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Abstract

Censoring is a typical problem of data gathering and recording. Specialized techniques
are needed to deal with censored (regression) data. Gaussian processes are Bayesian non-
parametric models that provide state-of-the-art performance in regression tasks. In this
paper we propose an extension of Gaussian process regression models to data in which
some observations are subject to censoring. Since the model is not analytically tractable
we use Expectation propagation to perform approximate inference on it.

1 Introduction

The method of data gathering and recording is a
central issue in data analysis. A typical practi-
cal problem is censoring, which occurs when the
value of a measurement or observation is only
partially known. For example, censoring occurs
when monitoring university freshmen in order
to predict the drop out after the first semester.
Another example of censoring occurs when a
value occurs outside the range of a measuring
instrument like a scale with a fixed limit. Cen-
soring is also typical in clinical studies when in-
dividuals may withdraw from the study prema-
turely. Censored regression models were first
suggested in Econometrics by Tobin (1958) and
have since been a topic of active research (De-
Maris, 2004; Greene, 2012; Wooldridge, 2002).

Censored regression models come in a variety
of different forms: parametric, semi-parametric,
and non-parametric. The earliest models were
mostly parametric whereas nowadays interest is
in the development of semi- and non-parametric
models. The parametric modeling strategy
is often not applicable since econometric data
sets often have non-linear relationships and the
underlying data generating mechanism is not
precisely known. Gaussian processes (GPs)
(Rasmussen and Williams, 2006) are Bayesian
non-parametric graphical models that provide
state-of-the-art performance in regression tasks.

Gaussian processes are an extension of multi-
variate Gaussian random variables to infinite
index sets that define a probability distribution
over functions and inference takes place directly
in the space of functions. An interesting prop-
erty of Gaussian processes is that they provide a
full predictive distribution, i.e., a mean estimate
and an uncertainty estimate for the mean.

The contribution of this paper is an exten-
sion of Gaussian process regression models to
data in which some observations are subject to
censoring. Since the model is not analytically
tractable we use an approximation for comput-
ing the posterior. In (Ertin, 2007) a Laplace ap-
proximation was considered. Since the censored
Gaussian process model is, however, closely re-
lated to the probit model for which Expecta-
tion propagation was found to be the method of
choice (Nickisch and Rasmussen, 2008) we use
Expectation propagation to perform approxi-
mate inference on the model. As the model
satisfies integrability with respect to Gaussian
measures all necessary derivations for EP can
be done analytically leading to a numerically
stable algorithm. The method is validated on
a benchmark data set. The rest of the paper
is structured as follows. Section 2 describes the
Bayesian framework. Section 3 describes experi-
mental results. Section 4 describes related work.
Section 5 gives conclusions.



2 Bayesian framework

In the following we denote vectors x and ma-
trices K with bold-face type and their compo-
nents with regular type, i.e., xi , Kij . With xT

we denote the transpose of the vector x. Let
x ∈ RD be a vector of explanatory variables,
y∗ ∈ R a response variable. We consider the
problem of learning a function f : RD → R
from a set D = {(x1, y1), . . . , (xn, yn)} of n ob-
servations, where y is a censored version of y∗:

y =


l if y∗ ≤ l
y∗ if l < y∗ < u
u if y∗ ≥ u

(1)

where l, u ∈ R with l < u, are lower and upper
thresholds, respectively. Hence, values in a cer-
tain range are transformed to (or reported as) a
single value. Censoring represents a limitation
in the response variable y∗ of interest, but the
explanatory variable x is assumed to be fully
observable.1 When y = l we only know a lower
bound on the target value y∗ ∈ [l,∞) which is
referred to as being right censored. When y = u
we only know an upper bound on the target
value y∗ ∈ (−∞, u] which is referred to as being
left censored.

2.1 Prior

We assume that the latent values y∗ = f(x)
are the realization of a zero-mean Gaussian pro-
cess (Rasmussen and Williams, 2006), which
can then be fully specified by the covariance ma-
trix. The covariance matrix can be specified in
terms of a kernel function Kij = k(xi,xj). An
often used kernel function is the Gaussian kernel

k(x,x′) = σ2f exp

(
−1

2

D∑
d=1

(xd − x′d)2

`2d

)
(2)

where xd denotes the d-th element of x, and
θ = {σ2f , `1, . . . , `D} hyperparameters with σ2f
specifying the signal variance and `d specifying
how much the function can vary in the d-th el-
ement of the explanatory variables. For brevity

1In contrast, if the explanatory variable is not observ-
able, i.e., missing, the data is said to be truncated.

we often omit the dependence on θ in formu-
las. The kernel function leads to a multivariate
Gaussian prior of latent function values {f(xi)}

p(f) =
1

(2π)
D
2 |K|

D
2

exp

(
−1

2
fTK−1f

)
(3)

where K is the n × n covariance matrix with
Kij = k(xi,xj).

