
Fast Laplace Approximation for Gaussian
Processes with a Tensor Product Kernel

Perry Groot a Markus Peters b Tom Heskes a Wolfgang Ketter b

a Radboud University Nijmegen
b Erasmus University Rotterdam

Abstract

Gaussian processes provide a principled Bayesian framework, but direct implementations are re-
stricted to small data sets due to the cubic time cost in the data size. In case the kernel function
is expressible as a tensor product kernel and input data lies on a multidimensional grid it has been
shown that the computational cost for Gaussian process regression can be reduced considerably. Ten-
sor product kernels have mainly been used in regression with a Gaussian observation model since key
steps in their algorithms do not easily translate to other tasks. In this paper we show how to obtain
a scalable Gaussian process framework for gridded inputs and non-Gaussian observation models that
factorize over cases. We empirically validate our approach on a binary classification problem and our
results shows a major performance improvement in terms of run time.

1 Introduction
Gaussian processes (GPs) provide a rich, principled, and well-established Bayesian framework for tasks
such as non-linear non-parametric regression and classification [8]. A direct implementation of GPs,
however, limits their applicability to small data sets since the kernel matrix needs to be stored, costing
O(N2), and inverted, costing O(N3), with N the number of data points. In recent years, several
approaches have addressed this problem often selecting a subset of the training data (the active set)
of size M reducing the computational complexity to O(M2N) for M � N [6, 10]. An alternative
approach, is to exploit additional structure in the GP model to reduce the computational complexity.

The structural assumption that we exploit in this paper is the assumption of input data lying on
a multidimensional grid.1 Such data is often found in regression applications in time and space, for
example, regular measurements over time and space from weather stations. This assumption allows
the kernel function to be written as a tensor product kernel that allows for efficient computations using
Kronecker products [5]. In recent years, the use of multidimensional grids has attracted increasing
attention, and has been used in a variety of applications such as image reconstruction [3, 14], point
process intensity estimation [2], network reconstruction [11], and density estimation [9].

The Kronecker product has, however, been limited to GP regression with spherical noise. The main
reason for this is that a critical step is to compute the inverse (K + σ2I)−1, which is not a Kronecker
product even if K is. In this particular case it is still possible to efficiently compute the inverse us-
ing an eigen decomposition K = QΛQT and the identity (K + σ2I)−1y = Q(Λ + σ2I)−1QTy.
This identity, however, no longer holds with non-spherical noise and how to efficiently obtain an eigen
decomposition in this case is in fact an open problem [4].

In this paper we propose a scalable GP framework for gridded inputs and non-Gaussian observation
models that factorize over cases. Section 2 briefly introduces GPs, the Laplace approximation, and the
Kronecker product. Thereafter we describe how to efficiently combine tensor product kernel functions
in the Laplace approximation. We provide derivations and pseudocode for obtaining the mode and for
hyperparameter learning in Sections 3 and 4. Section 5 reviews the memory and run time requirements
of the algorithms. In Section 6 we empirically validate the new methods and Section 7 gives conclusions.

1The grid does not necessarily have to be equispaced.

2 Background
We denote vectors x and matrices K with bold-face type and their components with regular type, i.e.,
xi, Kij . With xT we denote the transpose of the vector x. Let x ∈ RD be an input, y ∈ Y an
output. We denote withX,Y the observed data. We denote with |A| the determinant ofA,A⊗B the
Kronecker product, A ◦ B the Hadamard (element wise) product, and vec(A) the vector obtained by
stacking all the columns of matrix A. Given a vector a and matrix A, diag(a) gives a diagonal matrix
with a on its diagonal, and diag(A) gives the vector of all diagonal elements ofA. Hyperparameters are
denoted by θ = {θc,θl}, with θc the kernel hyperparameters and θl the likelihood hyperparameters.

