we restrict the model to pairwise-comparisons, i.e.,
K = 2, which is also known in the literature as the Bradley-Terry model [7].

3 Gaussian Processes

The probabilistic choice model used for learning preferences, defined above, can
be reformulated in terms of Gaussian processes (GPs) [8]. The GP formalism
allows for nonlinear utility functions and is nonparametric.

We define a GP over the utility function for subject j, by assuming that the
utility values are drawn from a multivariate Gaussian distribution, i.e.,

{U j(x1), . . . , U j(xN )} ∼ N (µU ,K) .

The covariance matrix K can be specified by a symmetric positive definite kernel
function κ by setting Kij = κ(xi,xj). Examples for κ are the linear kernel and
the Gaussian kernel defined as

κLinear(x,y) =
d∑

i=1

xiyi ,

κGauss(x,y) = exp[− `

2

d∑
i=1

(xi − yi)2] ,

where ` is a length-scale parameter.
A similar approach using GPs for learning preferences is introduced in [9].



4 Multi-Task Gaussian Processes

4.1 General Formulation

In many scenarios, data used for learning preferences is available from a group
of subjects. In order to optimize the process of learning the utility function for
a new subject, we make use of the data available from the other subjects for
which the preferences were already learned. To implement this idea, we consider
the estimation of M related functions U j , j = 1, . . . ,M for M different subjects,
using a hierarchical Bayesian model, allowing individual models to interact and
regularize each other.

Following [3], we assume that in the multi-task setting, the prior P (µU ,K)
over the utility functions is the same for each subject, and it is drawn from a
normal-inverse-Wishart distribution

P (µU ,K) = N (µ|0,
1
π

K)IW(K|τ,κ) , (2)

with κ the so-called base kernel. Possible choices for κ are the Gaussian kernel
κGauss or the linear kernel κLinear defined above.

4.2 Alternative Formulation

Inspired by the approach of [3], we derive an equivalent representation for the
multi-task GPs. In this representation, for each subject j we have a vector of
parameters αj (with dimension equal to N , the number of distinct input points),
which captures in a compact form the information collected from the data set
related to subject j. An inductive utility function U j , for subject j can be defined
for an unseen input x as follows:

U j(x) =
N∑

i=1

αj
i κ(x,xi) = U(x,αj) ,

where xi ∈ X and κ is the base kernel defined above.1 The dual representation
is a consequence of the representer theorem [8].

It follows from Equation (2) that the vectors of parameters αj are sampled
from a hierarchical prior distribution. In order to learn this prior, we couple the
inference tasks of all the subjects. We set P (αj) = N (αj |µα,C) a Gaussian
prior with the same µα and C for every subject j, where µα and C are sampled
once from a normal-inverse-Wishart distribution (with scale matrix κ−1)

P (µα,C) = N (µα|0,
1
π

C)IW(C|τ,κ−1) .

The posterior distribution over αj , that results from the hierarchical prior and
all the data available from subject j, is assumed to be close to a Gaussian,

1Note that we use this representation of the utility function in the probabilistic choice model
defined in Equation (1).



N (αj |α̂j , Ĉαj ). There are several alternatives to approximate the posterior
distribution to a Gaussian: deterministic methods for approximate inference
(e.g., Laplace’s method [10], Expectation propagation [11]) or methods based on
sampling.

EM algorithm

The hierarchical prior is obtained by maximizing the penalized loglikelihood of all
data. This optimization is performed by applying the Expectation Maximization
algorithm [1, 3], which reduces in our case to the iteration, until convergence, of
the following two steps.

E-step: For each subject j, estimate the statistics (mean α̂j and covariance
matrix Ĉαj ) of the posterior distribution over αj , given the current esti-
mates, µα and C, of the hierarchical prior.

M-step: Re-estimate the parameters of the hierarchical prior:

µα =
1

π + M

M∑
j=1

α̂j

C =
1

τ + M

πµαµT
α + κ−1 +

M∑
j=1

Ĉαj +
M∑

j=1

(α̂j − µα)(α̂j − µα)T

 .

