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Abstract

Forecasting of non-linear time series is a relevant problem in control. Furthermore, an estimate of the
uncertainty of the prediction is useful for constructing robust controllers. Multiple-step ahead forecasting
has recently been addressed using Gaussian processes, but direct implementations are restricted to small
data sets. In this paper we consider multiple-step forecasting for sparse Gaussian processes to alleviate
this problem. We derive analytical expressions for multiple-step ahead prediction using the FITC approx-
imation. On several benchmarks we compare the FITC approximation with a Gaussian process trained on
a large portion of randomly drawn training samples. As a consequence of being able to handle larger data
sets, we show a mean prediction that is closer to the true system response with less uncertainty.

1 Introduction
In this paper we consider non-linear time series of the form

xt+1 = f(xt, ut), yt = xt + εt (1)

with t a time index, x the system state, u a controllable input, y the observed state, ε ∼ N (0, σ2) a noise
term, and f some non-linear transition function. In particular we consider the problem of forecasting future
states, which is a relevant problem in control. Forecasting allows one to choose controls u in order to
optimize a predefined economic criteria, for example, the throughput and amount of power used by a printer
while print quality remains high. In this paper we focus on forecasting using a Gaussian process (GP), a
flexible Bayesian framework that places a prior distribution over functions. The GP provides both a mean
and a variance for each prediction, which is useful for constructing robust controllers [7, 12].

Multiple-step forecasting can be done using direct forecasting or using iterative one-step predictions with
the latter usually being superior [2]. A naive way of repeatedly doing one-step ahead predictions is to feed
back the mean of the prediction into the system state, but this has been shown to severely underestimate the
uncertainty of the model predictions. A better approach is to also take the uncertainty of the input of the ith
step into account to compute the (i+ 1)th step predictive distribution. The details using a Gaussian process
(GP) approach have been worked out in [3, 4, 8, 9]. Initially by using Taylor approximations [3], but later
extended to exact expressions for the first and second moments of the predictive distribution [8, 9], which
can be solved analytically for a number of covariance functions [9, 5, 1]. Although for non-linear dynamical
systems, a Gaussian input distribution does not guarantee the predictive distribution to be Gaussian, a GP
allows an analytic Gaussian approximation that uses exact moment matching which has been shown to
correspond well to the gold standard of MCMC sampling.

A direct implementation of GPs, however, limits their applicability to small data sets since the kernel
matrix needs to be stored, costing O(N2), and inverted, costing O(N3), with N the number of data points.
In recent years several approaches have addressed this problem often selecting a subset of the training data
(the active set) of sizeM reducing the computational complexity toO(M2N) forM � N . In this paper we



focus on the FITC approximation [13], one of the leading methods for modeling sparse GPs, which relaxes
the constraint that the active set has to come from the training data. This allows the M pseudo-inputs and
addtional hyperparameters to be optimized at the same time.

The contribution of this paper are analytical expressions for multiple-step ahead prediction using the
FITC approximation. We obtain a method with a predictive model that executes several magnitudes faster
than the standard GP. On several benchmarks we compare the FITC approximation with a GP trained on
a large portion of randomly drawn training samples. As a consequence of being able to handle larger
data sets, we also show a mean prediction that is closer to the true system response with less uncertainty.
The rest of this paper is structured as follows. Section 2 describes background information on Gaussian
process regression and the FITC approximation for sparse GPs. Section 3 describes iterative one-step ahead
time series forecasting using uncertainty propagation. Section 4 derives the analytical equations for time
series forecasting with the FITC approximation. Section 5 presents two illustrative examples. Section 6
summarizes our conclusions.

2 Sparse Gaussian process regression
We denote vectors x and matrices K with bold-face type and their components with regular type, i.e., xi,
Kij . With xT we denote the transpose of the vector x. N (x|m,V ) is a Gaussian distribution with mean
m and covariance V .

