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Predicting Preference Judgments of Individual
Normal and Hearing-Impaired Listeners With

Gaussian Processes
Perry Groot, Tom Heskes, Tjeerd M.H. Dijkstra, and James M. Kates

Abstract—A probabilistic kernel approach to pairwise prefer-
ence learning based on Gaussian processes is applied to predict
preference judgments for sound quality degradation mechanisms
that might be present in a hearing aid. Subjective sound quality
comparisons for 14 normal-hearing and 18 hearing-impaired
subjects were used for evaluating the predictive performance.
Stimuli were sentences subjected to three kinds of distortion
(additive noise, peak clipping, and center clipping) with eight
levels of degradation for each distortion type. The kernel ap-
proach gives a significant improvement in preference predictions
of hearing-impaired subjects by individualizing the learning
process. A significant difference is shown between normal-hearing
and hearing-impaired subjects, because of nonlinearities in the
perception of hearing-impaired subjects. In particular, hearing-
impaired subjects have significant nonlinear preference judg-
ments when making pairwise comparisons between peak clipped
sentences with different clipping thresholds. The probabilistic
kernel approach is shown to be robust when generalizing over
distortions and over subjects.

Index Terms—Bayes procedures, Gaussian process (GP), Pair-
wise comparisons, Subjective quality measures.

I. INTRODUCTION

A central issue in the development of hearing aids or
other communicating devices is the sound quality that

is perceived by their users. The perceived quality is affected
by noise present in the input signal as well as linear and
nonlinear distortions that result from signal processing within
the device itself. A number of methods have been developed in
the last decades for measuring the perception of sound quality,
including a multitone test signal with logarithmically spaced
components [1], [2], vowel sounds [3], comb-filtered noise
[4], psycho-acoustic and cognitive models combined with a
time alignment algorithm [5], [6], audiory perception models
[7], and coherence based methods [8], [9]. Tan and Moore [10]
wrote several papers on the topic focusing on linear distortion,
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nonlinear distortion, and their combination. Although some
of these models have been developed using normal-hearing
subjects only, prediction of sound quality perception was also
found to be reasonable for hearing-impaired subjects, but some
systematic errors remained [9] and some model extensions
have been surprisingly ineffective possibly because of random
variability in the judgments of subjects [10].

Arehart et al. [9] collected pairwise comparisons of 14
normal-hearing and 18 hearing-impaired subjects for several
sound distortions (additive noise, peak clipping, and center
clipping). They analyzed their data by (1) pooling responses
over all normal-hearing listeners and second stimulus presenta-
tions, which resulted in a preference probability (0 ≤ p ≤ 1)
for each of the 24 distortions (3 types and 8 levels each);
(2) by regressing the preference probability on a three-level
coherence based speech intelligibility index (CSII) measure,
they obtained three regression coefficients (plus constant);
(3) with a log-sigmoid function they transformed the fitted
regression model into a quality metric termed Q3.

The aim of this article is to develop a principled modeling
approach that can reproduce or predict with a maximum
accuracy the observed preference judgments of an individual
listener. Towards this end, we extend the analysis of Arehart
et al. [9] by (1) fitting a model to individual listeners; (2)
directly fitting the binary response data; (3) using a flexible
nonparametric regression model based on Gaussian processes
[11]; (4) devising model-independent measures for response
bias and consistency. We model preferences with Gaussian
processes because these can implement nonparametric nonlin-
ear functions. This allows us to find evidence for nonlinear
behaviour without assuming a specific form of nonlinearity.
In [12], nonlinear and nonparametric techniques are shown to
provide higher correlations with subjective speech quality and
speech/noise distortions than conventional measures.

The contribution of this article is a significant improvement
in the predictive performance for hearing-impaired individuals.
Reasons for this improvement include (1) the use of individual
preferences; (2) taking into account a response bias and incon-
sistencies in user preferences; (3) allowing for nonlinearities
in the preference judgments of hearing-impaired subjects (i.e.,
preference judgments are modeled using nonlinear functions).
As no such improvements could be made for normal-hearing
subjects, this also demonstrates significant differences between
the groups of normal-hearing and hearing-impaired subjects.
We show that the methodology proposed is robust when
generalizing over distortions and over subjects. We believe
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to be the first to develop a robust individualized sound quality
model.

A. The structure of this article

The next three sections describes the techniques used.
Section II describes Bayesian probability theory for plausible
reasoning. Section III introduces the concept of Gaussian
processes. Readers familiar with Bayesian probability theory
and Gaussian processes may skip these sections. Section IV
describes the Bayesian framework for preference learning with
Gaussian processes from pairwise listening experiments. Sec-
tion V describes empirical results obtained with our framework
applied to data collected by Arehart et al. [9]. Section VI gives
conclusions.

II. BAYESIAN PROBABILITY THEORY

In this section we briefly introduce notation and imple-
mentation issues related to Bayesian inference [13]. For a
tutorial application of Bayesian theory to hearing aid fitting
see Dijkstra et al. [14]. Bayes’ theorem gives rules for how
probabilities can be manipulated:

p(M|D,H) =
p(D|M,H)p(M|H)

p(D|H)
(Bayes’ rule) (1)

Here, H,D,M are propositions, where H can be interpreted
as a hypothesis, D as the observed data, andM a model. The
evidence is computed by integrating over all possible outcomes
for the model parameters M

p(D|H) =
∫
M
p(D|M,H)p(M|H) dM (2)

One of the central tasks in science is to develop and compare
hypotheses to account for observed data. Typically, these
hypotheses include free parameters (called hyperparameters),
representing, for example, some physical quantities. In a so-
called type II maximum likelihood approach we choose the
hyperparameters that maximize the evidence in Equation (2).
In practice, there are, however, only a few cases that can be
carried out analytically and one has to resort to approximation
techniques for computing this integral. In our research we have
used the Laplace method [15], [16], which approximates a
posterior distribution over model parameters as a Gaussian.
This is a reasonable choice when, as in our case, the posterior
distribution is obtained by multiplying a sigmoid function with
a Gaussian prior distribution [17], [18].

