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Abstract This paper presents a framework for optimizing the preference learning pro-

cess. In many real-world applications in which preference learning is involved the avail-

able training data is scarce and obtaining labeled training data is expensive. However,

in most of the preference learning situations data is available from multiple subjects.

We use the multi-task formalism to increase the individual training data by making use

of the preference information learned from other subjects. Furthermore, since obtaining

labels is expensive, we optimally choose which data to ask a subject for labelling such

that to obtain maximum of information about his/her preferences. This paradigm —

called active learning— has hardly been studied in a multi-task formalism. We propose

an alternative for the standard criteria in active learning which actively chooses queries

by making use of the available preference data from other subjects. The advantage of

this alternative is the reduced compuation costs and time subjects are involved.
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1 Introduction

Recently, there has been a wide interest in learning the preferences of people within

artificial intelligence research (Doyle, 2004). Preference learning is a crucial aspect in

modern applications such as decision support systems (Chajewska et al, 2000), rec-

ommender systems (Blythe, 2002; Blei et al, 2003), and personalized devices (Clyde

et al, 1993; Heskes and de Vries, 2005). The preferences of a person are learned in order

to recommend/take decisions on his/her behalf. For example, a movie recommender

system needs to learn your preferences about movies before making a recommendation

about a movie you might prefer.

Since preference learning is a cumbersome process it is important to make it as

efficient as possible in order to reduce the costs and time involved. In practice one

has to minimize the time subjects are involved. The preferences should be learned

accurately from a minimum number of training data.

In most of the situations in which preference learning is involved data is available

from multiple subjects. Thus, even though individual data is scarce and difficult to

obtain, we can optimize the learning of preferences of a new subject by making use

of the available data from other subjects. Learning in this setting is well-known as

multi-task or hierarchical learning and has been studied extensively in recent years

in machine learning. By using the multi-task formalism, the preference data collected

for other subjects can be gathered and used as a prior information when learning the

preference of a new subject. Furthermore, to deal with the fact that obtaining labeled

data is expensive we can speed up learning by optimally choosing the examples to be

queried. At each learning step we can decide which example gives the most information

about the subject’s preferences. This paradigm, called active learning in the machine

learning literature and related to sequential experimental design in statistics, has been

studied extensively, but hardly in the multi-task setting.

The aim of this article is to introduce a framework for optimizing the preference

learning process. This framework considers the combination between active learning and

multi-task learning in the preference learning context. The contribution of this paper is

a criterion for active learning designed for the multi-task setting.

1.1 Structure of this Article

The structure of this article is as follows.

In Section 2, we describe the learning framework. We consider learning from qual-

itative preference observations which can be modeled using the probabilistic choice

models introduced in Section 2.1. Learning a utility function representing the prefer-

ences of a subject from this type of preference observations is described in Section 2.2.

Learning the utility function in a multi-task setting by making use of the data available

from other subjects is considered in Section 2.3.

In Section 3 we present several criteria for selecting the most informative exper-

iments with respect to a subject’s preferences. After reviewing some of the standard

criteria from experimental design, we propose an alternative criterion which makes use

of the preference observations collected already from a community of subjects. We show

that this alternative criterion is connected to the standard criteria from experimental

design. Furthermore, it has several advantages due to its interpretation and simplicity.
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In Section 4 we demonstrate experimentally the usefulness of our framework on

an audiological data set. The framework’s efficiency is measured in terms of: i) the

accuracy with which the preferences are learned; and ii) the number of preference

observations needed in order to get a good model of a person’s preferences.

In Section 5 we give conclusions.

1.2 Related Work

In this section we review some studies from preference learning, multi-task learning,

and active learning related to the work presented in this paper.

1.2.1 Preference Learning

The existing approaches to preference learning can be divided into two categories.

The first category aims at obtaining a ranking of instances from a set of pairwise

preferences by solving an augmented binary classification problem (Herbrich et al,

1998; Har-peled et al, 2002; Fürnkranz and Hüllermeier, 2003; Aiolli and Sperduti,

2004). The second category uses regression to map instances to target valuations for

direct ranking (Caruana et al, 1996; Crammer and Singer, 2001; Chu and Ghahramani,

2005b; Brochu et al, 2007). We focus on the latter and use a utility function in order to

model the subject’s preferences. The utility function is learned in a Bayesian framework.

By formulating the preference elicitation problem as a probabilistic Bayesian learning

problem, one can deal with inconsistencies in subjects responses as well as learn biases

the subjects may have.

1.2.2 Multi-Task Learning

The basic idea in multi-task learning is that models learned for different tasks have

parts in common. In a Bayesian framework this often boils down to the sharing of a

hierarchical prior (Blei et al, 2003; Bakker and Heskes, 2003; Evgeniou et al, 2005; Xue

et al, 2007). Learning preferences from qualitative preference statements with Gaussian

processes in the context of multi-task learning has been considered in (Birlutiu et al,

2009).

