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Abstract. In many supervised learning tasks it can be costly or infea-
sible to obtain objective, reliable labels. We may, however, be able to
obtain a large number of subjective, possibly noisy, labels from multi-
ple annotators. Typically, annotators have different levels of expertise
(i.e., novice, expert) and there is considerable diagreement among an-
notators. We present a Gaussian process (GP) approach to regression
with multiple labels but no absolute gold standard. The GP framework
provides a principled non-parametric framework that can automatically
estimate the reliability of individual annotators from data without the
need of prior knowledge. Experimental results show that the proposed
GP multi-annotator model outperforms models that either average the
training data or weigh individually learned single-annotator models.

1 Introduction

In most learning settings a function is learned from inputs to outputs and it is as-
sumed that outputs are available for training. In contrast to this, there are many
real-world scenarios in which the true values of the outputs used for training are
unknown or very expensive to obtain. Instead, multiple annotators are available
to provide subjective, noisy estimates of these outputs. For example, annotators
can be radiologists [1, 2] who provide a subjective (possible noisy) opinion about
a suspicious region on a medical image as being malignant or benign. The actual
gold standard (whether it is cancer or not) can be obtained from biopsies, which
is an expensive and invasive procedure. Text and image classification are other
learning scenarios where multiple human annotators subjectively assign inputs
to some categories [3–8]. The amount of noise in the annotators’ estimates of
the true output can range from very few (annotators which are domain experts)
to very much (annotators which are only novice).

Learning with multiple annotators is a special case of supervised learning in
which a function f : X → Y is learned given a training data setD = {(xi, yi)}Ni=1.
It can be considered in various learning settings, i.e., regression, binary and
multi-class classification, and ranking. Previous work on learning with multi-
ple annotators has focused on learning f using parametric models [1, 2, 9]. In



this paper we present a non-parametric approach based on Gaussian processes
(GPs) [10]. Gaussian processes provide a rich, principled, and well-established
alternative to parametric models. We provide details on predictive equations and
hyperparameter optimization for regression with multiple annotators.

The rest of this paper is structured as follows. Section 2 gives background on
Gaussian process regression. Section 3 describes regression with multiple anno-
tators. Section 4 presents an experimental evaluation of our approach. Section 5
concludes and discusses some directions for future work.

2 Gaussian Process Regression

We denote vectors x and matrices K with bold-face type and their components
with regular type, i.e., xi, Kij . With xT we denote the transpose of the vector x.
Let x ∈ RD be an input, y ∈ R an output, and let D = {(x1, y1), . . . , (xN , yN )}
a set of N observed input-output pairs. Denote with X = {x1 . . . ,xN} and
Y = {y1, . . . , yN} the inputs and outputs occurring in D. We assume that D
is generated by an unknown function f : RD → R where the observations are
possibly corrupted with Gaussian noise, i.e., yi = f(xi) + εi with εi ∼ N (0, σ2

i ).
Usually, the noise is taken uniform σ2

i = σ2 for every input xi, but this notation
is consistent with the multi-annotator model described in Section 3 in which the
noise model will be input dependent and the annotator identities involved.

A Gaussian process (GP) is a collection of random variables, here {f(xi)}i∈I

for some index set I, any finite number of which have a joint Gaussian distri-
bution [10]. A GP f ∼ GP(m,K) specifies a prior distribution on functions
and is completely specified by its mean function and kernel function. The kernel
function k (also called (co)variance function) is a function mapping two argu-
ments into R that is symmetric, i.e., k(x,x′) = k(x′,x), and positive definite,
i.e., zTKz > 0 for all nonzero vectors z with real entries (zd ∈ R) and K as
defined below. The kernel function can be used to construct a covariance matrix
K with respect to a set {x1, . . . ,xN} by defining Kij = k(xi,xj). An often used
kernel is the Gaussian kernel:

k(xi,xj) = σ2
f exp

(
−1

2
(xi − xj)TA−1(xi − xj)

)
, (1)

where A = diag(`21, . . . , `
2
D) with hyperparameters specifying the signal variance

(σ2
f ) and specifying the length-scales, i.e., how much the function can vary for

each input dimension (`d for d = 1, . . . , D). A kernel function k leads to a
multivariate Gaussian prior distribution on any finite subset f ⊆ {f(xi)}i∈I of
function values

p(f) =
1

(2π)
N
2 |K| 12

exp
(
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2
fTK−1f

)
. (2)

Given a GP prior over functions and a set of observations D, a posterior distri-
bution p(f |D) can be computed that can be used to make predictions at new



test points x,x′. Let Σ = diag(σ2
1 , . . . , σ

2
N ). The standard predictive equations

for regression with a zero-mean GP are given by [10]

fD(x) = k(x,X)(K +Σ)−1Y ,

covD(f(x), f(x′)) = k(x,x′)− k(x,X)(K +Σ)−1k(X,x′).
(3)

Maximum likelihood estimates for the hyperparameters can be obtained by
minimizing the negative log marginal likelihood (e.g., using gradient descent),
which can be evaluated exactly in the case of GP regression and is given by [10]

− log p(Y |X) =
1
2
Y T (K +Σ)−1Y +

1
2

log |K +Σ|+ N

2
log(2π). (4)

3 Multi-Annotator Regression

Let Dm = {(xm
i , y

m
i )}Nm

i=1 be the data set of the mth annotator. We assume
there are M annotators, each annotator m providing noisy labels that follow a
Gaussian distribution N (0, σ2

m) with unknown noise-level σm. Let N =
∑

mNm

be the total number of annotations. Let Xm,Ym be the inputs and outputs
occurring in Dm. Define X = ∪M

m=1Xm, Y = {Y1, . . . ,YM}. Define I to be the
number of (unique) inputs in X. Furthermore, we define for i = 1, . . . , I

1
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m

, Σ̂ = diag(σ̂2
1 , . . . , σ̂

2
I ), (5)

with m ∼ i denoting the sum over annotators m that annotated sample xi.
We assume that annotators provide labels independently of each other.