III. GAUSSIAN PROCESSES

Several good introductions to the topic of Gaussian pro-
cesses (GPs) are available [19], [20]. We denote vectors x
and matricesK with bold-face type and their components with
regular type, i.e., xi, Kij . With xT we denote the transpose
of the vector x. A GP is a collection of random variables,
any finite number of which have a joint Gaussian distribution.
A GP is completely specified by its mean function and kernel
function. In our case the random variables represent the values
of a function f(x) indexed by the set of sound samples X ,

where we represent a sound x as a N -dimensional vector of
real-valued features (x ∈ RN ).

A GP is in fact equivalent to a Bayesian interpretation of
linear regression. Let

f(x) = wTφ(x) =
N∑

n=1

wnφn(x) (3)

be a linear combination of basis functions φn(·) where w
is a weight vector. If the weight vector w is drawn from a
Gaussian distribution, this induces a probability distribution
over functions f(·) = wTφ(·). This distribution is a GP.
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Fig. 1. Space of four functions fa(x), fb(x), fc(x), and fd(x) together
with two data points (represented with +).

Consider, for example, the function space illustrated in
Fig. 1, which consists of four different curves fa(x), fb(x),
fc(x), and fd(x). If there is no reason a priori to prefer one
curve over another, then each curve has an a priori probability
of 1/4. On observing one data point (the left-most + in
Fig. 1), the likelihood (or data fit) is much higher for curves
fa, fc, and fd than for curve fb and their probability would be
updated correspondingly. After observing a second data point
(the right-most + in Fig. 1), only curve fd fits both data points
well, and thus the posterior probability will have most of its
mass concentrated on this curve.

We only consider GPs with a mean function equal to zero.
The kernel function k (also called (co)variance function) is
a function mapping two arguments into R that is symmetric,
i.e., k(x,x′) = k(x′,x), and positive definite, i.e., zTKz > 0
for all nonzero vectors z with real entries (zn ∈ R) and K as
defined below. Intuitively, the kernel function can be viewed
as a closeness or similarity measure between sounds x and x′

[21], [22]. If two sounds x,x′ are similar, the function values
f(x) and f(x′) should also be similar. The kernel function
can be used to construct a covariance matrix K with respect
to a set X = {x1, . . . ,xI} by defining Kpq = k(xp,xq). An
often used kernel is the Gaussian kernel:

kG(x,x′) = exp

(
− `

2

N∑
n=1

(xn − x′n)2
)

(4)

where ` ≥ 0 is a length-scale hyperparameter, specifying how
much the function can vary. A kernel function k leads to a
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multivariate Gaussian prior distribution on any finite subset
f ⊆ {f(xi)}xi∈X of function values

p(f) =
1

(2π)
N
2 |K| 12

exp
(
−1

2
fTK−1f

)
(5)

where Kpq = k(xp,xq).
Note that we represent a function—in principle infinite

dimensional—as a finite vector of function values on (a subset
of) the I distinct instances in X , i.e., f = [f(x1), . . . , f(xI)]T .
This can be done, because in the GP framework, predicting
function values is computationally only dependent on the
observed values, which are usually finite in number.

Furthermore, a GP is a nonparametric regression method.
This means that one does not have to specify the form of
the function f that one tries to model in advance giving
more flexibility than, for example, the work of Pourmand
et al. [23], which assumes a linear combination of radial
basis functions. Empirical evidence has shown that GPs do
well regardless of the input dimensionality, the degree of
nonlinearity, the noise-level, and the identity of the data-
family [24]. Prior assumptions about f can be specified in
the kernel function k leading to different prior distributions
over f . The Gaussian kernel kG allows f to be nonlinear in
x. The amount of smoothness, related to the length-scale `
of the Gaussian kernel, can be fitted automatically to the data
observed (corresponding, in our case, to individual subjects).

IV. BAYESIAN FRAMEWORK

In this section we discuss our Bayesian framework, which
follows the work of Chu and Ghahramani [11], for learning
subject preferences given observations from pairwise listening
experiments, i.e., given two sounds, the user states his prefer-
ence with respect to sound quality. In terms of Section II, our
Bayesian framework consists of models M = {f : X → R}
and hypothesesH = {`, σ, b} explained below. The underlying
idea, from economics, is that the preferences for a subject
follow from an objective function (utility function) f : X → R
evaluating sounds. Basically, this means x is preferred over x′

whenever f(x) > f(x′). The hypotheses H = {`, σ, b} are a
set of hyperparameters that influence the models, which we
sometimes omit from formulas for the sake of readability (cf.
Sections III and IV-C).

Current approaches for predicting sound quality preferences
often use an absolute numeric scale (e.g., ITU-T P.835 method-
ology [25]) using trained individuals for rating sound quality.
Our framework is motivated by the fact that in practice it is
difficult to get consistent responses from naive users when
they are asked to rate sounds numerically [12], [25]. Because
humans do excel at comparing alternatives and expressing
a qualitative preference for one over the other [26], [27]
we use qualitative preferences to make inferences about the
unobserved utility function f . However, our framework can
be extended to accomodate other forms of data such as, for
example, the commonly used subjective mean opinion scores
(MOS) [28], [29] as shown in [30].

A. Data set

Let X = {x1, . . . ,xI} be a set of I distinct sound samples
with xi ∈ RN , i.e., sounds are represented as a N -dimensional
vector of real-valued features. Let D be a set of M observed
pairwise preference comparisons over instances in X , i.e.,

D = {〈xi1(m),xi2(m), dm〉 | 1 ≤ m ≤M,dm ∈ {−1, 1}}

with i1, i2 : {1, . . . ,M} → {1, . . . , I} index functions such
that xi1(m),xi2(m) denote, respectively, the first and second
sound sample presented in the mth listening experiment, and
dm represents the subject’s preference with respect to listening
experiment m. We use dm = 1 when xi1(m) is preferred over
xi2(m) and dm = −1 otherwise.

B. Gaussian process prior p(f)

As explained in Section III, we define a prior over functions
by assuming that function values {f(xi)} are a realization of
random variables in a zero-mean Gaussian process, specified
by a covariance matrix or kernel function. Here we use the
Gaussian kernel (4) and the linear kernel [11], defined as

kL(x,x′) =
N∑

n=1

xnx
′
n (6)

The Gaussian kernel is a common choice, whereas the linear
kernel corresponds to Bayesian linear regression.