2.1 Gaussian Processes
A Gaussian process (GP) is a collection of random variables {f(xi)}i∈I for some index set I, any fi-
nite number of which have a joint Gaussian distribution [8]. A GP f ∼ N (m,K) results in a finite
multivariate Gaussian distribution where each element of the covariance matrix Kij = k(xi,xj) is
given by a kernel function k(·, ·)θc with parameters θc. A GP effectively specifies a prior distribution
over functions f(·) in a Bayesian framework in which the likelihood model p(yi|f(xi)) is parame-
terized by f(·). Given a GP prior and likelihood, Bayes formula gives us the posterior distribution
p(f |Y ,X,θ) = p(Y |f ,θl)p(f |X,θc)/p(Y |X,θ). In the simplest case, observations are assumed to
be generated by an unknown function possibly corrupted with Gaussian noise, i.e., yi = f(xi) + εi
with εi ∼ N (0, σ2) which leads to a model in which inference is analytically tractable. In this
case the predictive distribution for a test location x∗ is given by f∗|X,Y ,x∗ ∼ N (µ∗, v∗) with
µ∗ = k(x∗,X)(K + σ2I)−1Y and v∗ = k(x∗,x∗) − k(x∗,X)(K + σ2I)−1k(X,x∗). For non-
Gaussian likelihoods one needs to resort to sampling methods or approximations.

2.2 Laplace Approximation
With a non-Gaussian likelihood inference in Gaussian process models leads to analytically intractable
integrals when making predictions. For example, the distribution of a latent variable given a test case is
given by

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗,f)p(f |X,y)df (1)

The Laplace approximation [13] gives an analytic approximation to these integrals by approximating
the true posterior distribution p(f |X,y) with a Gaussian q(f) centered on the mode of the posterior.
The variance is obtained through a second-order Taylor expansion around the posterior mode f̂, which
results in

q(f) = N (f |̂f, (K−1 +W)−1) (2)

with f̂ = arg maxfp(f |X,y,θ) and W = −∇∇f log p(y|f)|f=f̂ which is diagonal since the likeli-
hood factorizes over cases.

2.3 Kronecker Products
In this paper we assume a tensor product kernel function, i.e., k(xi,xj) =

∏D
d=1 kd(x

d
i ,x

d
j). Assuming

a product kernel function together with input data on a multidimensional grid leads to a kernel matrix
that decomposes into a Kronecker product of matrices of lower dimensions. The Kronecker product has
a convenient algebra [5]:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (A⊗B)vec(X) = vec(BXAT)

AB ⊗CD = (A⊗C)(B ⊗D) (3)

(A⊗B)−1 = A−1 ⊗B−1

Algorithm 1 Laplace mode finding
1: function LAPLACEMODE(covariance matrixK, observations y, likelihood function p(y|f))
2: f ← 0 . Initialization
3: repeat . Newton iteration
4: W ← −∇∇ log p(y|f)
5: b←Wf +∇ log p(y|f)

6: Iteratively solve: (I +W
1
2KW

1
2)v = W

1
2Kb

7: a← b−W 1
2v

8: f ←Ka
9: until convergence . Objective − 1

2a
Tf + log p(y|f)

10: return f̂← f . Mode
11: end function

The Kronecker product can be used to construct memory and computationally efficient algorithms.
For example, for N data points a full N ×N matrix needs O(N2) memory storage and a matrix vector
product is of order O(N2) whereas for a Kronecker matrix in which each dimension d has cardinality
Nd, this is O(

∑D
d=1N

2
d) and O(N(

∑D
d=1Nd)), respectively [14]. Furthermore, the Cholesky and

singular value decompositions both reduce from O(N3) to O(
∑D
d=1N

3
d) since these operations need

only be applied to each component.