1.2.3 Active Learning

Methods for active learning can be roughly divided into two categories: those with

and without an explicitly defined objective function. Uncertainty sampling (Lewis and

Gale, 1994), Query-by-Committee (Seung et al, 1992; Freund et al, 1997) and variants

thereof belong to the latter category. They are based on the idea of selecting the most

uncertain data given the previously trained models. The methods with an explicit

objective function are often motivated by the theory of experimental design (Fedorov,

1972; Chaloner and Verdinelli, 1995; Schein and Ungar, 2007; Lewi et al, 2009; Dror and

Steinberg, 2008). The objective function then quantifies the expected gain of labeling a

particular input, for example in terms of the expected reduction in the entropy of the

model parameters (Mackay, 1992; Cohn et al, 1996). The statistical methods perform

better (Schein and Ungar, 2007), yet are computationally more demanding.
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A sub-trend is to improve the performance of the active learning methods by com-

bining them with heuristics designed either for the context in which they are applied

or by the models they use, e.g., making use of the unlabeled data available (McCal-

lum and Nigam, 1998; Yu et al, 2006), exploiting the clusters in the data (Dasgupta

and Hsu, 2008), diversifying the set of hypotheses (Melville and Mooney, 2004), active

learning for collaborative filtering (Jin and Si, 2004; Harpale and Yang, 2008; Boutilier

et al, 2003), and active learning with Gaussian processes (Chu and Ghahramani, 2005a;

Brochu et al, 2007).

In this paper we propose an alternative to the standard active learning criteria

which makes use of the preference observations collected already from a community

of subjects. This criterion, which we call the Committee criterion, is thus particularly

designed for the multi-task setting that we consider in this paper. The idea behind the

Committee criterion is related to the Query-by-Committee method from active learning

which selects those queries that have maximum disagreement amongst an ensemble of

hypotheses. The difference in our case is that the group of subjects, for which the

preferences were already learned, plays the role of the ensemble of hypotheses.

1.3 Notation

Boldface notation is used for vectors and matrices and normal fonts for the compo-

nents of vectors and matrices or scalars. Upperscripts are used to distinguish between

different vectors or matrices and lowerscripts to address their components. The nota-

tion N (µ, Σ) is used for a multivariate Gaussian with mean µ and variance Σ. The

transpose of a matrix M is denoted by MT . Capital letters are used for constants and

small letters for indices, e.g., i = 1, . . . , I.

2 Learning Framework

The idea of using preference observations from other subjects in order to optimize

the process of learning the preferences of a new subject can be basically applied in

any preference learning context. In this paper, we restrict to qualitative preference

observations which can be modeled using the probabilistic choice models described in

this section.

2.1 Probabilistic Choice Models

Since people are very good in making comparisons, in many real-world applications

preferences are learned from experiments in which the subject makes a choice for one

of the presented alternatives. Let X = {x1, . . . , xI} be a set of inputs. Let D be a set

of J observed preference comparisons over instances in X corresponding to a subject,

D = {(aj , cj)|1 ≤ j ≤ J, cj ∈ {1, . . . , A}} (1)

with aj = (xi1(j), . . . , xiA(j)) the alternatives presented and cj the choice made,

i1, . . . , iA : {1, . . . , J} → {1, . . . , I} index functions such that i1(j) represents the

first input presented in the jth preference comparison and cj = c means that xic(j) is
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chosen from the A alternatives presented in the jth comparison. For A = 2 this setup

reduces to pairwise comparison between two alternatives.

The main idea behind probabilistic choice models is to assume a latent utility func-

tion value U(x) associated with each input x which captures the individual preference of

a subject for x. In the ideal case the latent function values are consistent with the pref-

erence observations, which in probabilistic terms can be written as p(cj = c|aj , U) = 1

U(xic(j)) > U(xi
c′

(j)), c′ 6= c, which means that alternative c is preferred over the other

alternatives c′ in the jth comparison whenever the utility for c exceeds the utilities for

the other alternatives c′. In practice, however, subjects are often inconsistent in their

responses. A very inconsistent subject will have a high uncertainty associated with

the utility function; this uncertainty is directly taken into account in the probabilistic

framework. We define this probabilistic framework by making a standard modeling

assumption (Bradley and Terry, 1952; Kanninen, 2002; Glickman and Jensen, 2005)

that the subject’s decision in such a forced-choice comparison follows a multinomial

logistic model, which is defined as

p(cj = c|aj , U) =
exp

h

U(xic(j))
i

PA
c′=1 exp

h

U(xi
c′

(j))
i . (2)

Efficiently learning preferences reduces to learning the unknown utility function U

as accurately and with as few comparisons as possible.

2.2 Learning the Utility Function

The utility function U is a real-valued function, U : X → R, which associates with

every input x ∈ X a real number U(x). Each input x ∈ X is characterized by a set

of features, φ(x) ∈ R
T . One possible choice for the utility function is to write it as a

linear combination of the features,

U(x) =

TX

i=1

αiφi(x) , (3)

where α is a vector of weights specific to a subject which captures the importance of

each feature of x when evaluating the utility U . The preferences are thus encoded in

the vector α and learning the utility function reduces to learning α.

To allow more flexibility for U we can use a semiparametric model where the

utility function is defined as a linear combination of basis functions defined by a kernel

κ centered on the data points,

U(x) =
IX

i=1

αiκ(x, xi) , (4)

where the vector α with dimension I—the number of data points—captures the pref-

erences of the subject.

In order to learn the utility function from Equation (4) we treat the vector of

parameters α as a random variable. The same can be done when using the linear

utility model from Equation (3). We consider a Gaussian prior distribution over α,
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p(α) = N (µ, Σ), which is updated based on the observations from the preference

comparisons using Bayes’ rule,

p(α|D, µ, Σ) ∝ p(α)
JY

j=1

p(cj |aj , α) , (5)

with the likelihood terms of the form given in Equation (2). The posterior distribution

obtained is approximated to a Gaussian. The Gaussian approximation of the poste-

rior is a good approximation because with few data points the posterior is close to

the prior which is a Gaussian, and with many data points the posterior approaches

again a Gaussian as a consequence of the central limit theorem (Bishop, 2006). To per-

form the approximation of the posterior we use deterministic methods (e.g., Laplace’s

method (Mackay, 2002), Expectation Propagation (Minka, 2001)) since they are com-

putationally cheaper than the non-deterministic ones (sampling) and because they are

known to be accurate for these types of models (Glickman and Jensen, 2005).