C. Likelihood function p(D|f)

The likelihood function is a mapping denoting how likely
the preference data D are given function f . We make the
standard independence assumption that the likelihood can be
evaluated on individual observations

p(D|f) =
M∏

m=1

p(〈xi1(m),xi2(m), dm〉|f(xi1(m)), f(xi2(m)))

Under ideal circumstances, i.e., when subjects can make per-
fect statements about their preferences, the likelihood function
could be defined as

pideal(〈xi1(m),xi2(m), dm〉|f(xi1(m)), f(xi2(m))) = 1 if f(xi1(m)) > f(xi2(m)) and dm = 1
1 if f(xi1(m)) ≤ f(xi2(m)) and dm = −1
0 otherwise

(7)

In practice, however, subjects are sometimes inconsistent
and could be influenced by the order in which we present
sound samples. In order to deal with this less than ideal
situation we augment the likelihood function with additional
variables. Analogously to Chu and Ghahramani [11], we
assume that for each sound sample presented, its evaluation
is contaminated with Gaussian noise δ1, δ2 ∼ N (0, σ2). Fur-
thermore, because subjects are forced to choose a preference
over sounds even though they may not hear any difference in
sound quality, we assume that subjects have a response bias
b that depends on the order of sound samples presented. We
noticed that adding a response bias in the context of listening
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experiments, significantly improves upon the likelihood func-
tion proposed by Chu and Ghahramani [11]. The augmented
likelihood function then becomes

p(〈xi1(m),xi2(m), 1〉|f(xi1(m)), f(xi2(m)))
= p(f(xi1(m)) + δ1 > f(xi2(m)) + b+ δ2)

(8)

with b < 0 denoting a response bias for the first sample, b > 0
denoting a response bias for the second sample, and b = 0
denoting no response bias for both samples.

Equation (8) can be rewritten in terms of a cumulative
Gaussian [31]

p(〈xi1(m),xi2(m), dm〉|f(xi1(m)), f(xi2(m))) = Φ(zm) (9)

with Φ(z) =
∫ z

−∞N (x; 0, 1) dx, dm ∈ {−1, 1}, and

zm =
dm(f(xi1(m))− f(xi2(m))− b)√

2σ
, (10)

which is a common choice of response function in discrete
choice methods and is also known as the probit function
[32]. Other response functions, such as the Bradley-Terry-
Luce (BTL) model [33], [34], can also be incorporated as a
likelihood function in the current framework. As the bias and
variability in judgment of a subject are explicitly written as
a parameter of the likelihood function they can be optimized
with respect to the data.

D. Posterior probability p(f |D) and model selection

The posterior probability can now be computed by applying
Bayes’ rule (1)

p(f |D,H) =
p(f |H)p(D|f ,H)

p(D|H)

=
p(f |H)
p(D|H)

M∏
m=1

Φ(zm)
(11)

with H = {`, σ, b} the hyperparameters of the model.
As a Gaussian prior multiplied by a cumulative Gaussian

(the likelihood function) does not lead to a closed form
formula, approximations are needed to compute the posterior
probability. We use the Laplace approximation [16]. Model
selection is done by maximum likelihood estimation of the
hyperparameters H = {`, σ, b}, which we compute using gra-
dient descent. For details see our technical report [31].

V. EMPIRICAL RESULTS

A. Methodology

1) Data set: We use data from Arehart et al. [9], who
collected pairwise preference data using listener experiments.
In this study, participants include 14 subjects with normal-
hearing and 18 subjects with hearing loss of presumed cochlear
origin as cochlear impairment was consistent with the results
of an audiometric evaluation during their initial visit. The
stimulus presented were two sets (one male, one female
talker) of concatenated sentences from the hearing-in-noise-
test (HINT) [35]. The sentences were subjected to three types
of degradation: symmetric peak-clipping, symmetric center-
clipping, and additive stationary speech-shaped noise. The

clipping conditions were included as they are related to
distortion mechanisms found in hearing aids. Peak clipping
is related to arithmetic, amplifier, and transducer saturation.
Center clipping is related to numeric underflow and to the
effects of noise-suppression signal processing in reducing the
intensity of low-level signal components. Each stimulus was
subjected to I = 24 distortion conditions, i.e., to 8 levels of
each type of degradation.

Each subject participated in 3 one-hour sessions. During
each session three blocks of 72 paired comparisons were
presented, of which the first block in the first session was a trial
block—a full orthogonal design. In total J = (2+3+3)·72 =
576 paired comparisons were collected for each subject.

In our approach to model and predict the preference judg-
ment of listeners with respect to speech quality for arbitrary
degradation mechanisms we need to make assumptions about
what factors are dominant in forming quality judgments. Here,
we follow Arehart et al. [9] and assume that audibility may
be an important factor in the perceptual judgment of quality
by subjects. The coherence speech intelligibility index (CSII)
approach of Kates and Arehart gives a procedure to take into
account audibility factors [36]. Each degraded test sentence
was divided into three amplitude regions, at or above the
root-mean squared sentence level (RMS), 0-10 dB below the
RMS level, and 10-30 dB below the RMS level. The signal
envelope was computed using a Hamming-windowed segment
size of 16 ms. The procedure results for each sound sample
in three features, namely CSIILow, CSIIMid, and CSIIHigh, for
the low-, mid-, and high-level portions of the speech. We
use the CSII approach to represent the pairwise preference
data of Arehart et al. [9], i.e., the data consists of pairwise
experiments 〈x,x′, d〉 of two sound samples x,x′ ∈ X and
subject decision d ∈ {1,−1} denoting whether x is preferred
over x′ or x′ is preferred over x, respectively. Each sound
sample is represented by three features CSIILow, CSIIMid, and
CSIIHigh, which can take values in [0, 1]3.

2) K-fold cross-validation: When learning a model from
data, the goal is to make good predictions for data not yet
observed. Therefore, one has to take care that the model
generalizes well to situations not yet presented and does not
overfit the gathered data. Here we use cross-validation, which
splits the data into disjoint subsets used for training and
testing of the model, to validate that there is no overfitting
to the training data. Note that we do not use cross-validation
to search for optimal hyperparameters as this is done by
maximizing the evidence (cf. Section IV-D).

In K-fold cross-validation [37], a data set D is partitioned
into K mutually exclusive subsets D1, . . . ,DK of approxi-
mately equal size. The classifier is trained K folds (10-fold
cross-validation is a common choice and is also used here).
For each fold k ∈ {1, . . . ,K} the classifier is trained on the
data set D \ Dk and tested on the data set Dk. Each sample
is thus used for training and used exactly once for testing.