5 Experiments

We validate our approach of hierarchical preference learning on an audiological
data set containing listening experiments, described in [4]. The data set consists
of 576 pairwise comparisons per subject for 14 normal-hearing and 18 hearing-
impaired subjects. Each listening experiment is of the form (x1,x2, k), where
k = {1, 2} denotes whether sound sample x1 or x2 was preferred by the subject,
respectively.

We used this data set in order to test empirically whether, in the context of
learning preferences in the GP framework, the preferences of a new subject can
be learned faster, by using the data available from a group of subjects for which
the preferences were already learned. We compared the performances obtained
using the hierarchical prior versus a flat prior which assumes no information
about subject’s preferences. In a simulation, the jth subject was left out, and
the EM algorithm described in the previous section was used to gather data from
the rest of the subjects in a probability distribution over αj , which was used as
the starting prior for the left-out subject. The data set for the left-out subject,
was split into training (used for learning preferences) and testing (the accuracy
of the predictions on the test data was used as a measure of how much we learned
about subject’s preferences). For each subject, we averaged the results using 10-
fold cross-validation. Furthermore, the results were averaged within each group
of subjects, i.e., normal-hearing and hearing-impaired subjects.
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Fig. 1: Left: percentage of the number of times the prediction accuracy using
the learned prior is better than the prediction accuracy with a flat prior. Right:
percentage of the number of predictions on which the two models (with the
learned and with a flat prior) disagree. For the Gaussian kernel we set ` = 1;
the results are rather insensitive to the specific choice for this parameter. Top
and bottom rows refer to experiments on the data set from normal-hearing and
hearing-impaired subjects, respectively.

We made predictions for the outcomes of the experiments from the test data,
using a model which resulted either by starting with a flat prior which assumes
no information, or a model which uses the hierarchical prior as the starting
prior for αj . The plots on the right-hand side of Figure 1, give the percentage
of predictions on which the two models (the one with the hierarchical and the
one with the flat prior) disagree, with respect to the total number of predictions
made; the dashed line refers to a GP with a linear kernel, the dotted line to a
GP with a Gaussian kernel. The plots on the left-hand side of Figure 1, show the
percentage of correct predictions made using the hierarchical prior, with respect
to the number of predictions on which the two models disagree. Especially in



the beginning of the learning process, with few experiments, the model with a
prior learned from the community of other subjects significantly outperforms the
model with a flat prior.

6 Conclusions and Future Work

We have introduced a hierarchical modelling approach for learning related func-
tions of multiple subjects performing similar tasks using Gaussian processes. A
hierarchical prior was used from which model parameters were sampled in order
to enforce a similar structure for the utility functions of each individual subject.

We are interested in further improvements of the model. Particularly, we
plan to investigate how to select, in an active way, the most informative experi-
ments in order to learn users’ preferences. Furthermore, it might be interesting
to automatically cluster, beforehand, the subjects into groups with similar be-
haviour; as in the current study we manually clustered the data set into two sets
of normal-hearing and hearing-impaired subjects.

References

[1] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis, Second
Edition. Chapman & Hall/CRC, July 2003.

[2] B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning.
Journal of Machine Learning Research, 4:83–99, 2003.

[3] K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian Processes from Multiple Tasks.
In Proceedings of the 22nd International Conference on Machine Learning, 2005.

[4] K.H. Arehart, J.M. Kates, C.A. Anderson, and L.O. Harvey Jr. Effects of noise and
distortion on speech quality judgments in normal-hearing and hearing-impaired listeners.
J. Acoust. Soc. Am., 122(2):1150–1164, August 2007.

[5] M. Glickman and S. Jensen. Adaptive paired comparison design. Journal of Statistical
Planning and Inference, 127:279–293, 2005.

[6] B. Kanninen. Optimal design for multinomial choice experiments. Journal of Marketing
Research, 39:307–317, 2002.

[7] R.A. Bradley and M.E. Terry. Rank analysis of incomplete block designs: I, the method
of paired comparisons. Biometrika, 1952.

[8] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

[9] W. Chu and Z. Ghahramani. Preference Learning with Gaussian Processes. In Proceedings
of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005.

[10] D.J.C. Mackay. Information Theory, Inference & Learning Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 2002.

[11] T. P. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis,
M.I.T., 2001.