3 Maximum a Posteriori Estimation
The Laplace approximation approximates the posterior by a Gaussian centered on the mode of the
posterior. The mode f̂ of the posterior is the maximizer of the log posterior, which can be found by
setting the first derivative of the log posterior to zero and solving for f̂. We can find the maximum
iteratively by using Newton’s algorithm for which we need to compute in each iteration the following
update step:

fnew = (K−1 +W)−1b

= K(I −W 1
2 (I +W

1
2KW

1
2)−1W

1
2K)b

(4)

with b = Wf+∇ log p(y|f). In the last line, we used the matrix inversion lemma to rewrite the Newton
iteration in a numerically advantageous way. Conjugate Gradient (CG) can now be used iteratively to
solve the linear system (I + W

1
2KW

1
2)v = W

1
2Kb, avoiding the need to directly compute any

expensive matrix inverses. The mode is then found by setting a = b−W 1
2v and f = Ka. Pseudocode

is given in Algorithm 1. In line 6 one can obtain an exact answer for a quadratic system if the iterated
solver is run for N steps, however, reasonable results are usually already obtained in a small fraction
of iterations. Since Kronecker matrix vector products are efficient this greatly reduces the cost of mode
finding compared to a standard Cholesky implementation.

. Eq. (4) using Conjugate Gradient

4 Model Selection
After obtaining the mode f̂ for a given hyperparameter θ, the next problem is to learn the value of θ.
This can be done by minimizing the negative marginal likelihood

− log p(y|X,θ) ≈ 1

2
f̂
T
K−1f̂− log p(y|̂f) +

1

2
log |B| (5)

with B = I +KW . The first two terms are easily computed using the results of Newton’s algorithm
discussed in the previous paragraph, but the log |B| and its gradients present difficulties. TheB matrix
is not a Kronecker product and a direct implementation of the log determinant has order O(N3).

To reduce the computational complexity, we propose to approximate the prior covariance matrix

Algorithm 2 Laplace negative approximate marginal likelihood
1: function LAPLACEMARGLIK(covariance matrixK, observations y, likelihood function p(y|f))
2: [̂f,a]← Obtain from Algorithm 1
3: for d← 1, . . . , D do
4: Qd,Sd ← SCHUR(Kd) . Eigen decompositionKd = QdSdQ

T
d

5: Qd,Sd ← REDUCERANK(Qd,Sd) . Select largest eigenvalues
6: end for
7: W ← −∇∇ log p(y|f)
8: Λ1 ← diag(diag(K)− (Q ◦Q) · diag(S)) . Eq. (6)
9: Λ2 ← I +W

1
2 Λ1W

1
2

10: Λ3 ←W
1
2 Λ−12 W

1
2

11: L← CHOLESKY(S−1 +QTΛ3Q)
12: logdetB ←

∑
i log Λ2ii +

∑
i logSii + 2 ∗

∑
i logLii

13: return − log q(y|X,θ)← 1
2a

T f̂− log p(y|̂f) + 1
2 logdetB . neg. approx. log. marg. lik.

14: end function

using a reduced-rank approximation:

K ≈ QSQT + Λ1, withQ =

D⊗
d=1

Qd,S =

D⊗
d=1

Sd,Λ1 = diag(diag(K)− diag(QSQT)) (6)

and where K is an N × N matrix, Q is an N × R matrix, and S is an R × R diagonal matrix with
R� N . The Λ1 matrix is a diagonal matrix that preserves the exact full-rank diagonal to obtain a better
approximation without raising the computational costs. The sum of a diagonal matrix and a low rank
matrix allows for efficient computations using the Woodbury formula and matrix determinant lemma

(A+UWV)−1 = A−1 −A−1U(W−1 + V A−1U)−1V A−1 (7)

|A+UWV T | = |W−1 + V TA−1U ||W ||A| (8)

and has been used widely before in statistics and machine learning [1, 7]. The key insight here is that
the Kronecker product allows the decompositionQSQT to be efficiently obtained in O(

∑D
d=1N

3
d).