The K results from the folds are combined to produce a sin-
gle cross-validation estimate of accuracy. This is the number
of correct classifications, divided by the number of instances
|D| = J = 576. Formally, let C(D, 〈x,x′〉) be the classifier
that returns a label for samples 〈x,x′〉 when trained on D. Let
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D(j) be the test set that contains instance 〈xi1(j),xi2(j), dj〉,
then the cross-validation estimate of accuracy is defined as

accCV =
1
J

J∑
j=1

δ(C(D \ D(j), 〈xi1(j),xi2(j)〉), dj) (12)

where δ(p, q) = 1 iff p = q and δ(p, q) = 0 iff p 6= q. The
prediction error (PE) is 1− accCV .

In order to determine whether one classifier f̂A significantly
improves upon another classifier f̂B when training with K-
fold cross-validation, one can use McNemar’s test [38]–[40].
McNemar’s test only focuses on the outcomes of the classifiers
that are different, i.e., outcomes that are classified both cor-
rectly or incorrectly by both classifiers are disregarded. In our
case, many comparisons are very easy to classify, e.g., no noise
versus a lot of peak clipping and will be classified correctly by
any reasonable classifier. McNemar’s test disregards the easy
to classify cases and focuses on the hard to classify cases.
McNemar’s test was also found to be one of the best statistical
tests for comparing supervised classification algorithms in an
empirical evaluation by Dietterich [39].
K-fold cross-validation results in a classification for each

sample, as each sample is used exactly once for testing, from
which we can construct the following contingency table [39]

J00: Number of examples J01: Number of examples
misclassified by misclassified by
both f̂A and f̂B f̂A but not by f̂B

J10: Number of examples J11: Number of examples
misclassified by misclassified by
f̂B but not by f̂A neither f̂A nor f̂B .

where J = J00+J01+J10+J11 is the total number of samples
(pairwise comparisons).

Under the null hypothesis that both algorithms perform
equally well, the two algorithms should have the same error
rate, which means that J01 = J10. McNemar’s test is based
on a χ2 test for goodness of fit that compares the distribution
of counts expected under the null hypothesis to the observed
counts. The expected counts under the null hypothesis are

J00 (J01 + J10)/2
(J01 + J10)/2 J11

The following statistic is distributed (approximately) as
χ2 with 1 degree of freedom; it incorporates a “continuity
correction” term (of -1 in the numerator) to account for the
fact that the statistic is discrete while the χ2 distribution is
continuous:

(|J01 − J10| − 1)2

J01 + J10
(13)

If the null hypothesis is correct, then the probability that
this quantity is greater than χ2

1,0.95 = 3.841459 is less than
0.05. Then we may reject the null hypothesis in favor of the
hypothesis that the two algorithms have different performance.

B. Classifier comparison results

In this section we compare three classifiers for the pairwise
comparison data of Arehart et al. [9]. The first classifier is the
Q3 metric reported by Arehart et al. [9], which is a minimum

mean-squared error fit to the normal-hearing subjects’ quality
ratings and is given by

Q3 =
1

1 + e−c
(14)

with

c = −4.56 + 2.41 · CSIILow + 2.16 · CSIIMid + 1.73 · CSIIHigh

The same Q3 metric was used for the normal-hearing and
the hearing-impaired subjects. The metric is therefore based
on the assumptions that the same low, mid, and high-level
weights are appropriate for both subject populations, and that
the audiogram embedded in the CSII calculations is sufficient
to explain the group differences. Note, that the Q3 measure
does not incorporate a response bias and that the constant -4.56
is irrelevant as two Q3 values are subtracted when determining
the preference between two samples.

Using the Bayesian framework discussed in Section IV we
trained two other classifiers. A Gaussian process with a linear
kernel (LK) and a Gaussian process with a Gaussian kernel
(GK). We use GK0 to denote a GK model where the bias
hyperparameter b = 0 is fixed, i.e., no bias. The linear kernel
corresponds to probit regression for each individual subject.
The Gaussian process with linear kernel would give similar
results to the Q3 metric if we would apply it on the pooled data
set consisting of all the normal-hearing subject data. The order
of the pairwise comparisons in each data file was randomized
before the data file was split into 10 equal sized blocks in order
to train both kernels using 10-fold cross-validation, i.e., both
kernels used the same splits of the data files. The classifier
results were compared to each other using the McNemar test
(cf. Section V-A2) and are shown in Table I.

The first column is an identifier indicating the subject. The
top half (from ‘nh1’ to ‘nh14’) are the 14 normal-hearing
subjects. The bottom half (from ‘hi1’ to ‘hi18’) are the 18
hearing-impaired subjects. The second and third column report
on the response bias and the level of inconsistency of the
listener (discussed in the next paragraph). Columns 4, 5, and
6 report the prediction error (PE) as well as the correlation
coefficient r for the three classifiers on each data set corre-
sponding to a single subject. For the correlation coefficient
we follow [9] by computing individual preference scores
(the proportion of the times a signal degradation condition
was preferred to all the other conditions) based on the data
and the model predictions. The last four columns report the
comparison results between the classifiers using McNemar’s
test. Here, ‘p’ is the reported p-value, ‘J10’ is the number
of examples correctly predicted by the first named classifier,
but wrongly predicted by the second named classifier, and
‘J01’ is the number of examples wrongly predicted by the
first named classifier, but correctly predicted by the second
named classifier. Finally, the results for all normal-hearing
and the results for all hearing-impaired subjects are collected
and shown in the rows ‘overall’, i.e., average percentages and
prediction errors, and overall McNemar test results (i.e., the
p-value is based on the sum of J10 and J01 scores).