2.3 Multi-task Preference Learning

One property which distinguishes the preference learning from other learning settings

is that in most of the cases preference observations are available from multiple sub-

jects. We make use of this property when learning the preferences of a new subject. We

use Bayesian hierarchical modeling which assumes that the parameters for individual

models are drawn from the same hierarchical prior distribution. Let us assume that we

already have preference data available from a group of M subjects. We make the com-

mon assumption of a Gaussian prior distribution, p(αm) = N (µ̄, Σ̄), m = 1, . . . , M

with the same µ̄ and Σ̄ for the preference models of all subjects. This prior is updated

using Bayes’ rule based on the observations from each subject, resulting in a posterior

distribution for each individual subject. The hierarchical prior is obtained by maximiz-

ing the log-likelihood of all data in a so-called type-II maximum likelihood approach.

This optimization is performed by applying the EM algorithm (Gelman et al, 2003),

which reduces to the iteration (until convergence) of the following two steps:

E-step: Estimate the sufficient statistics (mean µm and covariance matrix Σm) of the

posterior distribution corresponding to each subject m, given the current estimates

(µ̄(t) and Σ̄(t)) of the hierarchical prior.

M-step: Re-estimate the parameters of the hierarchical prior:

µ̄
(t+1) =

1

M

MX

j=1

µ
m

,

Σ̄
(t+1) =

1

M

MX

j=1

(µm − µ̄
(t+1))(µm − µ̄

(t+1))T +
1

M

MX

j=1

Σ
m

.

Once we have learned the hierarchical prior, N (µ̄, Σ̄), we can use it as an informative

prior for the preference model of a new subject in Equation (5).
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3 Active Preference Learning

Active learning, also known in the statistics literature as sequential experimental de-

sign, is suitable for the situations in which labeling points is difficult, time-consuming,

and expensive. This is also the case in most of the preference learning settings in which

the labels are given by people in an explicit way. The idea behind active learning is that

by optimal selection of the training points a greater accuracy can be obtained than by

random selection. The scenarios in which active learning can be applied belong to one

of the following three categories: i) generating de novo points for labeling; ii) stream-

based active learning where the learner decides whether to request the label of a given

instance or not; iii) pool-based active learning where queries are selected from a large

pool of unlabeled data. In this paper we consider the pool based active learning.

We assume that the current model of the preference data observed from a subject

is a Gaussian distribution M = N (µ, Σ). Let p(c|a,M) be the probability of an ob-

servation given the data seen so far and let the new model obtained after incorporating

an observation (a, c) be M(a,c) ≈ N (µ(a,c), Σ(a,c)). There are several strategies for

active learning, all being concerned with evaluating the informativeness of the unla-

beled points. In the following we briefly review these strategies and the way they can

be implemented in the learning framework considered here.

1. Uncertainty Sampling (Lewis and Gale, 1994). In this strategy an active learner

chooses for labeling the example for which the model’s predictions are most un-

certain. The uncertainty of the predictions can be measured, for example, using

Shannon entropy

Uncertainty(a) =
X

c

p(c|a,M) log p(c|a,M) . (6)

For a binary classifier this strategy reduces to querying points whose prediction

probabilities are close to 0.5. Intuitively this strategy aims at finding as fast as

possible the decision boundary since this is indicated by the regions where the

model is most uncertain.

2. Query-by-Committee (QBC) (Seung et al, 1992) is an effective active learning

approach that has successfully been applied to many problems. In each iteration

QBC i) constructs a committee of models based on the current training set, and

ii) ranks the unlabeled examples according to some measure of disagreement among

the committee members. The input with the highest disagreement score is then

selected for labeling and added to the training data. We will discuss how to adapt

QBC to our preference learning setting in Section 3.1.

3. Variance Reduction (Mackay, 1992). This strategy, also known in experimen-

tal design as D-optimality (Fedorov, 1972; Chaloner and Verdinelli, 1995; Berger,

1994; Ford and Silvey, 1980), chooses as the most informative experiments the ones

that give the most reduction in the model’s variance. The motivation behind this

strategy is a result of (Geman et al, 1992) which shows that the generalization

error can be decomposed into three components: i) noise (which is independent

of the model or training data); ii) bias (due to the model); iii) model’s variance.

Since the model cannot influence the noise and the bias components, the future

generalization error can only be influenced via the model’s variance. Formally, this

criterion can be written as

Variance(a) =
X

c

p(c|a,M)variance[M(a,c)] . (7)
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In the setting considered in this paper the model is a Gaussian distribution, thus

the variance of the model is expressed in the covariance matrix. In order to use

Equation (7) we need to choose a measure for the variance. We can consider, for

example, the determinant of the covariance matrix

Variance-logdet(a) =
X

c

p(c|a,M) log det(Σ(a,c)) , (8)

or the trace of the covariance matrix

Variance-trace(a) =
X

c

p(c|a,M)Tr(Σ(a,c)) . (9)

4. Expected Model Change (Cohn et al, 1996). This strategy chooses as the most

informative query the one which when added to the training set would yield the

greatest model change. Quantifying the model change depends on the learning

framework. For gradient-based optimization the change can be measured via the

training gradient, i.e., the vector used to re-estimate parameter values (Settles and

Craven, 2008). In the Bayesian framework, the model change can be quantified via

a distance measure between the current distribution and the posterior distribution

obtained after incorporating the candidate point

Change(a) =
X

c

p(c|a,M)distance
h

M,M(a,c)

i

.