2.1 Gaussian processes
In this section we briefly describe the Gaussian process model for regression [11]. Let D be a data set con-
sisting of N observed D-dimensional input vectors X = {xn}Nn=1 and corresponding real-valued outputs
y = {yn}Nn=1. We assume that function observations follow from a latent function f that are corrupted by
additive iid zero mean Gaussian noise, i.e., y = f(x) + ε with ε ∼ N (0, σ2). We place a GP prior on the
latent function f giving a multi-variate Gaussian distribution on any finite subset of latent variables, i.e., the
values of the function f(x) at location x. The GP is completely specified by a mean function (typically
taken to be zero) and covariance function. In particular we have p(f |X) = N (f |0,KNN ) where the co-
variance matrix KNN is constructed from the covariance function [KNN ]nn′ = K(xn, xn′). Typically the
covariance function depends on additional hyperparameters. In this paper we will make use of the squared
exponential (SE) covariance function with automatic relevance determination (ARD) hyperparameters

K(xn, xn′) = v exp
(
−1

2
(xn − xn′)TW−1(xn − xn′)

)
(2)

whereW = diag(w2
1, . . . , w

2
D) allows for different length scales along each input dimension and v specifies

the signal variance. By integrating out the latent function values we obtain the marginal likelihood

p(y|X,Θ) = N (y|0,KNN + σ2I) (3)

with Θ = {v, w1, . . . , wD, σ
2} all hyperparameters which we usually omit for readability. Maximum

likelihood estimates for Θ are typically obtained by minimizing the negative log marginal likelihood (e.g.,
using gradient descent), which can be evaluated exactly in the case of GP regression and is given by [11]

− log p(y|X) =
1
2
yT (KNN + σ2I)−1y +

1
2

log |KNN + σ2I|+ N

2
log(2π). (4)

The predictive distribution is obtained by considering a new point x∗ and conditioning on the hyperparam-
eters Θ and data D, which gives p(y|x∗,D,Θ) = N (y|µ∗, σ2

∗) with

µ∗ = K∗N (KNN + σ2I)−1y, σ2
∗ = K∗∗ −K∗N (KNN + σ2I)−1KN∗ + σ2 (5)

Gaussian processes do not scale well for large data sets since training requires O(N3) time because of
the inversion of the covariance matrix. Once the inversion is done, computing the predictive mean is O(N)
and computing the predictive variance is O(N2) per new test case.



2.2 Sparse Gaussian processes
In this section we briefly describe the sparse pseudo-input Gaussian process [13], which was later renamed
to Fully Independent Training Conditional (FITC) model to fit in the systematic framework of [10]. The
FITC model approximates the full GP using M pseudo-inputs X̄ = {x̄m}Mm=1 that are not restricted to the
data inputs, but are rather hyperparameters that can be learned. Given a base covariance function K, the
FITC covariance function has the following form:

KFITC(xn,xn′) = KnMK
−1
MMKMn′ + λnδnn′ , λn = Knn −KnMK

−1
MMKMn (6)

where KnM is the matrix with elements K(xn, x̄m) of covariances between data inputs and pseudo-inputs
and KMM is the matrix with elements K(x̄m, x̄m′) of covariances between pseudo-inputs. The marginal
likelihood is similar to Eq. (3)

p(y|X, X̄,Θ) = N (y|0,KFITC
NN + σ2I) (7)

which is used analogous to Eq. (4) to learn hyperparameters and pseudo-inputs of the FITC model jointly by
minimizing the negative log likelihood using gradient descent. The predictive distribution is computed
just as the standard GP model by considering a new point x∗ and conditioning on the data D giving
p(y|x∗,D, X̄,Θ) = N (y|µ∗, σ2

∗) with

µ∗ = K∗MQ
−1KMN (Λ + σ2I)−1y, σ2

∗ = K∗∗ −K∗M (K−1
MM −Q

−1)KM∗ + σ2 (8)

whereQ = KMM +KMN (Λ + σ2I)−1KNM and Λ = diag(λ).
Training the FITC model is computationally more efficient since the covariance matrix KFITC

NN (cf.
Eq. (6)) consists of a sum of a low rank part and a diagonal part and can therefore be inverted in O(M2N)
rather than O(N3). After some precomputations, computing the predictive mean is O(M) and computing
the predictive variance is O(M2) per new test case.