The second column reports the percentage of biased pairs
of examples, i.e., with x 6= x′ the percentage of pairs such
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TABLE I
CLASSIFIER COMPARISON RESULTS FOR NORMAL-HEARING SUBJECTS (FROM ‘NH1’ TO ‘NH14’) AND HEARING-IMPAIRED SUBJECTS (FROM ‘HI1’ TO

‘HI18’). COLUMNS 2 AND 3 REPORT DATA STATISTICS. COLUMNS 4, 5, AND 6 REPORT THE PREDICTION ERROR (PE) AND CORRELATION COEFFICIENT r
OF THE THREE CLASSIFIERS COLUMNS 7, 8, 9, AND 10 REPORT COMPARISONS BETWEEN CLASSIFIERS USING MCNEMAR’S TEST WITH ‘P’ THE

P-VALUE, ‘J10’ THE NUMBER OF EXAMPLES CORRECTLY CLASSIFIED BY THE FIRST BUT NOT BY THE SECOND NAMED CLASSIFIER, AND ‘J01’ THE
NUMBER OF EXAMPLES CORRECTLY CLASSIFIED BY THE SECOND BUT NOT BY THE FIRST NAMED CLASSIFIER.

Subj. % % Q3 LK GK Q3 vs LK Q3 vs GK LK vs GK GK0 vs GK
name bias incons. PE r PE r PE r p J10 J01 p J10 J01 p J10 J01 p J10 J01

nh1 21.7 0.11 0.15 0.94 0.14 0.94 0.15 0.95 0.81 8 10 0.68 13 10 0.23 8 3 1.00 8 7
nh2 14.5 0.21 0.13 0.97 0.11 0.97 0.11 0.97 0.14 14 24 0.07 15 28 0.58 5 8 0.44 18 24
nh3 13.4 0.27 0.12 0.95 0.12 0.94 0.12 0.96 0.86 16 14 0.88 22 20 0.86 16 16 0.18 18 10
nh4 10.1 0.14 0.12 0.94 0.12 0.94 0.12 0.95 1.00 20 19 0.55 25 20 0.39 8 4 0.31 28 20
nh5 15.9 0.21 0.14 0.93 0.15 0.93 0.14 0.94 0.15 16 8 0.86 15 15 0.17 9 17 0.65 11 8
nh6 17.4 0.20 0.14 0.92 0.14 0.93 0.13 0.94 0.86 14 16 0.57 22 27 0.74 16 19 0.45 19 25
nh7 18.5 0.61 0.18 0.86 0.18 0.86 0.16 0.92 1.00 27 28 0.42 34 42 0.42 24 31 0.44 34 27
nh8 22.8 1.28 0.21 0.89 0.21 0.89 0.19 0.92 0.88 22 22 0.19 24 35 0.14 17 28 1.00 22 23
nh9 14.1 0.32 0.16 0.90 0.16 0.89 0.17 0.91 0.87 19 21 1.00 19 18 0.78 26 23 0.23 8 3

nh10 15.9 0.33 0.14 0.95 0.14 0.95 0.13 0.96 1.00 11 10 0.58 13 17 0.40 9 14 0.45 6 10
nh11 18.1 0.68 0.16 0.94 0.18 0.93 0.17 0.95 0.05 22 10 0.17 27 17 0.84 11 13 0.06 17 7
nh12 19.9 0.74 0.15 0.91 0.15 0.92 0.13 0.96 1.00 19 18 0.20 25 36 0.10 17 29 0.29 18 26
nh13 22.5 0.27 0.15 0.95 0.15 0.95 0.16 0.94 0.87 19 19 1.00 20 19 1.00 5 4 0.85 12 14
nh14 18.5 0.33 0.14 0.98 0.12 0.98 0.12 0.98 0.16 12 21 0.26 15 23 1.00 6 5 0.23 9 16

overall 17.4 0.41 0.15 0.93 0.15 0.93 0.14 0.95 1.00 239 240 0.14 289 327 0.07 177 214 0.78 227 220
hi1 37.7 0.82 0.26 0.81 0.19 0.84 0.11 0.98 0.00 56 94 0.00 29 115 0.00 17 65 0.00 24 54
hi2 21.7 0.57 0.16 0.95 0.11 0.98 0.11 0.99 0.01 22 46 0.00 20 45 1.00 13 14 0.05 13 26
hi3 18.8 0.82 0.18 0.87 0.16 0.89 0.16 0.93 0.27 28 38 0.28 37 48 1.00 24 25 0.69 30 26
hi4 22.8 0.43 0.18 0.94 0.15 0.95 0.14 0.96 0.03 30 51 0.00 24 52 0.32 15 22 0.01 20 41
hi5 32.2 0.84 0.20 0.96 0.14 0.96 0.14 0.97 0.00 33 64 0.00 33 64 0.80 8 8 0.01 33 58
hi6 27.9 1.43 0.24 0.78 0.23 0.82 0.21 0.90 0.34 31 40 0.06 37 56 0.22 22 32 0.49 41 34
hi7 18.1 0.44 0.14 0.96 0.11 0.97 0.11 0.98 0.04 20 36 0.02 17 35 0.79 6 8 0.07 10 21
hi8 21.7 1.23 0.18 0.92 0.17 0.93 0.15 0.98 0.88 22 24 0.11 22 35 0.14 17 28 0.11 18 30
hi9 18.1 0.59 0.15 0.92 0.12 0.96 0.12 0.98 0.03 15 31 0.01 15 35 0.62 16 20 0.00 3 17
hi10 15.6 0.26 0.14 0.96 0.12 0.97 0.11 0.99 0.01 7 21 0.01 12 31 0.42 10 15 0.54 10 14
hi11 29.3 0.22 0.16 0.95 0.12 0.96 0.10 0.98 0.01 22 44 0.00 18 53 0.03 9 22 0.00 16 48
hi12 35.5 0.31 0.19 0.88 0.14 0.91 0.09 0.99 0.00 28 56 0.00 18 79 0.00 15 48 0.00 17 56
hi13 35.9 2.00 0.24 0.94 0.22 0.94 0.18 0.97 0.27 44 56 0.00 45 78 0.00 15 36 0.37 36 45
hi14 25.0 0.66 0.18 0.90 0.13 0.96 0.11 0.97 0.00 21 52 0.00 16 58 0.03 6 17 0.07 15 28
hi15 14.1 0.22 0.13 0.98 0.14 0.98 0.12 0.98 0.80 32 29 0.72 33 37 0.19 7 14 0.64 23 19
hi16 30.1 2.05 0.31 0.64 0.23 0.89 0.20 0.96 0.00 63 109 0.00 45 108 0.06 27 44 0.45 6 10
hi17 31.9 3.04 0.24 0.88 0.22 0.96 0.22 0.96 0.28 37 48 0.19 36 49 0.75 4 6 0.77 22 25
hi18 30.4 0.49 0.18 0.97 0.15 0.97 0.15 0.97 0.05 19 34 0.04 24 42 0.69 11 14 0.19 23 34