4.1 Evaluating the Marginal Likelihood
With the reduced-rank approximation the log determinant in the negative marginal likelihood can be
evaluated more efficiently using the relation:

|B| = |I +W
1
2KW

1
2 | ≈ |I +W

1
2 Λ1W

1
2 +W

1
2QSQTW

1
2 | = |Λ2 +W

1
2QSQTW

1
2 |

= |Λ2||S||S−1 +QTW
1
2 Λ−12 W

1
2Q| = |Λ2||S||S−1 +QTΛ3Q|

(9)

with Λ2 = I +W
1
2 Λ1W

1
2 and Λ3 = W

1
2 Λ−12 W

1
2 . The final formula can be evaluated efficiently

since it consists of two diagonal matrices and one low-rank matrix. To evaluate the last term we use
the Cholesky decomposition L = CHOLESKY(S−1 +QTΛ3Q), which can be reused in the gradients.
Pseudocode is given in Algorithm 2.

. Eq. (9)

4.2 Gradients
We can optimize the marginal likelihood with respect to the hyperparameters θ. For this we need the
partial derivatives ∂q(y|X,θ)/θj . Since f̂ and W are implicit functions of θ we need to take care of
both the explicit and implicit derivatives [8].

∂ log q(y|X,θ)

∂θj
=
∂ log q(y|X,θ)

∂θj

∣∣∣∣
explicit

+

N∑
i=1

∂ log q(y|X,θ)

∂f̂i

∂f̂i
∂θj

(10)

4.2.1 Explicit Derivatives – Kernel Hyperparameters

The explicit derivatives are given by:

∂ log q(y|X,θ)

∂θcj

∣∣∣∣∣
explicit

=
1

2
f̂
T
K−1

∂K

∂θcj
K−1f̂− 1

2
tr

(
(W−1 +K)−1

∂K

∂θcj

)
. (11)

The first term is easily computed using Kronecker matrix-vector products, but we approximate the
second term using the low-rank decomposition. Since

(W−1 +K)−1 = W
1
2 (I +W

1
2KW

1
2)−1W

1
2

≈W 1
2 (I +W

1
2 Λ1W

1
2 +W

1
2QSQTW

1
2)−1W

1
2

= W
1
2 (Λ2 +W

1
2QSQTW

1
2)−1W

1
2

= W
1
2 (Λ−12 −Λ−12 W

1
2Q(S−1 +QTΛ−13 Q)−1QTW

1
2 Λ−12)W

1
2

= Λ3 −Λ3Q(S−1 +QTΛ3Q)−1QTΛ3

(12)

we can rewrite the trace term as follows

tr

((
W−1 +K

)−1 ∂K
∂θcj

)
= tr

(
Λ3

∂K

∂θcj

)
− tr

(
Λ3Q

(
S−1 +QTΛ3Q

)−1
QTΛ3

∂K

∂θcj

)

= tr

(
Λ3

∂K

∂θcj

)
− tr

(
V T
1

∂K

∂θcj
V1

) (13)

with V1 = Λ3QCHOLESKY
[
(S−1 +QTΛ3Q)−1

]
. In this last line we also used the cyclic property

of the trace operator tr(ABC) = tr(BCA) to obtain a trace of a low-rank R×R matrix.

4.2.2 Implicit Derivatives – Kernel Hyperparameters

To evaluate the implicit derivatives we need the following expression:

∂ log q(y|X,θ)

∂f̂i
= −1

2

[
(K−1 +W)−1

]
ii

∂3

∂f3i
log p(y|̂f) (14)

The troublesome part can be rewritten using the low-rank decomposition as follows

(K−1 +W)−1 = (K−1 +W
1
2 IW

1
2)−1

= K −KW 1
2 (I +W

1
2KW

1
2)−1W

1
2K

= K −K(W−1 +K)−1K

≈K −KΛ3K +KΛ3Q(S−1 +QTΛ3Q)−1QTΛ3K

= K −KΛ3K + V2V
T
2

(15)

with V2 = KΛ3QCHOLESKY
[
(S−1 +QTΛ3Q)−1

]
= KV1. The diagonal diag[(K−1 + W)−1]

can be easily obtained using Eq. (15). The remaining term

∂ f̂
∂θcj

= (I +KW)−1
∂K

∂θcj
∇ log p(y|̂f) (16)

can be solved using conjugate gradient avoiding the need to directly compute the expensive matrix
inverse.