Therefore, the multi-annotator likelihood factorizes over cases in the training
set and can, up to a constant, be rewritten in terms of the single-annotator
model
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∏
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(6)

with c independent of f . The posterior process

p(f |Y ) ∝ p(f)p(Y |f) ∝ exp
(
−1

2
fTK−1f − 1

2
(Ŷ − f)T Σ̂−1(Ŷ − f)

)
, (7)

is thus Gaussian N (m,V ) ∝ exp(− 1
2f

TV −1f + fTV −1m) with mean and
covariance given by

m = (K−1 + Σ̂−1)−1Σ̂−1Ŷ ,

V = (K−1 + Σ̂−1)−1.
(8)



From the posterior distribution we can derive the predictive equations for the
multi-annotator model. The equations closely follow the predictive equations of
the single-annotator model, but now with weighted output Ŷ and covariance Σ̂
which is no longer homogeneous as it depends on the data sample:

fD(x) = k(x,X)(K + Σ̂)−1Ŷ ,

covD(f(x), f(x′)) = k(x,x′)− k(x,X)(K + Σ̂)−1k(X,x′),
(9)

where we used the fact that for a GP E[f∗|Y ,X,x∗] = k(x∗,X)K−1E[f |X,Y ],
with E[f |X,Y ] denoting the posterior mean of f given X and Y [10].

From Eq. (6) follows that the evidence for the multiple-annotator regression
model with observations Y is very similar to that of a single-annotator model
with observations Ŷ . Some bookkeeping to account for the constant c gives
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(10)

It can be checked that with one annotator the last four terms indeed cancel out
because Σ̂ = σ2I, Ŷ = Y , and σ̂2

i = σ2.

4 Experiments

We tested the GP multi-annotator model on the ‘housing’ benchmark dataset
from the UCI machine learning repository. The target labels in the dataset were
taken as ground truth from which we generated annotations for each annota-
tor by adding Gaussian noise to the target label using their individual noise
level. Inspired by [2, 9], we choose the following set-up. First, we randomly split-
ted the dataset into a training dataset (70%) and test dataset (30%), which
were normalized using the training data. Second, we generated annotations for
each annotator. We used three annotators with a variance of 0.25, 0.5, and
0.75. We did not use all the training data but only annotated a portion of it.
For each annotator we selected A% of the training data at random for annota-
tion, with A ∈ {10, 20, . . . , 100}. Third, we report the root mean squared error

(RMSE(x, y) =
√

1
N

∑N
i=1(xi − yi)2) on the test data, averaged over 50 runs,

for both the prediction of the targets/outputs and the hyperparameter prediction
of the annotator noise-levels.

We show in Fig. 1 the RMSE results of six different models, the GP multi-
annotator model, a GP fitted to the averaged training data provided by the
annotators, three GP models fitted to each annotator individually, and a model
that weighs the individual GP models. The latter model takes the mean pre-
diction of each individual GP model and weighs it with the inverse predicted
variance of that model. Note that the GP fitted to the average training data
treats each annotator equally and does not learn individual noise levels. Each



model used a Gaussian kernel (cf. Eq. (1)), a zero mean function, and Gaussian
likelihood function.
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Fig. 1. The RMSE of the GP multi-annotator model, the GP fitted to the average
response, and GPs fitted to each individual annotator on the ‘housing’ dataset (506
instances, 13 features). Left: RMSE for predicted targets. Right: RMSE for predicted
noise-level hyperparameters.

In Fig 1, left panel, we plot the RMSE results with respect to the target
labels. In Fig 1, right panel, we plot the RMSE results with respect to the
noise-levels of the annotators used for data generation. Clearly, the GP multi-
annotator model outperforms the other models, on both target prediction and
hyperparameter estimation, but the precise amount depends on the dataset, the
number of annotations, and the number of annotators and their noise levels.

The GP multi-annotator model improves upon earlier reported results [2, 9];
(1) It provides a non-parametric framework, (2) it is not necessary to annotate
all samples by all annotators, and (3) the tuning of hyperparameters is fully
automatic. In addition, since all data is properly combined using a Bayesian
framework, ad hoc methods such as adding additional constraints to control
annotator influence [11] or pruning low-quality annotators [12] are unnecessary.

5 Conclusions and Future Work

In this paper we presented a GP framework for regression with multiple noisy
annotators. GPs provide a flexible, non-parametric framework, which naturally
deals with missing annotations, and allows automatic tuning of hyperparameters
using the evidence. The individual annotator noise levels can therefore be learned
from data allowing for a better weighting of annotations leading to superior
performance compared to a model fitted to an average response or a weighting
of individually trained models.

For future work the GP multi-annotator model can be extended to be robust
against outliers and relax the assumption of homogeneous Gaussian noise for



each annotator. Furthermore, the model can be extended to other supervised
learning tasks like binary classification. GPs can be extended to binary classi-
fication by using the GP as a latent function whose sign determines the class
label. Exact evaluations are, however, intractable, because of the non-Gaussian
likelihood function and approximations are needed.
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