overall 25.9 0.91 0.19 0.90 0.16 0.94 0.14 0.97 0.00 530 873 0.00 481 1020 0.00 242 438 0.00 360 586

that 〈x,x′, d〉 and 〈x′,x, d〉 holds for d ∈ {1,−1}, giving
a base rate of 50%. The third column reports a consistency
check independent from the response bias. For this, we counted
for all quadruples A,B,C,D ∈ X distinct whether the
subject’s preferences dm ∈ {−1, 1} in 〈A,B, d1〉, 〈C,B, d2〉,
〈A,D, d3〉, 〈C,D, d4〉 are consistent with some total order-
ing over 〈A,B,C,D〉. Note, that only 〈d1, d2, d3, d4〉 ∈
{〈−1, 1, 1,−1〉, 〈1,−1,−1, 1〉} does not lead to a total order
over 〈A,B,C,D〉 giving a base rate of 12.5%.

The second column shows that normal-hearing subjects have
a lower response bias than hearing-impaired subjects (mean
17.4% versus 25.9%) and there is less variability within the
group (standard deviation 0.95% versus 1.69%). Analogously,
normal-hearing subjects are more consistent in their responses
(mean 0.41% versus 0.91% with standard deviations 0.08%
and 0.18% respectively). The low percentage of inconsistency
comes from the large number of obvious preference relations
and a low base rate of 12.5% for a random guesser.

The tenth column shows the effect of incorporating a bias
parameter in the likelihood function using a GK classifier (i.e.,
GK0 stands for a GK model with fixed b = 0 meaning no
bias). Incorporating a response bias significantly improved the

GK model for hearing-impaired subjects, i.e., for each of the
18 hearing-impaired subjects the McNemar test showed six
significant differences (p < 0.05) in favour of a GK model
with a response bias when compared with a GK model without
a response bias.

Looking at the results for the normal-hearing subjects, we
see that the classification performances of the three classifiers
Q3, LK, and GK are very similar. Sometimes one classifier
performs better than another, sometimes worse. The classifi-
cation performance of one classifier, however, is never signifi-
cantly better than another classifier as all reported p-values are
greater than 0.05. This changes, however, when we consider
the classification performance on the data corresponding to
the hearing-impaired subjects. The Q3 metric is significantly
outperformed by the LK and GK classifiers on 11 and 13
subjects respectively. The LK classifier is again significantly
outperformed by the GK classifier on 5 subjects. Note that the
Q3 metric uses a linear model fitted to the group of normal-
hearing subjects for the group of hearing-impaired subjects,
whereas the GK and LK models are fitted for each subject
individually. Furthermore, for normal-hearing data the LK
classifier is basically the same as the Q3 classifier except
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applied to individual subjects instead of pooled data.
It follows from these results that the prediction of preference

judgments for hearing-impaired subjects with respect to speech
and arbitrary degradation mechanisms can be significantly
improved by (1) personalization (i.e., using individual pref-
erences as well as modeling a response bias significantly
improved the model; This follows from the ‘Q3 vs LK’ col-
umn which compares a linear model on pooled data with a
linear model on individual data), and by (2) allowing nonlinear
relationships in the decision model (the latter follows from the
‘LK vs GK’ column which compares a linear model with a
nonlinear model). For normal-hearing subjects simple logistic
regression techniques can be used as no significant improve-
ments could be obtained when using a more complex model.
This shows that there are significant differences between the
groups of normal-hearing and hearing-impaired subjects and
one should be careful generalizing models learned from/fitted
on normal-hearing subjects to hearing-impaired subjects.

C. Validation of coherence speech intelligibility index

One of the questions that may arise from the results re-
ported in Table I and Fig. 2 is that the nonlinear behavior
in perception of hearing-impaired subjects is a result of the
use of the CSII measure that transforms the sound features
based on the audiogram of the subject. In order to validate
the CSII based approach we compared a Gaussian process
having a Gaussian kernel on the hearing-impaired subjects’
data using (1) the sound features present in the data set (i.e.,
the CSII which incorporates the audiogram), with (2) the
sound features following from the coherence measure without
incorporating the audiogram (i.e., the same features used for
normal-hearing subjects). The comparison results are shown
in Table II, which shows that the CSII, which incorporates the
audiogram, significantly improved the overall results as well as
the individual results of three hearing-impaired subjects. This
validates the approach followed of using the CSII measure
which incorporates the audiogram of the subject. Note that
this approach differs from related work of Tan and Moore [10]
who do not subject their distorted signals to the frequency-
dependent amplification prescribed by the Cambridge-formula.

D. Nonlinearity

To demonstrate the nonlinear perception in hearing-impaired
subjects we show in Fig. 2 middle panel the elicited utility
function of a typical normal-hearing subject (top row) and a
hearing-impaired subject (bottom row) for which we obtained
a significant improvement in predicting preference judgments
because of a nonlinear utility function. As the CSIIMid features
were highly correlated with the CSIILow and CSIIHigh features
we used linear regression for each subject to effectively reduce
our graph to 3-dimensions. For example, for subject ‘hi12’ we
obtained the following linear regression relation (R2 = 0.68):

CSIIMid
′ = −0.0134 + 0.6555 · CSIILow + 0.5351 · CSIIHigh

Fig. 2 shows the hyperplane in terms of CSIILow, CSIIHigh, and
CSIIMid

′ features, and the samples projected on the contour
plot of the utility function.

TABLE II
PREDICTION ERROR (PE) OF A GAUSSIAN PROCESS WITH GAUSSIAN

KERNEL FOR HEARING-IMPAIRED SUBJECTS USING COHERENCE BASED
FEATURES (GK) AND FEATURES USED BY NORMAL-HEARING SUBJECTS
(GK-NH). COMPARISONS ARE MADE USING MCNEMAR’S TEST WITH ‘P’

THE P-VALUE, ‘J10’ THE NUMBER OF EXAMPLES CORRECTLY CLASSIFIED
BY THE FIRST BUT NOT BY THE SECOND NAMED CLASSIFIER, AND ‘J01’

THE NUMBER OF EXAMPLES CORRECTLY CLASSIFIED BY THE SECOND
BUT NOT BY THE FIRST NAMED CLASSIFIER.