2.2 Likelihood

To capture the relations in (1) we can define an
ideal likelihood for noise-free cases:

pid(y|f(x)) =


1 if y = l, f(x) ≤ l,

or l < y = f(x) < u,
or y = u, f(x) ≥ u

0 otherwise

(4)

To tolerate noise in the explanatory variables
or response variables we assume that the unob-
served latent function values are contaminated
with noise and that these noisy values are then
censored. A common choice is Gaussian noise
with zero mean and unknown variance σ2.2 We
use N (δ|µ, σ2) to denote a Gaussian random
variable δ with mean µ and variance σ2 and use
φ(·), Φ(·) to denote the standard normal density
and cdf, respectively. Under these assumptions
the following equations hold

p(y = l|f) =

∫
pid(y = l|f + δ)N (δ|0, σ2) dδ

= Φ

(
l − f
σ

)
= 1− Φ

(
f − l
σ

)
p(y = y∗|f) = N (y|f, σ2) =

1

σ
φ

(
y − f
σ

)
p(y = u|f) = Φ

(
f − u
σ

)
(5)

2In principle, one could assume any distribution for
the noise on the latent functions. Another often used
assumption is heteroscedastic Gaussian noise.



The likelihood therefore becomes a mixture of
Gaussian and probit likelihood terms:

L =
n∏
i=1

p(yi|fi) =
∏
yi=l

[
1− Φ

(
fi − l
σ

)]
∏

l<yi<u

[
1

σ
φ

(
yi − fi
σ

)]
∏
yi=u

[
Φ

(
fi − u
σ

)] (6)

This likelihood is well known in the literature
as a Tobit likelihood (DeMaris, 2004; Greene,
2012), or a type I Tobit model according to the
taxonomy of (Amemiya, 1984). The model can
nowadays be estimated by many software pack-
ages, however, these are typically limited by a
parametric, linear form.

2.3 Posterior

The posterior distribution over the latent vari-
ables is given by Bayes’ theorem as a product
of a normalization term, the prior, and the like-
lihood

p(f |X, y) =
1

Z
p(f |X)

n∏
i=1

p(yi|fi) (7)

where the normalization term is called the evi-
dence or marginal likelihood

Z = p(y|X) =

∫
p(f |X)

n∏
i=1

p(yi|fi) df (8)

The Tobit likelihood in (6) makes the posterior
in (7) analytically intractable and one has to re-
sort to approximation techniques for computing
the posterior. Below we describe the Expecta-
tion propagation method.

2.3.1 Expectation Propagation

Expectation propagation (EP) (Minka, 2001)
is a deterministic approximate inference method
that tackles the non-analytic nature of the pos-
terior in (7) by approximating the likelihood by
a local likelihood approximation using an un-
normalized Gaussian function in the latent vari-
able fi

p(yi|fi) ' ti(fi|Z̃i, µ̃i, σ̃2i )
= Z̃iN (fi|µ̃i, σ̃2i )

(9)

where ti is called the i-th site with site param-
eters Z̃i, µ̃i, and σ̃2i , which we often abbreviate
as ti(fi) or simply ti.

The product of the n likelihood approxima-
tions ti can be expressed as

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃2i ) = N (µ̃, Σ̃)
n∏
i=1

Z̃i (10)

where µ̃ is the vector of µ̃i and Σ̃ is diagonal
with Σ̃ii = σ̃2i . The posterior p(f |D) is approx-
imated by q(f |D) where

q(f |D) =
1

ZEP
p(f)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃2i )

= N (µ,Σ)

µ = ΣΣ̃−1µ̃

Σ = (K−1 + Σ̃−1)−1

(11)

using the product rule of Gaussian distributions
and where ZEP is the approximation of the EP
algorithm to the marginal likelihood in (8).

The EP algorithm iteratively updates the ti
approximations sequentially. This is done by re-
moving the i-th term from the approximate pos-
terior, resulting in a cavity distribution, which
is then combined with the i-th exact likelihood
term. Finally a Gaussian approximation to the
non-Gaussian marginal is computed, which is
then used to update ti.