3 Iterative time-series forecasting with uncertainty propagation
In this section we briefly review iterative one-step ahead prediction with uncertainty propagation [3, 4, 8, 9].
We assume an autoregressive Gaussian process model with L lagged outputs given by

xk = [yk−L, . . . , yk−1]T , yk = f(xk) + ε (9)

with f some non-linear function and ε ∼ N (0, σ2) a white noise term. Assuming the time series is known
up to time T , denoted by YT , predicting the system k-steps ahead at time T+k can be achieved by repeatedly
doing one-step ahead predictions. When the input is a random variable x∗ with an input distribution given
by p(x∗|u,S) ∼ N (u,S), the predictive distribution of the function value p(f∗) is obtained by integrating
over the input distribution:

p(f∗|u,S,D) =
∫
p(f∗|x∗,D)p(x∗|u,S) dx∗ (10)

The idea of iterative one-step ahead prediction with uncertainty propagation is to approximate at each step
t the predictive distribution with a Gaussian distribution N (m(ut,St), v(ut,St)). It has been shown that
the first and second moment of the predictive distribution can be computed analytically for the SE kernel
(cf. Eq. (2)) giving a prediction p(yt|YT ) ∼ N (m(ut,St), v(ut,St) + σ2), which is then fed back into the
system state and represented by N (m(ut+1,St+1), v(ut+1,St+1)). In particular, at time T + 1 we have

uT+1 =

yT+1−L
...
yT

 and ST+1 =

0 . . . 0
...

...
0 . . . 0

 (11)

Since p(yT+1|YT ) ∼ N (m(uT+1,ST+1), v(uT+1,ST+1) + σ2) we have at time T + 2:

uT+2 =

 yT+2−L
...

m(uT+1,ST+1)

 and ST+2 =

0 . . . 0
...

...
0 . . . v(uT+1,ST+1) + σ2

 (12)



This is repeated iteratively until at time T + k we have

uT+k =

m(uT+k−L,ST+k−L)
...

m(uT+k−1,ST+k−1)

 and

ST+k =

v(uT+k−L,ST+k−L) + σ2 . . . cov(yT+k−L, yT+k−1)
...

...
cov(yT+k−1, yT+k−L) . . . v(uT+k−1,ST+k−1) + σ2


(13)

4 Time series forecasting with sparse GPs
In this section we will derive the mathematical equations necessary for multiple-step ahead prediction with
the FITC covariance function described in Section 2.2. In order to use the multiple-step ahead prediction
approach described in Section 3, we need expressions for the mean m(ut,St), variance v(ut,St) and
covariance cov(yt, yt′). Let B(1) = Q−1KMN (Λ + σ2I)−1y and B(2) = K−1

MM −Q−1. The predictive
equations using the FITC Gaussian process model are then given by µ(x∗) = K∗MB

(1) and σ2
∗ = K∗∗ −

K∗MB
(2)KM∗ + σ2. Furthermore, we define the following quantities for a kernel K:

L
(1)
i =

∫
K(x∗,xi)p(x∗) dx∗ L

(2)
ij =

∫
K(x∗,xi)K(x∗,xj)p(x∗) dx∗

L
(3)
i =

∫
x∗K(x∗,xi)p(x∗) dx∗ L(4) =

∫
K(x∗,x∗)p(x∗) dx∗

(14)

Thus L(1) is a N × 1 vector, L(2) a N × N matrix, L(3) a N × D matrix, and L(4) a scalar with N
the number of training data points and D the dimension of the data. In [9] it has been shown that for the
SE kernel (cf. Eq. (2)) the expressions m(ut,St), v(ut,St), and cov(yt, yt′) can be stated in terms of
L(1), . . . ,L(4) which can be solved analytically:

L
(1)
i = v|W−1S + I|−1/2 exp

(
− 1

2 (u− xi)T (S +W )−1(u− xi)
)

L
(2)
ij = v2|2W−1S + I|−1/2

exp
(
− 1

2

[
(u− xd)T (W

2 + S)−1(u− xd) + (xi − xj)T (2W )−1(xi − xj)
])

L
(3)
i = L

(1)
i ci

L(4) = v

(15)

where xd = 1
2 (xi + xj) and ci = (W−1 + S−1)−1(W−1xi + S−1u).