A suitable distance for our setting is the Kullback-Leibler divergence between dis-

tributions, which for two Gaussians has a closed form solution and can be written

as follows

Change-KL(a) =
X

c

p(c|a,M)KL
h

N (µ, Σ),N (µ(a,c), Σ(a,c))
i

=
X

c

p(c|a, µ, Σ)

»

log

„
det Σ(a,c)

det Σ

«

+ Tr
“

Σ
−1
(a,c)Σ

”

+

+
“

µ(a,c) − µ
”T

Σ
−1
(a,c)(µ(a,c) − µ) − n

–

. (10)

Uncertainty sampling, QBC and its variants are attractive due to their applicability

in various machine learning settings. Variance reduction and expected model change

are robust and in many situations they have proved to be the best one can do (Schein

and Ungar, 2007). Although more robust, the variance reduction and expected model

change strategies are computationally more demanding since for each candidate com-

parison query and each possible label the posterior distribution induced has to be

computed. The posterior distribution cannot be computed analytically and approxi-

mations are needed; these approximations are usually costly. In the following we discuss

several variants of QBC designed for the setting in which there is available data from

multiple subjects (Section 3.1). Furthermore, we show how these variants of QBC can

be naturally linked to the hierarchical Bayesian modeling for reducing the computa-

tions (Section 3.2). Finally, we show connections between the active learning criteria

mentioned above by reducing them to a similar form (Section 3.3).
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3.1 QBC for Preference Learning

3.1.1 The Committee Members

For the QBC approach to be effective it is important that the committee be made up

of consistent and representative models. The main idea in this paper is to exploit the

preference learning setting with multiple subjects and use the learned models of other

subjects M1, . . . ,MM as the committee members when learning the preferences of a

new subject.

After choosing the committee we still have to decide upon a suitable criterion for

selecting the next examples. Some measures of disagreement among the committee

members appear to be most obvious, and in the following we will consider several

alternatives.

3.1.2 Vote Criterion

A simple and straightforward way is to consider the labels assigned by the other sub-

jects, e.g., through the Vote criterion defined as

Vote(a) = max
c

MX

m=1

δ(a, c; m) , (11)

where δ(a, c; m) = 1 if (a, c) ∈ Dm, and δ(a, c; m) = 0 otherwise. The score Vote(a) is

minimal when the labels assigned by the committee members are equally distributed

(total disagreement), and maximal when all members fully agree. There are two prob-

lems with this criterion. First, a comparison a may not be labeled by a subject m. This

can be overcome if we consider the prediction for a computed based on the learned

model of subject m and allow each committee member to ‘vote’ for its winning class.

This same idea is implemented in the so-called vote entropy method (Dagan and En-

gelson, 1995). Second, as we will also confirm in our own experiments, in practical

applications just scoring votes turns out to be suboptimal. The reason, as also sug-

gested in (McCallum and Nigam, 1998), is that the vote criterion does not take into

account the confidences of the committee members’ predictions.

3.1.3 Disagreement Criterion

We will use the following notation for the predictive probability corresponding to a

subject m = 1, . . . , M

pm(c|a) ≡ p(c|a,Mm) .

The predictive probability can be computed either by taking into account the entire

distribution Mm = N (µm, Σm)

pm(c|a) =

Z

p(c|a, α)N (α|µm
, Σ

m)dα ,

or, for computational reasons, we can consider only a point estimate for Mm, for

example, the mean of the Gaussian distribution, and use it in Equation (2)

pm(c|a) = p(c|a, µ
m) . (12)
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Inspired by (McCallum and Nigam, 1998), we propose to measure disagreement

by taking the average prediction of the entire committee and computing the average

Kullback-Leibler (KL) divergence of the individual predictions from the average:

Disagreement(a) =

MX

m=1

1

M
KL[p̄(·|a)||pm(·|a)] , (13)

with p̄(·|x) the average predictive probability of the entire committee, which will be

more precisely defined in Section 3.2, and the KL divergence for discrete probabilities

defined as

KL[p1(·|a)||p2(·|a)] =
X

c

p1(c|a) log

„
p1(c|a)

p2(c|a)

«

.

In (McCallum and Nigam, 1998), the Disagreement is computed between committee

members constructed based on the current model, i.e., the committee changes with

every update and the criterion has to be recomputed with every update. A committee

of models learned on different scenarios is fixed and thus selecting examples solely

based on the Disagreement criterion leads to a fixed instead of an active design: all

examples can be ranked beforehand (the same applies to the Vote criterion defined

above).

3.1.4 Committee Criterion

To arrive at an active design and take into account the current model, we propose

a small modification, based on the following intuition. Querying examples on which

the committee members disagree makes sense, because it will force the current model

to make a choice between options that, according to the committee, are reasonably

plausible. However, when the current model on a particular example already “made

up its mind”, i.e., deviates substantially from the average prediction based on what it

learned from other input/output pairs, it makes no sense to still query that example,

even though the committee members might disagree. Taking into account this consid-

eration, we propose the Committee criterion which assigns a score to a candidate query

comparison a through

Committee(a) =
1

M

MX

m=1

KL[p̄(·|a)||pm(·|a)] − KL[p̄(·|a)||p(·|a)] , (14)

with p(·|a) the current model’s predictive probability based on the data seen so far.

