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Abstract. Causal discovery is an increasingly popular method for data
analysis in the field of medical research. In this paper we consider two
challenges in causal discovery that occur very often when working with
medical data: a mixture of discrete and continuous variables and a sub-
stantial amount of missing values. To the best of our knowledge there
are no methods that can handle both challenges at the same time. In
this paper we develop a new method that can handle these challenges
based on the assumption that data is missing completely at random and
that variables obey a non-paranormal distribution. We demonstrate the
validity of our approach for causal discovery for empiric data from a mon-
etary incentive delay task. Our results may help to better understand the
etiology of attention deficit-hyperactivity disorder (ADHD).
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1 Introduction

In recent years, the use of causal discovery in the field of medical research has be-
come increasingly popular. Existing algorithms deal reasonably well with models
that contain only discrete variables or only Gaussian variables, while real-world
data often contains mixture variables, where continuous variables are not Gaus-
sian. To tackle the problem of mixture variables, several approaches have been
developed, including partial correlation tests [7], Mercer kernels [2], and neu-
ral networks [8]. Existing algorithms for causal discovery mainly start from the
assumption that the data is complete, whereas in practice, medical data sets
often have missing values. For example, some tests are often performed only
for part of the patients, the quality of some data is poor, participants drop out
etc. Several methods have been proposed to deal with missing values for causal
discovery, including imputation methods, expectation maximization algorithms,
and importance sampling [6,9]. However, these methods usually rely on the as-
sumption that data is either discrete or continuous Gaussian. To the best of our
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knowledge there are no methods that can handle both a mixture of discrete and
continuous variables as well as missing values for directed graphical models. An
ad hoc solution would be to apply standard methods and ignore all missing val-
ues. However, when the percentage of missing values is significant one can end
up with the insufficient data to learn a causal structure.

We propose a method that can handle missing values and mixture variables
based on the ideas for undirected graphical models presented in [12,1]. As a
prototypical example we apply our algorithm to a data set of patients with
Attention-deficit/hyperactivity disorder (ADHD). The data set is ideal for our
purposes because it provides all characteristics of a typical medical data set:
it describes relationships between various possible factors of the disease such
as genes, age, gender, and different types of symptoms and behavioral charac-
teristics. Moreover, it has a mixture of discrete and continuous variables and
approximately 10% of missing data.

The rest of the paper is organized as follows. Section 2 explains the proposed
method. Section 3 presents the results for ADHD data. Section 4 provides our
conclusion and future work.

2 Proposed Method

In this section we propose a causal discovery algorithm that can deal with both
a mixture of discrete and continuous variables and missing data. In the first
two steps of this algorithm we estimate the correlation matrix for mixed data
with missing values, based on the ideas proposed in [12,1]. In the third step,
we use this correlation matrix as an input into a causal discovery algorithm to
infer the causal structure. We use the BCCD algorithm for this purpose, one
of the state-of-the-art algorithms in causal discovery. Claassen and Heskes [3]
showed that BCCD outperforms reference algorithms in the field, such as FCI
and Conservative PC. Moreover, BCCD provides an indication of the reliability
of the causal links that makes it easier to interpret the results and compare
alternative models. We rely on the assumption that data is missing completely
at random and that variables obey a non-paranormal distribution.

Step 1 Mixture of discrete and continuous variables
To deal with mixed data we propose to use a Gaussian copula. For each
variable Xi we estimate the rescaled empirical distribution

F̂i(x) =
1

n+ 1

n∑

i=1

I{Xi < x}, (1)

and then transform the data into Gaussian normal scores X̂i = Φ̂−1
i (F̂ (Xi)).

In this step missing values are ignored.
Step 2 Correlation matrix with missing data

New variables now have a Gaussian distribution, so we can use Pearson
correlation to estimate dependencies between variables. Since our data has
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missing values, we propose to first use the expectation maximization algo-
rithm to estimate the correlation matrix, since this algorithm provides an
unbiased estimate of parameters and their standard error [4].