Subj. GK GK-nh GK vs GK-nh
name PE PE p J10 J01

hi1 0.11 0.13 0.04 27 13
hi2 0.11 0.12 0.65 11 8
hi3 0.16 0.16 0.71 13 16
hi4 0.14 0.12 0.11 2 8
hi5 0.14 0.15 0.58 8 5
hi6 0.21 0.21 1.00 7 6
hi7 0.11 0.11 0.62 3 1
hi8 0.15 0.16 0.38 13 8
hi9 0.12 0.14 0.07 25 13
hi10 0.11 0.11 1.00 12 11
hi11 0.10 0.11 0.54 14 10
hi12 0.09 0.14 0.00 40 11
hi13 0.18 0.21 0.08 30 17
hi14 0.11 0.12 0.61 19 15
hi15 0.12 0.13 0.71 34 30
hi16 0.20 0.21 0.28 40 30
hi17 0.22 0.21 0.71 30 34
hi18 0.15 0.17 0.04 30 15

overall 0.14 0.15 0.00 358 251
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Fig. 2. Utility function elicited for a normal-hearing subject ‘nh1’ (top)
and hearing-impaired subject ‘hi12’ (bottom). Left: hyperplane formed by
linear regression of CSIIMid in terms of CSIILow and CSIIHigh features.
Right: contour plot with sound samples distorted with noise (circle), peak
clipping (triangle), and center clipping (cross). The noise levels of the sound
samples are lowest in the upper right corner and increase when moving into
the direction of the lower left corner.
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Fig. 3. Comparison within the peak clipping degradation for ten subjects. The solid line is calculated from the data whereas the dashed line is the model
prediction using a Gaussian process with a nonlinear Gaussian kernel (by summing up predictive probabilities). The y-axis represents the fraction (percentage)
of times that a particular distortion level is preferred over all other distortion levels. The x-axis denotes the clipping threshold used in terms of the percentage
of the cumulative level histogram of each sentence. The effect of peak clipping is reduced as the clipping threshold is increased. With respect to improved
performance in preference prediction when comparing a linear and nonlinear model, the top row shows the least significant results and the bottom row shows
the most significant results (cf. Table I).

To get more insight into the observed nonlinear behaviour
we went back to the original data set and counted for each of
the three distortion types per level how often it was preferred
when compared to the same distortion type, i.e., comparisons
are within a distortion type. The results for peak clipping are
shown in Fig. 3. The top row corresponds to the five least
significant differences and the bottom row to the five most
significant differences in Table I, which reports the comparison
between a linear and nonlinear model. Results for center
clipping and noise are not shown, because preferences for
all normal-hearing and hearing-impaired listeners were quite
linear. From Fig. 3 it can be observed that the preferences
for peak clipping are not always linear with respect to the
distortion level. The preferences for peak clipping show a drop
at the end of our range. The Q3 metric of Arehart et al. [9]
would predict a line from the left bottom corner to the right
upper corner for each individual, whereas the GP clearly fits
a nonlinear smooth curve to the data of each individual.

Note that in Fig. 3 the least significant results (top row)
contain both normal-hearing and hearing-impaired subjects,
whereas the most significant results (bottom row) contain
only hearing-impaired subjects. From these results, it seems
that some hearing-impaired subjects have difficulty in hearing
differences between peak clipped speech at the end of our
range, which leads to nonlinear behaviour in their preference
decisions. We also noted some drop in the middle of
our range for center clipped sentences, but did not note any
clear differences between the least and most significant results.

E. Generalization over distortions and over subjects

So far, we have shown a significant improvement in pre-
dictive performance of sound quality perception of hearing-
impaired subjects. Here, we take a look at the generalization
behaviour of the GP model over distortions and over subjects.

In the case of generalizing over distortions we split the data
per subject in a training set (256 comparisons) and test set
(320 comparisons). The training set consisted of all pairwise
comparisons of two distortions (e.g., noise and peak-clipping)
and the test set of all pairwise comparisons containing the left
out distortion (e.g., center-clipping). Per subject, this resulted
in three experiments for each possible division of distortions
in training and test set. The results are shown in Table III.
Each column heading shows the distortion put in the test set
and the prediction error on this set per subject. Per subject,
the coefficients in the Q3 metric were re-fitted using the
256 comparisons in the training data. For the normal-hearing
subjects both the Q3 metric and the GP model perform equally
well, except that the GP model tends to overfit to the training
data when the peak clipping distortion is left out of the training
set. This is exactly what one should expect when taking Fig. 2
into account as the features of the signals distorted with noise
are similar to the features of the signals distorted with center-
clipping, but quite different from the features of the signals
distorted with peak-clipping. The same remarks hold for the
hearing-impaired subjects, except that the GP model performs
better than Q3 when the comparisons involving noise are left
out of the training data.

In the case of generalizing over subjects, per subject we
pooled all data of all other subjects into one big training set
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TABLE III
CLASSIFICATION RESULTS FOR THE GENERALIZATION OVER

DISTORTIONS. THE PREDICTION ERROR IS REPORTED IN COLUMNS 2, 3,
AND 4 FOR THE (RE-FITTED) Q3 CLASSIFIER, IN 5, 6, AND 7 FOR THE

GAUSSIAN PROCESS WITH GAUSSIAN KERNEL FUNCTION. THE COLUMN
HEADING DENOTES THE DISTORTION PRESENT IN THE TEST SET.