EP defines the cavity distribution q\i, which
is a Gaussian distribution, as

q\i ∝
∫
p(f)

∏
j 6=i

tj(fj) = N (µ\i, σ
2
\i)

µ\i = σ2\i(σ
−2
i µi − σ̃−2i µ̃i)

σ2\i = (σ−2i − σ̃
−2
i )−1

(12)

We then continue to find the new unnor-
malized Gaussian marginal which best approxi-
mates the product of the cavity distribution and
the exact likelihood

q̂(fi) = ẐiN (µ̂i, σ̂
2
i ) ' q\ip(yi|fi) (13)

When minimizing KL(p(x)||q(x)) in the case of
a Gaussian distribution q(x), the minimum is



obtained by matching the zeroth, first, and sec-
ond moment. The parameters of the local like-
lihood approximation ti can be computed using

µ̃i = σ̃2i (σ̂
−2
i µ̂i − σ−2\i µ\i)

σ̃2i = (σ̂−2i − σ
−2
\i )−1

Z̃i = Ẑi
√

2π(σ2\i + σ̃2i ) exp

(
1

2

(µ\i − µ̃i)2

(σ2\i + σ̃2i )

)

where Ẑi, µ̂i, and σ̂2i are the moments that min-
imize the KL divergence which are described in
the next section for the Tobit likelihood.

2.3.2 Tobit Moments

The minimum of the KL divergence is ob-
tained when the moments of the two Gaussian
distributions match (Minka, 2001). We thus
need to compute the zeroth, first, and second
order moments

Ẑi =

∫
q\iti dfi

µ̂i = Eq[fi]

σ̂2i = Eq[(fi −Eq[fi])
2]

(14)

where q = Ẑ−1i q\iti, which in the case of the
Tobit likelihood in (6) can be computed ana-
lytically (cf. (Rasmussen and Williams, 2006)).
The moments depend on whether the observa-
tion is left censored, right censored, or non-

censored. Let zmi =
µ\i−m√
σ2+σ2

\i
for m ∈ {l, u}.

If yi = l then

Ẑi = 1− Φ
(
zli

)
µ̂i = µ\i +

σ2\iN (zli)

(1− Φ(zli))
√
σ2 + σ2\i

σ̂2i = Ẑ−1i [(σ2\i + µ2\i)− Ẑi(p)(σ̂
2
i(p)

+ µ̂2i(p))]− µ̂
2
i

where Ẑi(p) , σ̂
2
i(p)

, µ̂2i(p) are the zeroth, first, and

second order moments of a probit likelihood

Φ(f−lσ ). If l < yi < u then

Ẑi =
1√

2π(σ2 + σ2\i)
exp

(
−1

2

(yi − µ\i)2

(σ2 + σ2\i)

)

µ̂i = µ\i + σ2\i

(
yi − µ\i
σ2 + σ2\i

)
σ̂2i = σ2\i − σ

4
\i

1

(σ2 + σ2\i)

If yi = u then

Ẑi = Φ (zui )

µ̂i = µ\i +
σ2\iN (zui )

Φ(zui )
√
σ2 + σ2\i

σ̂2i = σ2\i −
σ4\iN (zui )

(σ2 + σ2\i)Φ(zui )

(
zui +

N (zui )

Φ(zui )

)
2.4 Prediction

The approximate predictive distribution q(f∗)
given an input x∗ results from the approxima-
tion to the posterior distribution given by EP
(11) and can be written as

q(f∗) =

∫
p(f∗|x∗,D,f)q(f) df

= N (µ∗, σ
2
∗)

µ∗ = kT∗ (K + Σ̃)−1µ̃

σ2∗ = k(x∗,x∗)− kT∗ (K + Σ̃)−1k∗

(15)

where k∗ = [k(x1,x∗), . . . , k(xn,x∗)]
T .