4.2.3 Explicit Derivatives – Likelihood Hyperparameters

The explicit derivatives of the likelihood are given by:

∂ log q(y|X,θ)

∂θlj

∣∣∣∣∣
explicit

=
∂

∂θlj
log p(y|f) +

1

2

[
(K−1 +W)−1

]
ii

∂

∂θlj
∇2 log p(y|f) (17)

in which the second term can be approximated as outlined in Eq. (15).

Algorithm 3 Laplace gradients
1: function LAPLACEGRADIENT(covariance matrixK, observations y, likelihood function p(y|f))
2: [̂f,Q,L,Λ3]← Obtain from Algorithm 1 and Algorithm 2
3: V1 ← Λ3Q/L . V1 = Λ3QCHOLESKY

[
(S−1 +QTΛ3Q)−1

]
4: V2 ←KV1

5: C ← diag(K)− (K ◦K) · diag(Λ3) + SUMROWS(V2 ◦ V2) . Eq. (15)
6: s2 ← 1

2C · ∇
3 log p(y|f) . Eq. (14)

7: for j ← 1, . . . ,dim(θc) do . loop over kernel hyperparameters
8: s1 ← 1

2a
T ∂K
∂θcj
a− 1

2diag(Λ3)T diag(∂K∂θcj
) + 1

2 tr(V T
1
∂K
∂θcj
V1) . Eqs. (11–13)

9: Iteratively solve: (I +KW)s3 = K∇ log p(y|f) . Eq. (16) using conjugate gradient
10: ∇j − log p(y|f)← −s1 − sT2 s3 . Gradient − ∂

∂θcj
log p(y|f)

11: end for
12: for j ← 1, . . . ,dim(θl) do . loop over likelihood hyperparameters
13: s1 ← ∂

∂θlj
log p(y|f) + 1

2C
∂
∂θlj
∇2 log p(y|f) . Eq. (17)

14: Iteratively solve: (I +KW)s3 = K ∂
∂θlj
∇ log p(y|f) . Eq. (18) using conjugate gradient

15: −∇j log p(y|f)← −s1 − sT2 s3 . Gradient − ∂
∂θlj

log p(y|f)

16: end for
17: return −∇ log p(y|f) . Gradient − ∂

∂θ log p(y|f)
18: end function

4.2.4 Implicit Derivatives – Likelihood Hyperparameters

The implicit derivatives of the likelihood (cf. Eq. (10)) are computed by combining Eq. (14) with

∂ f̂
∂θlj

= (I +KW)−1K
∂

∂θlj
∇ log p(y|f) (18)

of which the latter is solved using conjugate gradient.

5 Memory and Run Time Complexity of the Algorithms
Algorithms 1, 2, and 3 are both memory and run time efficient. Care is taken to never evaluate a full
N ×N matrix, which may not fit into memory. The matrices W , b,Λ1,Λ2,Λ3 are diagonal each
requiring O(N) storage, K is a Kronecker matrix requiring O(

∑D
d=1N

2
d) storage, S = ⊗Sd requires

at most O(R) storage, L requires O(R2) storage, and Q = ⊗Qd,V1,V2 require (at most) O(RN)
storage. Because all matrix and vector operations operate on small, i.e., R×N , diagonal, or Kronecker
matrices, instead of full N ×N matrices, an increase in efficiency is obtained when N becomes large.
Note that in Algorithm 2, line 8 and Algorithm 3, line 5 we made use of the identity

diag(ABCT) = (A ◦C) · diag(B) (19)

which holds when B is a diagonal matrix to speed up computations. For a Kronecker matrix K, the
Hadamard productK ◦K can be evaluated efficiently and is again a Kronecker matrix.