In the remainder we derive analytical expressions for the mean m(ut,St), variance v(ut,St) and co-
variance terms cov(yt, yt′) for the FITC kernel function with respect to some base kernel K. We omit the
time index t for brevity.

Computing the mean. Since the predictive mean is given by µ(x∗) = K∗MB
(1) it holds that

m(u,S) = Ex∗ [µ(x∗)] =
∫
µ(x∗)p(x∗) dx∗ =

∑
m

B(1)
m

∫
K(x∗, x̄m)p(x∗) dx∗ (16)

Thus m(u,S) =
∑
mB

(1)
m L

(1)
m = (B(1))TL(1) where L(1) is the required integral for the base kernel K

with respect to the pseudo-inputs.



Computing the variance. Since v(u,S) = Ex∗ [σ
2(x∗)] + Ex∗ [µ(x∗)2] − E2

x∗ [µ(x∗)]. These three
terms give respectively

Ex∗ [σ
2(x∗)] =

∫ (
K(x∗,x∗)−K∗MB

(2)KM∗

)
p(x∗) dx∗

= L(4) −
∑
i

∑
j

∫
K(x∗, x̄i)B

(2)
ij K(x∗, x̄j)p(x∗) dx∗ = L(4) −

∑
i

∑
j

B
(2)
ij L

(2)
ij

Ex∗ [µ(x∗)2] =
∫

(
∑
i

B
(1)
i K(x∗, x̄i))2p(x∗) dx∗

=
∑
i

∑
j

B
(1)
i B

(1)
j

∫
K(x∗, x̄i)K(x∗, x̄j)p(x∗) dx∗ =

∑
i

∑
j

B
(1)
i B

(1)
j L

(2)
ij

E2
x∗ [µ(x∗)] = (

∑
i

B
(1)
i L

(1)
i )2

(17)

Thus we obtain the following expression for the variance

v(u,S) = L(4) −
∑
i

∑
j

(B(2)
ij −B

(1)
i B

(1)
j )L(2)

ij − (
∑
i

B
(1)
i L

(1)
i )2

= L(4) − Tr
(

(B(2) −B(1)(B(1))T )L(2)
)
− Tr

(
B(1)(B(1))TL(1)(L(1))T

) (18)

Computing the covariances. For the covariance terms we compute cov(yt,xt). The needed covariances
can then be obtained by removing the oldest element of the state vector xt. Omitting the time index, it holds
that cov(y,x) = E[yx]− E[y]E[x] where E[y] = m(u,S) and E[x] = u. Since

E[yx] =
∫
xµ(x)p(x) dx

=
∑
m

B(1)
m

∫
xK(x, x̄m)p(x) dx =

∑
m

B(1)
m L(3)

m

(19)

we obtain the following expression for the covariance terms

cov(y,x) =
∑
m

B(1)
m L(3)

m − (
∑
m

B(1)
m L(1)

m )u (20)

In the next section we present experimental results for multiple-step ahead prediction for two benchmark
problems leading to a better predictive distribution when using the FITC approximation compared to a
standard GP. At the same time computing the predictive distribution is more efficient since the expressions
L(1), . . . ,L(4) are computed for the base kernel K with respect to the pseudo-inputs X̄ = {x̄m}Mm=1. Thus
L(1) is a M × 1 vector, L(2) a M ×M matrix, L(3) a M ×D matrix, and L(4) a scalar with M the number
of pseudo-inputs and D the dimension of the data.

5 Experiments
In this section we compare the FITC model with a standard GP model on two benchmark problems. We
report the mean together with their 2σ error bars. To evaluate the goodness of fit of the model we also report
the root mean squared error (RMSE) and the absolute mean error (MAE). The RMSE is defined as

RMSE =

√√√√ 1
N

N∑
i

(yi − ŷi)2, (21)

where yi is the target value, ŷi predicted value, and N the number of test examples. Since the RMSE can be
dominated by a few large residuals we also report the MAE which is defined as

MAE =
1
N

N∑
i

|yi − ŷi|, (22)

in which the influence of individuals is linear.