Step 3 Apply BCCD
Having the correlation matrix we can use it in the BCCD algorithm to
estimate the causal structure of the graph. A more detailed description can
be found in [3,10]. The core part of the algorithm BCCD is the estimation
of the reliability of the causal relations, based on the marginal likelihood of
data given graphical structure p(D|G). We approximate the logarithm of the
marginal likelihood log(p(D|G)) using the Bayesian Information Criterion
(BIC), which depends on the correlation matrix computed in Step 2:

BICscore(D|G) = M

n∑

i=1

−1

2
log

|Σ|
| ΣPai |

− logM

2
Dim[G] , (2)

where n is the number of variables, M is the sample size, Dim[G] is the
number of parameters in the model corresponding to graph G, Pai are the
parents of node Xi, and ΣPai is a correlation matrix between the parents of
variable Xi. Having all the causal relations, BCCD ranks them in decreasing
order of reliability and uses logical deduction with transitivity and acyclicity
to derive additional causal statements. If there is a conflict, it picks the
causal statement that has a higher reliability.

3 ADHD Data

In a future paper we will analyze the performance of our method on simulated
data, where we know the ground truth. Here we describe an application of our
algorithm to the ADHD data set that was collected as a part of the NeuroIMAGE
study [11]. This study investigated the brain response during reward anticipation
and receipt with a monetary incentive delay (MID) task in a large sample of
adolescents and young adults with ADHD, their unaffected siblings and healthy
controls. The brain activation was measured in ventral striatum (VS) and orbital-
frontal cortex (OFC) brain areas during the anticipation of the reward cue and
feedback after reward cue. During the experiments the difference in reaction
time was measured when there was and there was no reward cue (Reaction time
difference). The data set contained 189 probands with ADHD, 104 unaffected
siblings, and 116 age-matched controls. Since the presence of the unaffected
siblings can blur the effect of the genes, we did not include them in our study
and consider only ADHD patients and healthy controls.

The goal of our study is to identify the endophenotypic model [5] that ex-
plains the relationships between genes, brain functioning, behaviors, and disease
symptoms. To apply causal discovery to this data set, we selected 12 variables
that represent genes, brain functioning in different regions of the brain, symp-
toms, and general factors. We included the prior knowledge that no variable in
the network can cause gender, and the endophenotypic assumption from [5] that
symptoms are the consequence of the brain functioning problems.
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Fig. 1. The causal graph representing causal relationships between variables for the
ADHD data set. The graph represents a PAG, where edge directions are marked with
“ − ” and “ >” for invariant edge directions and with “◦” for non-invariant edge
directions. The reliability of an edge between two variables is depicted with a percentage
value near each edge.

A causal network learned from the data is presented in Figure 1. This figure
includes only edges with a reliability of a direct causal link higher than 50%. The
graph built by BCCD shows an effect of genes on brain functioning, the effect of
brain functioning and general factors on disease symptoms, and an interaction
between these symptoms. The relationships between variables found by BCCD
are in line with several other studies in ADHD that considered mainly pairs
of variables [13]. An additional advantage of this study is that interactions are
visualized in a single graph that makes it easy to interpret the results.

4 Conclusions and Discussion

The contribution of this paper is the presentation of an algorithm for causal
discovery and application of it to real-world data describing ADHD. The results
of the algorithm were corroborated by medical experts and literature. As any
statistical approach, methods for causal discovery have to rely on assumptions.
In this paper we relaxed standard assumptions on, for example, Gaussianity and
the absence of missing values. By doing this we open up the application of causal
discovery to a much wider class of data sets. However, we obviously rely on some
other assumptions such as data being missing completely at random, monotonic
interactions between variables, and absence no cycles. As future work we would
like to consider data sets with more complex interactions between variables and
relax in particular the assumption that data is missing completely at random.
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