According to this Committee criterion, the most interesting experiments are those on

which the other models disagree (the first term on the righthand side of Equation (14)),

with the current model (still) undecided (the second term on the righthand side of

Equation (14)).

An advantage of the Committee criterion is its computational efficiency: the first

term on the righthand side of Equation (14), the Disagreement, as well as the average

predictive probability can be computed beforehand. The Committee criterion does

require computation of the predictive probabilities corresponding to the current model,

but this is the least one could expect from an active design. This is to be compared

with the QBC criterion, which requires constructing new committee members with each

update, and D-optimal experimental design, which calls for keeping track of variances.
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Note that we have not made any restriction so far with respect to the probabilistic

models used in the active learning design. In the following we restrict ourselves to

the log-linear models introduced in Section 2. They have some nice properties, which

simplify the computation of the committee criterion (Section 3.2), and provide a natural

link to hierarchical Bayesian modeling (Section 2.3). The general idea, of using the

already learned models from the other scenarios as the committee members in a QBC-

like approach, is of course also applicable to other models.

3.2 Average Probability

For linear form of the utility functions the likelihood function defined in Equation (2)

is a log-linear model (Christensen, 1997). The log-odds of the model are linear in the

parameter.

Let αm be a point estimate of the model Mm learned from the observations related

to subject m. Let pm(c|a) be the predictive probability defined in Equation (12). We

define the average predictive probability of the committee, p̄(c|a), as the prediction

probability that is closest to the prediction probabilities of the members:

p̄(c|a) ≡ argmin
p(c|a)

MX

m=1

1

M
KL[p(c|a)||pm(c|a)] . (15)

The solution is the so-called logarithmic opinion pool (Bordley, 1982)

p̄(c|a) =
1

Z(a)

MY

m=1

[pm(c|a)]
1

M =
1

Z(a)
exp

 

1

M

MX

m=1

log pm(c|a)

!

, (16)

with Z(a) a normalization constant

Z(a) =
X

c

MY

m=1

[pm(c|a)]
1

M .

For log-linear models, the logarithmic opinion pool boils down to a simple averaging

of model parameters:

p̄(c|a) = p(c|a, µ̄) with µ̄ =
1

M

MX

m=1

µ
m

. (17)

This natural combination between log-linear model and logarithm opinion pool makes

that we have a preference for the logarithmic opinion pool over the linear opinion pool

used in (McCallum and Nigam, 1998).

The average µ̄ in the logarithmic opinion pool is then precisely the mean of the

learned hierarchical prior. Summarizing, once we have learned a hierarchical prior from

the data available for subjects 1 through M using the EM algorithm, we can start off

the new model M + 1 from this prior (as is normally done in hierarchical Bayesian

learning). On top of this, the same EM algorithm gives us the information we need to

compute the Committee criterion that can be used subsequently to select new inputs

to label.
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3.3 Connections between Criteria

Assuming the updates of the posterior distribution for each (a, c) lead to small changes

in the model M we can approximate the active learning criteria to the following form

X

c

p(c|a, ·)g(c|a, ·)T · g(c|a, ·) .

More precisely,

Variance-logdet(a) ≈
X

c

p(c|a, µ)g(c|a, µ)T Σ g(c|a, µ) , (18)

Committee(a) ≈
1

2

X

c

p(c|a, µ̄)g(c|a, µ̄) Σ̃ g(c|a, µ̄) , (19)

with µ̄ the hierarchical prior mean and

Σ̃ ≡
1

M

MX

m=1

(µm − µ̄)(µm − µ̄)T − (µ − µ̄)(µ − µ̄)T .

Furthermore,

Variance-trace(a) =
X

c

p(c|a, µ)g(c|a, µ)T V
2
g(c|a, µ) ,

1

2
Change-KL(x) ≈ Variance-logdet(x) ,

The proofs of the above approximations are given in the Appendix.

We will focus on the differences between the Variance-logdet criterion (considered

as the reference) and the Committee criterion. The differences between their approxi-

mations are:

1. The gradients g(c|a, ·) are evaluated at different points: the prior hierarchical mean

µ̄ and the current posterior mean µ. This effect is small since µ is still close enough

to µ̄ for a sufficiently accurate approximation of the gradients, in particular at the

start of the learning when selecting the right points to label is more important.

2. The current posterior variance Σ is replaced by Σ̃. The effect of the precise weight-

ing of the gradients is not so important, and again, at the beginning of learning Σ̃

is close to Σ.

In practice, the effect of the approximations from above is not very important, since we

will see in the experimental evaluation that the Committee criterion and the Variance-

logdet criterion work about the same. This happens because the way in which exper-

iments are selected, is more important at the beginning of the learning process, when

µ is still close to the prior mean µ̄, and Σ̃ to Σ.

4 Experimental Evaluation

In this section we discuss the results of the experimental evaluation on an artificially

simulated data set and on a real data set.
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4.1 Artificial Data

We generated artificial data for 10 settings. Each setting consists of a set of inputs (x ∈
X, x is a 2-dimensional vector) and M = 50 scenarios (each scenario is characterized

by a vector θ which generates a binary response for x ∈ X according to Equation (2)).