Subj. Q3 GK
name Noise PClip CClip Noise PClip CClip
nh1 0.17 0.18 0.16 0.20 0.46 0.19
nh2 0.16 0.18 0.15 0.13 0.22 0.12
nh3 0.15 0.17 0.13 0.16 0.22 0.15
nh4 0.15 0.16 0.17 0.16 0.14 0.17
nh5 0.18 0.16 0.18 0.17 0.24 0.21
nh6 0.18 0.18 0.18 0.14 0.38 0.20
nh7 0.24 0.22 0.20 0.24 0.37 0.20
nh8 0.26 0.22 0.23 0.25 0.24 0.22
nh9 0.23 0.19 0.18 0.22 0.23 0.18
nh10 0.18 0.17 0.17 0.19 0.26 0.17
nh11 0.21 0.19 0.18 0.22 0.35 0.17
nh12 0.18 0.18 0.18 0.17 0.33 0.16
nh13 0.18 0.16 0.18 0.19 0.22 0.17
nh14 0.15 0.19 0.14 0.14 0.14 0.12
mean 0.19 0.18 0.17 0.18 0.27 0.17
hi1 0.28 0.44 0.22 0.28 0.26 0.28
hi2 0.16 0.31 0.18 0.11 0.19 0.14
hi3 0.25 0.26 0.18 0.22 0.51 0.24
hi4 0.21 0.25 0.19 0.17 0.19 0.18
hi5 0.20 0.27 0.21 0.14 0.14 0.15
hi6 0.32 0.31 0.23 0.27 0.55 0.27
hi7 0.16 0.24 0.13 0.12 0.38 0.15
hi8 0.21 0.23 0.20 0.20 0.30 0.20
hi9 0.18 0.29 0.15 0.15 0.46 0.19
hi10 0.15 0.18 0.15 0.14 0.32 0.12
hi11 0.20 0.22 0.15 0.12 0.20 0.12
hi12 0.14 0.28 0.19 0.16 0.41 0.20
hi13 0.26 0.28 0.25 0.19 0.31 0.21
hi14 0.21 0.31 0.14 0.16 0.30 0.15
hi15 0.13 0.25 0.14 0.13 0.13 0.11
hi16 0.30 0.54 0.32 0.22 0.54 0.38
hi17 0.24 0.38 0.28 0.23 0.23 0.22
hi18 0.17 0.24 0.18 0.14 0.26 0.14
mean 0.21 0.29 0.19 0.18 0.32 0.19

of 17 856 pairwise comparisons while the data of the subject
itself was taken to be the test set consisting of 576 pairwise
comparisons. The results are shown in Table IV. Comparing
the results in Table IV with the sixth column (GK PE) in
Table I, we observe that using pooled data from other subjects
is always better than using individual subject data in the
case of normal-hearing subjects, but the results are the other
way around in the case of hearing-impaired subjects. This
can be explained by the similarity between normal-hearing
subjects and the diversity between hearing-impaired subjects.
The modeling could be further improved by considering multi-
task learning [41], [42]. Multi-task learning does not pool any
data but uses the data of individuals to regularize each other. It
is possible to learn the correlation among normal and hearing-
impaired listeners jointly, rather than build models separately
for each subject.

F. Generalization to different feature representations

The results presented so far assume that sounds are rep-
resented as a 3-dimensional real-valued vector. One might
expect that the predictive accuracy could be further improved
by adding more relevant features. In order to investigate the

TABLE IV
CLASSIFICATION RESULTS FOR THE GENERALIZATION OVER SUBJECTS.
THE PREDICTION ERROR IS REPORTED IN COLUMNS 2 AND 3 FOR THE

(RE-FITTED) Q3 CLASSIFIER AND THE GAUSSIAN PROCESS WITH
GAUSSIAN KERNEL FUNCTION, RESPECTIVELY. EACH ROW IN THE FIRST
COLUMN DENOTES THE SUBJECT GENERALIZED OVER (I.E., TEST SET).

Subj. Q3 GK Subj. Q3 GK
name Listener Listener name Listener Listener
nh1 0.15 0.13 hi1 0.26 0.23
nh2 0.13 0.09 hi2 0.16 0.21
nh3 0.13 0.09 hi3 0.18 0.14
nh4 0.13 0.07 hi4 0.18 0.15
nh5 0.15 0.10 hi5 0.19 0.17
nh6 0.16 0.12 hi6 0.25 0.22
nh7 0.19 0.14 hi7 0.14 0.15
nh8 0.20 0.17 hi8 0.18 0.15
nh9 0.16 0.14 hi9 0.15 0.15

nh10 0.15 0.11 hi10 0.13 0.19
nh11 0.16 0.15 hi11 0.18 0.13
nh12 0.15 0.11 hi12 0.19 0.44
nh13 0.16 0.14 hi13 0.23 0.30
nh14 0.13 0.11 hi14 0.18 0.14

hi15 0.13 0.18
hi16 0.34 0.32
hi17 0.25 0.26
hi18 0.16 0.14

mean 0.15 0.12 mean 0.19 0.20

influence of the feature representation on the outcome of our
methods we modified the MATLAB code used to generate the
three-level coherence based speech intelligibility index (CSII)
measure. We made the following changes: (1) we included
a delay compensation filter in the coherence calculation; (2)
we included 8 kHz hearing loss (from Table 1 in Arehart et
al. [9]); (3) we picked level boundaries based on percentiles,
not absolute values. For example, the 0th, 50th, and 100th
percentiles were used to generate a 2-dimensional feature
representation. We performed similar predictive experiments
as reported in Table I using the Gaussian kernel (GK) and
1-5 features. Using 1 feature resulted in significantly worse
predictive outcomes whereas using 2-5 features had no signif-
icant effect. Whether the results are robust using other feature
representations is, however, beyond the scope of this paper.

VI. CONCLUSIONS

This study began with the premise that the preference
judgments of subjects with respect to sounds is a central issue
in the development of hearing aids and other communication
devices. Methods for accurately predicting subject’s preference
judgments would advance their development.

In this study we advocated a Bayesian framework using
GPs, which can take into account response biases and incon-
sistencies in user preferences and is robust when generalizing
over distortions and over listeners. We demonstrated that
predicting the preference judgments of a hearing-impaired
subject can significantly be improved by (1) learning from
the subject’s individual preferences, and (2) allowing nonlin-
earities in the decision model. No such improvements could
be made for normal-hearing subjects, indicating significant
differences between both groups of subjects. One should thus
be careful generalizing models learned from/fitted on normal-
hearing subjects to hearing-impaired subjects.
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The proposed methodology has focused mainly on the pre-
diction of preference judgments with respect to sound quality,
but can be generalized to include other observations such
as domestic information like age and gender, or generalized
to other quality measures such as mean opinion scores and
intelligibility. The statistical model for intelligibility, however,
would be more complex than the model for quality. As
intelligibility is typically measured in a ‘repeat-the-sentence
paradigm’ as in the HINT test, the intelligibility score is
the number of correctly understood sentences (say s out of
S sentences). This can be modeled with a generalization of
the Gaussian process probit model that we proposed, but the
mathematics would be more involved.
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