2.5 Marginal Likelihood

The approximation of the EP algorithm to the
marginal likelihood in (8) is given by

p(D|θ) =

∫
p(f |θ1)

n∏
i=1

p(yi|fi,θ2) df

≈
∫
p(f |θ1)

n∏
i=1

ti(fi) df

(16)

where θ = {θ1,θ2} are the hyperparameters
with θ1 the covariance hyperparameters and θ2
the likelihood hyperparameters. The hyperpa-
rameters can be optimized by minimizing the



negative log marginal likelihood using gradient
descent where

∂

∂θ1
log p(D|θ)

= −1

2

∂

∂θ1

(
log |Σ +K|+ µT (Σ +K)−1µ

)
∂

∂θ2
log p(D|θ) =

∂

∂θ2

n∑
i=1

log Ẑi

3 Experiments

In this section we compare the standard Gaus-
sian process model with the Tobit Gaussian pro-
cess model, which was implemented in the pub-
licly available GPstuff toolbox (Vanhatalo et al.,
2011) on both artificial data and real data. In
order to compare the predictive performance of
the models we cast the analysis as a ranking
problem, which is an elegant way of dealing with
the censoring of the data. Two predictions can
be ordered if (1) both values are non-censored,
(2) if the non-censored value of one is smaller
than the left censored value of the other, (3) if
the non-censored value of one is larger than the
right censored value of the other, or (4) if the
right censored value of one is larger than the left
censored value of the other. These four possible
ordering relations are illustrated in Figure 1.

For these reasons the concordance index or c-
index is often used as a performance measure
for comparing models with censored data (Har-
rell Jr., 2001). The c-index can be interpreted
as the fraction of all pairs of inputs whose pre-
dicted values are correctly ordered among all
inputs that can be ordered. The c-index can be
written as

c(D,G, f) =
1

|E|
∑
Eij

1f(xi)<f(xj) (17)

where G = (X, E) is the order graph with edges
according to the four criteria given above, |E|
is the number of edges in E , and 1x<y = 1 if
x < y, 0 otherwise, is an indicator function.

The concordance index is a generaliza-
tion of the Wilcoxon-Mann-Whitney statistics
(Wilcoxon, 1945; Mann and Whitney, 1947) for
which c = 1 indicates a perfect predictive model

u u u
uuu(1)

l l l
(4)

(2)
(3)

Figure 1: Four possible ordering relations when
data is censored. The white/open circles rep-
resent censored data points and are labeled u

when it is left censored or l when right censored.
Black/closed dots represents non-censored data
points. Arrows between (groups of) points rep-
resents which data points can possibly be or-
dered where the number refers to the enumera-
tion used in the article.

and c = 0.5 indicates a random predictive model
and is thus an AUC-like metric for the scenario
of censored data.

3.1 Artificial data

To illustrate the behaviour of the standard GP
model and the Tobit GP model, we first illus-
trate their behaviour on a simple 1-dimensional
function. We created a data set of 30 equally
spaced inputs in [0, 1] and outputs using

f(x) = (6x− 2)2 sin(2(6x− 2)) (18)

which were contaminated with Gaussian noise
with zero mean and variance 0.1. To censor
40% of the observations we calculated the 40th
percentile of the sample distribution and used
the corresponding value of l = −0.2265 as lower
threshold. We trained a standard GP model
and a Tobit GP model on the full data set of
30 samples including censored observations, as
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Figure 2: Regression with censored data. Left panel: standard GP model on data with censored
samples. Middle panel: standard GP model on data where censored samples were removed. Right
panel: Tobit GP model on data with censored samples. The * denotes observations (possibly noisy
and/or censored). Dashed line denotes the underlying true function. Solid line denotes the mean
model prediction. Dotted line denotes two standard deviations from the mean.

well as a standard GP model on the data set of
18 samples of non-censored observations.

The results are shown in Figure 2. The left
panel shows a standard GP model on the data
set of 30 observations which clearly shows a bad
predictive model of the underlying true function
as it tries to match the mean prediction with
the censored observations and also severely un-
dervalues the model uncertainty in the censored
areas. The middle panel shows a standard GP
model on the data of 18 non-censored samples,
which performs a bit better than the standard
GP model on the full data set both in terms of
the mean prediction and the uncertainty of the
mean prediction. The model, however, throws
out information and is not able to predict that
the underlying true function lies strictly below
the censoring threshold. The right panel shows
the Tobit GP model which shows the best mean
prediction, has a lower predictive uncertainty,
and in the censored areas gives predictions that
lie strictly below the censoring threshold.

We report the results of 10-fold crossvalida-
tion of both the standard GP and Tobit GP in
Table 1. As the number of censored observa-
tions is quite large, i.e., 40% of the data, we
observe a large increase in the c-index for the
Tobit GP model. Since we know the true un-
derlying latent function we also report the root

mean squared error

RMSE(t, f) =

√√√√ 1

n

n∑
i=1

(ti − fi)2 (19)

and the mean absolute error

MAE(t, f) =
1

n

n∑
i=1

|ti − fi| (20)

in Table 1 for both the standard GP and Tobit
GP models.