The goal of the simulations on the artificial data set is to validate empirically the

similarities between the active learning criteria derived in Section 3.3.

First, we quantified the effect of the approximation of the Variance-logdet criterion

stated in Equation (18). The Variance-logdet criterion needs to compute the variance

of the posterior induced by a candidate point, which is in most of the cases compu-

tationally expensive. We give an approximation scheme of this criterion which only

needs to compute gradients. The derivation of the approximation is given in Lemma 2

in Appendix. The approximation is based on Equations (22) and (23) which assumes

a small model change after incorporating a new data point, i.e., the difference between

the prior Gaussian distribution before incorporating a candidate point and the pos-

terior distribution obtained after including the point. The left-hand side of Figure 1

illustrates the model change for Gaussian distributions. The solid-line ellipse is the

contour plot of the Gaussian representing a prior distribution. This prior is updated

by incorporating training data points. After each update the posterior distribution ob-

tained is considered as the prior in the next update. The dotted-line ellipses are the

contour plots of the intermediate Gaussians obtained after 1, 2, 3, and 4 updates. The

dashed-line ellipse is the contour plot of the model obtained after 5 updates from the

prior. The magnitude of the change decreases as more data points are incorporated

into the training. The plot on the right-hand side of Figure 1 is the Spearman rank

correlation coefficient between the scores assigned by the Variance-logdet criterion and

its approximation to 20 randomly selected points in each setting from each scenario.

The error bars show the standard deviation of the correlations averaged over 10 settings

and in each setting over 50 scenarios. The model change on the x-axis is estimated by

the larger eigenvalue of the covariance matrix. The accuracy of the approximation of

the Variance-logdet is better for smaller changes from the prior to posterior.

Second, we quantified the similarity between the Variance-logdet and the Com-

mittee criteria. They can be approximated to the same form (Equations (18) and (19))

but with the difference of evaluating the gradients and the predictive probabilities at

different points, and having a different weighting matrix. In each scenario we considered

one model as the current one and learned a hierarchical prior from the other models.

We computed the scores assigned by Variance-logdet and Committee criteria to 100

randomly selected points after a certain number of updates from the prior. Figure 3

shows the Spearman rank correlations between theses scores as a function of the num-

ber of updates from the prior. The correlations decreases with more updates from the

prior.

4.2 Real Data

4.2.1 Preferences for Sound Quality

We performed a set of simulations on a data set data set of audiological experiments.

The data set, which was described in Arehart et al (2007), consists of evaluations of

sound quality from 32 subjects, 14 normal hearing and 18 hearing impaired subjects.
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Fig. 1: Left: Update of the Gaussian prior (the solid line) to new posteriors. Right: Spearman
rank correlation coefficient between the scores assigned by the Variance-logdet criterion and
its approximation to 20 randomly selected points. The error bars show the standard deviation
of the correlations averaged over 10 settings and in each setting over 50 scenarios. The model
change on the x-axis is estimated by the larger eigenvalue of the covariance matrix.
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(a) Committee

Fig. 2: Spearman correlation coefficient between the scores assigned by the Variance-logdet
and Committee criteria as a function of the number of updates from the prior. The error bars
show the standard deviation of the correlations averaged over 10 settings and in each setting
over 50 scenarios.

Each person was subjected to 576 paired-comparison listening experiments of the form

(a, c), where a = (x1, x2) and x1 and x2 represent one sound sample processed with

two different settings of the hearing-aid parameters, and c = {1, 2} denotes which of

the two options was preferred by the user.

Multi-task learning. Our first optimization proposed to the preference learning

is multi-task learning. We implemented the multi-task formalism by learning a hier-

archical prior which is used as the starting model when learning the preferences of a

new subject. In each simulation, one subject was left out and the hierarchical prior was

learned from the rest of the subjects. The data set for the left-out subject, was split

into 5 folds, 1 fold was used for training and and the others for testing. The hierar-
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chical prior was updated with the points from the training (the learning phase). After

every update predictions were made on the testing set (the accuracy of the predictions

on the test data was used as a measure of how much we learned about the subject

preferences).
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Fig. 3: Left: prediction accuracy obtained by a model which assumes no prior information
about preferences. Right: prediction accuracy obtained in the multi-task setting.

Active learning. We used the same setup as above. The training data was used as

a pool out of which points were chosen for labeling using the active learning criteria from

Section 3. A hierarchical prior was learned from the group of subjects other than the

current one. We compared the performances obtained by random and active learning

criteria. For each subject, we updated the hierarchical prior based on the information

from experiments which were selected either randomly or optimally using one of the

active learning criteria. The plots in Figure 4 show the prediction error obtained on

the test data.

5 Conclusions

Our approach to active learning in a multi-scenario setting combines a hierarchical

Bayesian prior (to learn from related scenarios) with active learning (to learn effi-

ciently by selecting informative examples). Our new Committee criterion inspired by

the Query-by-Committee method, is very similar to the standard criteria from experi-

mental design, in particular in the early stages of active learning, but computationally

much more efficient,



16

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Random

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Variance−logdet

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Committee

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Vote

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Change−KL

0 10 20

0.2

0.4

0.6

0.8

1

# updates

ac
cu

ra
cy

 

 

Uncertainty

Fig. 4: Prediction error.

Appendix

In this appendix we prove the equivalences between the active learning criteria stated in

Section 3. We show that these criteria can be approximated to the same form, namely

X

c

p(c|a, ·)g(c|a, ·)T · g(c|a, ·) .