6 Experiments
In order to compare the run time complexity of a standard Gaussian process with a Gaussian process
having a Kronecker product kernel we implemented the algorithms in the publicly available Gaussian
process toolbox GPstuff [12] and ran the algorithms on a synthetic dataset. As input we use gridded
data on the D-dimensional hypercube X =

∏D
d=1[0, 1]. We consider the binary classification task of a

datapoint belonging to the D-dimensional unit ball in X .
For the likelihood model we use a probit model p(yi|fi) = Φ(yifi) with yi ∈ {−1, 1}. We generated

inputs with D = 2 using varying grid sizes and ran both the standard Laplace approximation and the

1000 2000 3000 4000 5000 6000

100

200

300

400

500

600

700

800

900

1000

1100

N

s
e
c
o
n
d
s

Standard

Kronecker

Figure 1: Run time of the standard Laplace algorithm versus the Kronecker Laplace algorithm on a 2D
classification problem with a varying number of input data points.

Kronecker Laplace approximation and measured their run-time averaged over five runs. The results are
shown in Figure 1. For the low-rank approximation we only selected the eigenvalues higher than 1E-6,
but if necessary only select from the highest eigen values such that the rank is below 10% of the number
of input data points. The tolerance in the conjugate gradient iterations was set to 1E-10. Clearly, the
increase in computational complexity with increasing data size is much lower for the Kronecker Laplace
approximation than for the standard Laplace approximation.

7 Conclusions
In this paper we have presented a scalable Gaussian process framework for gridded inputs and non-
Gaussian observation models that factorize over cases. We used the Laplace approximation to perform
approximate inference and showed it can efficiently be combined with tensor product kernels using fast
matrix-vector operations and an efficiently obtained low-rank approximation of the kernel matrix. We
provided derivations and pseudocode of the algorithms and empirically validated our approach on a
binary classification problem showing a major performance improvement in terms of run time.

Directions for further work include among others handling missing observations and a more detailed
analysis of the computational complexity. The standard Laplace approximation is quite straightforward,
but the Kronecker Laplace approximation provides more options that each influence the computational
complexity and quality of the algorithms. These include, among others, the rank of the low-rank ap-
proximation, the tolerances used in the Conjugate Gradients Iterated solvers, and the number of hyper-
parameters.

References
[1] N. Cressie and G. Johannesson. Fixed rank kriging for very large spatial data sets. Journal of the

Royal Statistical Society, 70:209–226, 2008.

[2] J. P. Cunningham, K. V. Shenoy, and M. Sahani. Fast Gaussian process methods for point process
intensity estimation. In Proceedings of the 25th international conference on Machine learning,
pages 192–199, 2008.

[3] E. Gilboa, Y. Saatci, and J. P. Cunningham. Scaling multidimensional Gaussian processes using
projected additive approximations. In International Conference on Machine Learning, 2013.

[4] A. Knutson and T. Tao. Honeycombs and sums of Hermitian matrices. Notices Amer. Math. Soc,
pages 175–186, 2000.

[5] C. F. van Loan. The ubiquitous Kronecker product. Journal of Computational and Applied Math-
ematics, 123(1–2):85–100, 2000.

[6] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, December 2005.

[7] J. Quiñonero-Candela, C.E. Rasmussen, and C.K.I. Williams. Approximation methods for Gaus-
sian process regression. Advances in Neural Information Processing Systems, pages 203–223,
2007.

[8] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[9] J. Riihimäki and A. Vehtari. Laplace approximation for logistic Gaussian process density estima-
tion. Bayesian Analysis, in press, 2014.

[10] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. Advances in
Neural Information Processing Systems, 2006.

[11] O. Stegle, C. Lippert, J. M. Mooij, N. D. Lawrence, and K. Borgwardt. Efficient inference in
matrix-variate Gaussian models with iid observation noise. In Advances in Neural Information
Processing Systems 24, pages 630–638, 2011.

[12] J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. GPstuff:
Bayesian modeling with Gaussian processes. Journal of Machine Learning Research,
14(Apr):1175–1179, 2013.

[13] C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

[14] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham. GPatt: Fast multidimensional pattern
extrapolation with Gaussian processes. arXiv, 2013.