Example 1. The first benchmark that we consider is a simple dynamical system with one system state and
one control input given by

xk+1 = 0.95 ∗ tanh(xk) + sin(uk), yk = xk + εk (23)

where at time k, xk is the system state, uk is the known control input, and εk ∼ N (0, σ2) is a noise term.
We generated time series data of 1000 points used for training. Given values yk, uk for k = 1, . . . , 1000

we generated a training data set of the form

X =


y1 u1

y2 u2

...
...

y999 u999

 Y =


y2
y3
...

y1000

 (24)

We trained a GP model with a squared exponential kernel as in Eq. (2) on N = 200 points randomly drawn
training data points. The sparse GP model used a squared exponential base kernel and was trained using all
training data and M = 20 pseudo-inputs. Figure 1 shows the mean prediction and 2σ error bars of both
models from k = 1 to k = 100 steps ahead on a separate test set. In the training data the control signal
ranged between −2 and 2 whereas in the test set the control signal ranged between −3 and 3 explaining the
higher amount of uncertainty whenever |uk| > 2 occurs. The sparse GP model shows a mean prediction
that is closer to the true model with less uncertainty. The RMSE and MAE are reported in Table 1 showing
slightly better values for the FITC model. The FITC model is, however, much more efficient for multiple-
step ahead prediction since M � N .
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Figure 1: Dynamic system 100-step ahead prediction benchmark. Left: standard GP using 200 randomly
drawn training inputs. Right: FITC with 20 pseudo-inputs.

Table 1: Comparison for two multiple-step ahead prediction benchmarks.
Example 1 Example 2
GP FITC GP FITC

RMSE 0.55 0.54 0.34 0.09
MAE 0.37 0.35 0.26 0.06

Example 2. A well-known benchmark for multiple-step ahead prediction is the Mackey-Glass chaotic
time series, defined as dz(t)

dt = −bz(t) + a z(t−τ)
1+z(t−τ)10 , which shows strong non-linear behaviour [6]. In our

experiments we used a = 0.2, b = 0.1, and τ = 17 and the resulting time series was re-sampled with period
1 and normalized. For the models we used 16 lagged outputs in the state vector xk = [yk−16, . . . , yk−1]
where yk is the observed system state xk corrupted by white noise with variance 0.001.



We trained a GP model with a squared exponential kernel as in Eq. (2) on N = 200 points randomly
drawn from a time series of 1200 points. The sparse GP model used a squared exponential base kernel and
was trained using the 1200 points and M = 40 pseudo-inputs. Figure 2 shows the mean prediction and two
standard deviations of both models from k = 1 to k = 100 steps ahead on a separate test set. The sparse
GP model clearly shows a mean prediction that is closer to the true model with less uncertainty. At the same
time the k-step ahead prediction is much more efficient since M � N . The RMSE and MAE are reported
in Table 1, showing much beter values for the FITC model.
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Figure 2: Mackey-Glass 100-step ahead prediction benchmark. Left: standard GP using 200 randomly
drawn training inputs. Right: FITC with 40 pseudo-inputs.

6 Conclusions
In this paper we looked at the problem of non-linear time series forecasting in the context of iterative one-
step predictions. A naive approach that only propagates the mean of the predictive distribution typically
underestimates the uncertainty of the model predictions. This can be improved by also taking the uncertainty
of the input into account. Details of such an approach has been worked out earlier using Gaussian processes.
Naive implementations of Gaussian processes, however, limits their applicability to small data sets since
inverting the kernel matrix costs O(N3) with N the number of data points.

In this paper we have derived analytical equations for multiple-step ahead forecasting using sparse Gaus-
sian processes. We reported results on two dynamical systems examples between a standard GP and a sparse
GP. The sparse GP approach produced results several magnitudes faster than the standard GP approach. As
a consequence of being able to handle larger data sets this also resulted in better predictive distributions.

Further research will focus on extending the presented framework for forecasting using sparse GPs with
dimensionality reduction [14] and control optimization [12]. Other interesting directions are to combine the
problem of predicting from noisy inputs with the problem of training a model from noisy inputs.
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