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1 Introduction
Causal discovery is widely used for analysis of experimental data focusing on the exploratory analysis
and suggesting probable causal dependencies. There is a variety of causal discovery algorithms in
the literature. Some of these algorithms rely on the assumption that there are no latent variables in
the model; others do not provide a scoring metric to easily compare the reliability of two candidate
models. Bayesian Constraint-based Causal Discovery (BCCD) [1] is a state-of-the-art-algorithm for
causal discovery that tries to combine the strength of the best algorithms in the field. BCCD is able to
detect latent variables in the model and determines the reliability of the edges between variables that
makes it very easy to compare alternative models.

The idea of BCCD is to estimate the reliability of causal relations by scoring Directed Acyclic
Graphs (DAGs) for a smaller subset of variables using a Bayesian score and then to combine these
statements to infer a final causal model. The Bayesian score has a closed form solution for discrete
variables that makes the scoring of causal relations fast and efficient. The BCCD algorithm is currently
limited to discrete or Gaussian variables as there is no closed form solution for the Bayesian score for
a mixture of discrete and continuous variables. To extend BCCD, we need a new scoring method to
estimate the reliability of causal relations.

There are several scoring methods in the literature for mixtures of discrete and continuous variables.
Most of these methods either rely on strict assumptions about the structure of the network that do not
apply in practice, such as forbidding structures in the network with a continuous variable as a parent
having a discrete variable as child, or are time consuming and/or memory inefficient.

2 Methods
In this paper we propose a fast and memory efficient method to score DAGs with both discrete and
continuous variables using BIC score, under the assumption that the relationships between these vari-
ables are monotonic. This appears to be a reasonable assumption for many real-world data sets. The
BIC score can be decomposed into the sum of two components, the mutual information I(Xi, Pai) with
Pai the parents of node Xi and Dim[G] the number of parameters necessary to estimate the model. The
first component measures the goodness of fit, and the second penalizes the complexity of the model. To
estimate BIC for a mixture of discrete and continuous variables we need to estimate the mutual infor-
mation and the complexity penalty. We propose to approximate the mutual information based on the
formula for continuous variables drawn from a Gaussian distribution [2]:
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where R is a correlation matrix between all variables and RPai
is a correlation matrix between the

parents of variable Xi. Estimation of the complexity penalty for the model containing a mixture of
variables is reduced to calculation of the parameters in the regression model.

In addition to (1) we propose substituting Pearson correlation with Spearman. We assume hereby
explicitly that the variables obey a so-called non-paranormal distribution: a multivariate Gaussian dis-
tribution on latent variables, each of which is related to the observed variables through a monotonic
transformation. As shown in [3], conditional independence tests for non-paranormal data based on
Spearman correlations are more accurate than those based on Pearson correlations for non-Gaussian
continuous data. Ignoring the discreteness of the discrete variables does introduce some bias in the
approximation of the BIC score, however, this bias hardly affects the scoring of the network structures.

The most computationally expensive part of the proposed scoring method is the calculation of the
correlation matrix. However, one can compute the full correlation matrix once beforehand, which can
then be stored and used to efficiently construct the correlation matrices for any subset of variables. The
proposed method is thus computationally and memory efficient.

3 Results
To test our algorithm on simulated data, we chose two widely used Bayesian networks: the Asia Net-
work and the Waste Incinerator Network to test the algorithm for discrete variables and a mixture of
discrete and continuous variables, respectively. We randomly generated data for four different sample
sizes: 100, 500, 1000, and 1500 and repeated our experiments 20 times. Performance was measured by
PAG accuracy measure, that evaluates how many edges were oriented correctly in the output PAG. We
also estimated the correctness of the skeleton by calculating the amount of correct, missing, and spuri-
ous edges of the resulting graph. Simulation studies showed that the proposed scoring method appears
to rely on a reasonable approximation of mutual information. The small bias introduced to it hardly
influences the outcome of the BCCD algorithm. To test the BCCD algorithm on real-world data, we
used the data set collected for ADHD-200 competition that contains a mixture of discrete and continu-
ous variables. The resulting network inferred by the BCCD algorithm provided the causal relationships
between different factors and symptoms. Several publication in medical journals have been found that
confirm these relationships. Based on this results, we conclude that the BCCD algorithm with the pro-
posed scoring method can accurately estimate the structure of the Bayesian network for both simulated
and real-world data.
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