
Bayesian Monte Carlo for the Global
Optimization of Expensive Functions1

Perry Groot Adriana Birlutiu Tom Heskes

Radboud University Nijmegen, Institute for Computing and Information Sciences,
Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

Abstract

In the last decades enormous advances have been made possible for modelling complex (physical) systems
by mathematical equations and computer algorithms. To deal with very long running times of such mod-
els a promising approach has been to replace them by stochastic approximations based on a few model
evaluations. In this paper we focus on the often occuring case that the system modelled has two types of
inputs x = (xc, xe) with xc representing control variables and xe representing environmental variables.
Typically, xc needs to be optimised, whereas xe are uncontrollable but are assumed to adhere to some dis-
tribution. In this paper we use a Bayesian approach to address this problem: we specify a prior distribution
on the underlying function using a Gaussian process (GP) and use Bayesian Monte Carlo (BMC) to obtain
the objective function by integrating out environmental variables. We empirically evaluate several active
learning criteria that were developed for the deterministic case (i.e., no environmental variables) and show
that the ALC criterion appears significantly better than expected improvement and random selection.

1 Framework
Suppose we were to introduce a new cake mix into the consumer market that we like to be robust against
inaccurate settings of oven temperature (T ) and baking time (t). We would like to design experiments
varying the control variables – the amount of flour (F ), the amount of sugar (S), and the amount of egg
powder (E) – and environmental variables (oven temperature and baking time) to see if we could create a
cake mix that is better with respect to the environmental variables than the standard recipe so far produced
by the product development laboratory.

We can represent this case study as having control variables xc = {F, S,E}, environmental variables
xe = {T, t}, and as objective function `(xc) the user rating of the cake mix. We focus on optimising the
objective function `(xc) with each output value the mean over the distribution of environmental variables.
Formally x∗

c = argmaxxc
`(xc) = argmaxxc

∫
xe
f(xc,xe)p(xe) dxe. When f is expensive to evaluate,

i.e., baking a cake, this means we can only obtain a small number of function evaluations leading to un-
certainty about f and determining ` can be considered an inference problem. We address this problem by
modelling f with a GP which places a prior distribution on f . We then use BMC, a Bayesian approach for
evaluating integrals, to integrate out the environmental variables resulting in a stochastic approximation L of
the objective function `. Often L is hard to evaluate, but in some cases like the common case of a Gaussian
kernel for modelling f and a Gaussian measure for p(xe), the approximation L can be expressed in terms
of analytical expressions. Technical details can be found in the full paper. The goal, however, is to find the
value x∗

c such that `(x∗
c) is maximised. The idea is to request more information about the true objective

function ` (through f ) in strategically chosen inputs, update our stochastic approximation L, and use the re-
sulting model to make a prediction: x̃∗

c = argmaxxc
L(xc|Dn) = argmaxxc

∫
xe
f(xc,xe|Dn)p(xe) dxe

with L the mean of L and Dn = {((xc,xe)i, f((xc,xe)i)}ni=1 the n function evaluations collected so far.
There are two key aspects that distinguish our problem formulation with previous work. First, we do

not optimise f , but the average that f takes over a distribution of the environmental variables. Second,
our objective function L is a collection of stochastic variables which is only observed indirectly through
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f(xc,xe) whereas previous work almost exclusively focusses on optimising a deterministic function h that
is directly observed through observations h(x).

We investigated several active learning criteria applicable to our problem formulation. The (generalised)
Expected Improvement (EIg) with non-negative parameter g (standard g = 1), which selects the point with
the best expected improvement with respect to the current best value found so far; the ALM method selects
the point with the highest variance; the ALC method selects the point with the highest model change (i.e.,
total variance reduction over a set of reference points); a Latin Hypercube Design (LHD) chooses a design
of n points {x1, . . .xn} beforehand such that for each dimension j all xij are distinct.

2 Experiments
We used DIRECT as global optimiser and the maximum value of the corresponding objective function `
was found to be 5.5330 and was obtained at x∗

c = (F ∗, S∗, E∗) = (1.1852,−0.7407, 1.1084), implying an
improved cake mix by using a higher amount of flour, a lower amount of sugar, and a higher amount of egg
powder than the standard recipe set at (0, 0, 0).

The goal of the various active learning criteria is to find the value x∗
c that maximises ` as quickly as

possible using properties of the stochastic approximation L. Therefore, let x̃∗
c be the value that maximises L

the current mean GP estimate of `. We take as error measure ε the distance between the true maximum value
and the true value at the predicted location x̃∗

c , i.e., ε = |maxxc `(xc)−`(x̃∗
c)|with x̃∗

c = argmaxxc
L(xc).

The results are shown in Figure 1 in which we plot the error measure and the standard deviation of the
mean over 50 runs. Clearly, the ALM method performs worse than random sampling. The LHD approach
performs better than ALM, but its performance is initially very similar to random sampling and after about
25 samples it is even outperformed by random sampling. Although LHDs are typically used as initialisation
method in the literature these results suggest that an LHD is unnecessary and may lead to worse performance.
Similar results for LHDs and deterministic functions have also been reported in the literature. The ALC
criterion performs very well on the cake mix study. The downside, however, is that ALC is computationally
more challenging and tries to optimise the global model fit, but not specifically the predicted maximum of
the objective function. We also combined criteria to first obtain an x̂c which was then kept fixed in a second
criterion to obtain a pair (x̂c, x̂e) for further evaluation. We investigated the combination of ALC-ALC and
EI-ALC. The ALC-ALC criterion is a bit worse than the ALC criterion, but performs quite well. It has the
advantage that optimisation in a high dimensional space of both control and environmental variables can
be split into two sequential optimisation steps in two lower dimensional spaces. The generalised expected
improvement criterion has originally been developed for deterministic functions and has been the method
of choice for surrogate modelling and optimisation. These results, however, show that the criterion cannot
easily be augmented to be used for the optimisation of functions that are dependent on both control variables
and environmental variables.
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Figure 1: For each active learning criterion we computed a sequence of samples and observations to be
added. At each step we computed the distance between the true maximum value and the value at the location
where we predict the maximum value to be. We computed the mean performance and standard deviation of
the mean over 50 runs. The bottom right subfigure in both panels superimposes the means.