The difference between the approximations for different criteria is the point in which

the gradients and the probabilities are evaluated and the weighting matrix of the

gradients. We assume that the current model of the data is a Gaussian distribution

M = N (µ, Σ) and M(a,c) = N (µ(a,c), Σ(a,c)) represents the Gaussian approximation

of posterior distribution obtained after incorporating (a, c). We consider probabilistic

choice models of the from given in Equation (2). We simplify the notation omitting the

references to comparison j and to the index function.

p(c|a, U) =
exp [U(xc)]

PA
c′=1 exp [U(xc′)]

Following the expression of the utility function from Section 2.2 we rewrite the equation

from above as

p(c|a, α) =
exp

h
PT

i=1 φci(xc)αi

i

Z(α, a)
with Z(α, a) ≡

X

c′

exp

"
X

i

φc′i(xc′)αi

#
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We define the derivatives of the log probabilities

g(c|a, α) ≡
∂ log p(c|a, α)

∂α
,

H(c|a, α) ≡
∂2 log p(c|a, α)

∂α∂αT
.

We first state and proof a lemma which will be be used in further proofs.

Lemma 1 For any a and α we have the following relation between second and first

derivatives:

X

c

p(c|a, α)H(c|a, α) = −
X

c

p(c|a, α)g(c|a, α)g(c|a, α)T ,

Proof. We use shorthand notation pc = p(c|a, α), gcj = gj(c|a, α), etc, omitting the

dependencies on a and α.

From log pc =
P

j φciαj − log Z, it is easy to see that

gcj = φcj −
∂ log Z

∂αj

Hc,ij = −
∂2 log Z

∂αi∂αj

Furthermore,

∂ log Z

∂αj
=

1

Z

∂Z

∂αj
=

1

Z

X

c

exp

2

4
X

j′

φcj′αj′

3

5φcj =
X

c

pcφcj

∂2 log Z

∂αi∂αj
=
X

c

φcj
∂pc

∂αi

=
X

c

φcj

"
exp(

P

j′ φcj′αj′)φciZ − ∂Z
∂αi

exp(
P

j′ φcj′αj′)

Z2

#

=
X

c

φcj [φcipc −
1

Z

∂Z

∂αi
| {z }

pc]

=
X

c

φcj [φcipc −
X

c′

(pc′φc′i)pc]

=
X

c

pcφcjφci −
X

c

pcφcj

X

c′

pc′φc′i,

and thus

gcj = φcj −
X

c

pcφcj (20)

Hc,ij = −
X

c′

pc′φc′jφc′i +
X

c′

pc′φc′j

X

c′′

pc′′φc′′i = Hij .

Note that the second derivative is in fact independent of c.
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We then have

X

c

pcHc,ij =
X

c

pcHij = Hij = −
X

c

pcφciφcj +
X

c

pcφci

X

c′

pc′φc′j

= −
X

c

pcφciφcj +
X

c

pcφci

X

c′

pc′φc′j −
X

c

pcφci

X

c′

pc′φc′j +
X

c

pcφci

X

c′

pc′φc′j

= −
X

c

pc

 

φci −
X

c′

pc′φc′i

! 

φcj −
X

c′

pc′φc′j

!

= −
X

c

pcgcigcj

which proofs the result stated in the lemma. �

Lemma 2 In a first order approximation, assuming that Σ(a,c) is close to Σ, we can

simplify

Variance-logdet(a) ≈
X

c

p(c|a, µ)g(c|a, µ)T Σ g(c|a, µ) .

Proof.

In a first order approximation we have

Σ
−1
(a,c) ≈ Σ

−1 −
∂2 log p(c|a, α)

∂α∂αT

˛
˛
˛
α=µ

(21)

where we ignored the change from the old α to a new MAP solution depending on c

and a.

For a matrix A and ǫ small compared to A, the following holds

log det(A + ǫ) = log det(A) − Tr[A−1
ǫ] (22)

Assuming that Σ−1
(a,c)

is close to Σ−1 we can plug them in the equation from above

to get

log det Σ
−1
(a,c) ≈ log det Σ

−1 − Tr[Σ H(c|a, µ)] . (23)

The probability that the subject indeed gives the response c when presented a

follows by integrating p(c|a, α) over the current posterior. We make a second order

Taylor expansion of p(c|a, α) around the point µ:

p(c|a) =

Z

dαp(c|a, α)N (α|µ, Σ)

≈

Z

dα

»

p(c|a, α) + (α − µ)T
∂p(c|a, α)

∂α

˛
˛
˛
α=µ

+
1

2
(α − µ)T

∂2p(c|a, α)

∂α∂αT

˛
˛
˛
α=µ

(α − µ)

–

N (α|µ, Σ)

= p((c|a, µ) +
1

2
Tr

»

Σ
∂2p(c|a, α)

∂α∂αT

˛
˛
˛
α=µ

–

.
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The first order term cancels since the gradient is zero at the maximum solution α.

Again in lowest order we can ignore the correction upon p(c|a, α) and arrive at

Variance-logdet(a) = −
X

c

p(c|a, µ) log det Σ(a,c) + log det Σ

= −
X

c

p(c|a, µ)
h

log det Σ(a,c) − log det Σ
i

= −
X

c

p(c|a, µ)[log det(Σ−1
(a,c))

−1 − log det(Σ−1)−1]

= −
X

c

p(c|a, µ)[− log det(Σ−1
(a,c)) + log det(Σ−1)]

= −
X

c

p(c|a, µ)Tr[ΣH(c|a, µ)]

Lemma 1 then gives the result. �

Lemma 3 In a lowest order approximation the committee criterion can be written as

1

2
Committee(a) =

1

2

X

c

p(c|a, µ̄)g(c|a, µ̄)T Σ̃ g(c|a, µ̄) ,

where µ̄ is the prior mean learned from all other users and

Σ̃ ≡
1

M

MX

m=1

(µm − µ̄)(µm − µ̄)T − (µ − µ̄)(µ − µ̄)T .