Table 1: Concordance results and error mea-
sures artificial data.

GP Tobit GP

c-index 0.73 0.95

RMSE 2.21 0.72

MAE 1.42 0.60

3.2 Housing data

We validated the Gaussian process Tobit model
on the ‘housing’ benchmark data set obtained
from the UCI machine learning repository.
Originally the housing data set was used to in-
vestigate methodological issues related to the
use of housing data to estimate the demand for



clean air (Harrison and Rubinfeld, 1978). The
data consists of 506 observations on 14 real-
valued variables. The objective is to predict
the median value of owner-occupied homes from
the remaining variables. In (Gilley and Pace,
1996), the data has been checked against the
original census data and it was discovered that
the Census Bureau censored tracts whose me-
dian value was over $50.000. Hence, all tracts
with a median value greater than $50.000 ap-
pear as $50.000. In total 16 observations were
censored.

We report the results of 10-fold crossvalida-
tion of both the standard GP and Tobit GP in
Table 2 averaged over 10 runs. Although the
number of censored observations is quite small,
i.e., only 3.2% of the data, we observe an in-
crease in the c-index for the Tobit GP model.
We also see an improvement in predictive per-
formance for the Tobit GP model when using
the Expectation algorithm (EP) instead of the
Laplace approximation (LA) of (Ertin, 2007).

Table 2: Concordance results housing data
(mean c-index and standard deviation).

method c-index

GP 0.866± 0.003
Tobit-GP (LA) 0.879± 0.008
Tobit-GP (EP) 0.892± 0.007

4 Related work

In recent years researchers have striven to de-
vise regression techniques that do not rely on
the classical assumptions of parametric meth-
ods. In this paper we extended the Gaussian
process framework, a principled non-parametric
Bayesian framework for regressions tasks, to
data subject to censoring. Since the model is
no longer analytically tractable approximations
are needed to compute the posterior. In this
paper we considered the Expectation propaga-
tion algorithm, which was shown to outperform
the Laplace approximation considered in (Ertin,
2007). In (Hutter et al., 2011) a different ap-
proach is followed to handle censored data. Hut-
ter et al., uses a random forest, initialized using

non-censored data only, which is iteratively im-
proved using an EM algorithm. Their method
samples data from the predictive distribution to
fill in samples for censored observations. How-
ever, since the predictive distribution is not
guaranteed to lie strictly below (or above) the
censoring threshold (cf. Figure 2), additional
countermeasures, like truncating the predictive
distribution, are needed to ensure the data gen-
erated satisfies the censoring constraints.

In this paper we considered common lower
and upper censoring thresholds for each data
point, however, the model can easily be ex-
tended to allow for data points with individ-
ual lower and/or upper thresholds. This would
allow the method to be used for the analysis
of survival times (Shivaswamy et al., 2007) in
which censoring is extremely common. The
concordance index can still be used as a per-
formance measure as given in Equation (17),
but the situation depicted in Figure 1 changes.
Since data points have individual censoring
thresholds the ordering relations in Figure 1 do
not longer hold and some may become incom-
parable (Shivaswamy et al., 2007).

In the likelihood model we assumed that noise
was Gaussian distributed. If this assumption
is violated this can have considerable impact
on the predictive performance of the model
(Greene, 2012). A more general approach would
be to allow for heteroscedastic Gaussian dis-
tributed noise by using a second Gaussian pro-
cess to model the noise process (Kersting et al.,
2007). One could follow a similar EP approach
as in (Muñoz-González et al., 2011), although
with respect to this second Gaussian process the
model would then no longer satisfy integrability
with respect to Gaussian measures.

5 Conclusion

In this paper we have presented an extension to
Gaussian process regression to handle data sub-
ject to censoring. To tackle the non-analytic
nature of the posterior we used Expectation
propagation to perform approximate inference
on the model which was shown to outperform
the Laplace approximation. Directions for fur-



ther work include among others handling het-
eroscedastic noise, multi-variate Tobit models,
and extending the model to other domains such
as survival analysis.

The software was implemented in the pub-
licly available GPstuff toolbox (Vanhatalo et
al., 2011) and is freely available from the first
authors website as well as some supplementary
material describing implementation details.
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