Making a second order Taylor expansion, the Kullback-Leibler divergence between

probabilities based on µ̄ and µ when these are close together is:

X

c

p(c|a, µ̄) log

»
p(c|a, µ̄)

p(c|a, µ)

–

≈ −
1

2

X

c

p(c|a, µ̄)(µ − µ̄)T H(c|a, µ̄)(µ − µ̄)

=
1

2

X

c

p(c|a, µ̄)
h

(µ − µ̄)T g(c|a, µ̄)
i2

, (24)

where the first order term cancels since, from Equation (20),

X

c

p(c|a, α)g(c|a, α) = 0 .

Using Equation (24) to approximate the KL divergences between the predictive proba-

bilities from the definition of the Committee criterion (Equation (14)) and computing

the sums, we obtain the result stated in the lemma. �

Lemma 4 In a first order approximation, the Variance-trace criterion boils down to

Variance-trace(a) =
X

c

p(c|a, µ)g(c|a, µ)T Σ
2
g(c|a, µ) .
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Proof. We have

Σ(a,c) =
“

Σ
−1
(a,c)

”−1
=
“

Σ
−1 + Σ

−1
(a,c) − Σ

−1
”−1

≈ −Σ
h

Σ
−1
(a,c) − Σ

−1
i

Σ .

Use of Equation (21) and Lemma 1 give the result. �

Suppose we have a Gaussian prior with mean α and variance Σ and have observed N

data samples {xi, ci}. In the Laplace approximation, the posterior is then approximated

by another Gaussian with mean equal to the maximum a posteriori solution

µ ≡ argmin
α

E(α) ,

with

E(α) = −
NX

i=1

log p(ci|xi, α) +
1

2
(α − α)T Σ

−1(α − α)

and variance equal to the inverse of the Hessian, the second derivative of E(α),

V
−1 =

∂2E(α)

∂α∂αT

˛
˛
˛
˛
α=µ

. (25)

Lemma 5 In a first order approximation, assuming that Σ(a,c) is close to Σ, we have

Change-KL(a) ≈ Variance-logdet(a) ,

i.e., the two criteria are indistinguishable.

Proof. We evaluate the terms of Change-KL criterion one by one,

Change-KL(a) =
X

c

p(c|a)

2

4log

„
det Σ(a,c)

det Σ

«

| {z }

+ Tr
“

Σ
−1
(a,c)Σ

”

| {z }

+ (µ(a,c) − µ)T Σ
−1
(a,c)(µ(a,c) − µ)

| {z }

−n

3

5

The first term gives

X

c

p(c|a) log

„
det Σ(a,c)

det Σ

«

= −Variance-logdet(a) .

The second term

X

c

p(c|a) Tr
h

Σ
−1
(a,c)Σ

i

=
X

c

p(c|a) Tr[(Σ−1 − H(c|a, µ))Σ]

= n −
X

c

p(c|a) Tr[H(c|a, µ)Σ] = n −
X

c

p(c|a, µ) Tr[Σ H(c|a, µ)]

= n + Variance-logdet(a)

In the Laplace approximation, the new posterior mean corresponds to the minimum

of the error with the log probability of the new observation added:

α(a, c) = argmin
α

[E(α) + log p(c|a, α)] .
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In a lowest order approximation we assume α(a, c) to be close to α and make a Taylor

expansion of the term between brackets:

E(α) + log p(k; x, α) ≈ E(µ) + log p(k; x, µ)

+ (α − µ)T
»

∂E(α)

∂α

˛
˛
˛
α=µ

+
∂ log p(k, x, α)

∂α

˛
˛
˛
α=µ

–

+
1

2
(α − µ)T

»
∂2E(α)

∂α∂αT

˛
˛
˛
α=µ

+
∂2 log p(k, x, α)

∂α∂αT

˛
˛
˛
α=µ

–

(α − µ)

∂E(α)
∂α

˛
˛
˛
α=µ

= 0 since it represents the gradient of the posterior evaluated at the

maximum point µ.
∂2E(α)
∂α∂αT = V −1 as defined in Equation (25).

∂2 log p(k,x,α)
∂α∂αT

˛
˛
˛
α=µ

can

be ignored, since it corresponds to just one likelihood term and therefore is small in

comparison with
∂2E(α)
∂α∂αT which corresponds to all the other likelihood terms. We have

E(α) + log p(k; x, α) ≈ E(µ) + log p(k; x, µ) +
1

2
(α − µ)T V

−1(α − µ) + (α − µ)T g(k; x, µ)

Setting the derivative w.r.t. α to zero we obtain the approximate solution

µ(a,c) ≈ µ − Σg(c|a, µ) .

In the same lowest order, we obtain for the third term

X

c

p(c|a)
“

µ(a,c) − µ
”T

Σ
−1
(a,c)(µ(a,c) − µ) ≈

≈
X

c

p(c|a, µ)g(c|a, µ)T Σ g(c|a, µ) = Variance-logdet(a) .

Collection of all the terms then gives the result. �
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