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Abstract. We propose the ‘Copula PC’ algorithm for causal discov-
ery from a combination of continuous and discrete data, assumed to be
drawn from a Gaussian copula model. It is based on a two-step approach.
The first step applies Gibbs sampling on rank-based data to obtain sam-
ples of correlation matrices. These are then translated into an average
correlation matrix and an effective number of data points, which in the
second step are input to the standard PC algorithm for causal discovery.
A stable version naturally arises when rerunning the PC algorithm on
different Gibbs samples. Our ‘Copula PC’ algorithm extends the ‘Rank
PC’ algorithm, which has been designed for Gaussian copula models for
purely continuous data. In simulations, ‘Copula PC’ indeed outperforms
‘Rank PC’ in cases with mixed variables, in particular for larger numbers
of data points, at the expense of a slight increase in computation time.

Keywords: causal discovery, Gaussian copula, mixed data, extended
rank likelihood

1 Introduction

Causal discovery, or causal structure learning [23], aims to find an underlying
directed acyclic graph (DAG), which represents direct causal relations between
variables. It is a very popular approach for multivariate data analysis and there-
fore is widely studied in the past few years, resulting in lots of algorithms. The
PC [27, 28] algorithm can be considered the reference causal discovery algo-
rithm. It makes use of conditional independence tests to build the underlying
DAG from observations. Starting from a complete undirected graph, the PC al-
gorithm removes edges recursively according to the outcome of the conditional
independence tests. This procedure yields an undirected graph, also called the
skeleton. After applying various edge orientation rules, it finally gives back a
partially directed graph to represent the underlying DAGs.

One advantage of the PC algorithm is that it is computationally feasible for
sparse graphs even with thousands of variables. Therefore, it is widely used in
high-dimensional settings, generating a variety of applications [20], [29]. Also,
open-source software is available like pcalg [17] and the Tetrad project [25].



When applied to Gaussian models, the PC algorithm tests conditional inde-
pendence using partial correlation based on Pearson correlations between vari-
ables: when the joint distribution is a multivariate Gaussian, pairwise conditional
independence is equivalent to the vanishing of the corresponding partial correla-
tion [18]. Following [12], we will refer to the PC algorithm for Gaussian models
as the ‘Pearson PC’ algorithm. As input it takes the correlation matrix of the
observed data and the number of data points. The number of data points is
needed for the conditional independence tests: the higher the number of data
points, the more reliable the observed correlation matrix as an estimate of the
(unknown) true correlation matrix, and the more easily the null hypothesis of
conditional independence (given the same value for the partial correlation and
the significance level) gets rejected. Under relatively mild assumptions regarding
the sparseness of the true underlying DAG, the ‘Pearson PC’ algorithm shows
uniform consistency [16].

Harris and Drton [12] extend the PC algorithm to non-parametric Gaussian
(nonparanormal) models, i.e., continuous data assumed to be generated from
a Gaussian copula model. They propose to apply the standard PC algorithm,
but then replacing the Pearson correlation matrix with rank-based measures
of correlation. The so-called ‘Rank PC’ (RPC) algorithm works as well as the
‘Pearson PC’ algorithm on normal data and much better on non-normal data,
and is shown to be uniformly consistent in high-dimensional settings.

In this paper, we aim to generalize the ‘Pearson PC’ and ‘Rank PC’ algorithm
to Gaussian copula models that can also handle binary and ordinal variables.
The ‘Rank PC’ algorithm is explicitly limited to the continuous situation, where
ties appear with probability zero, making ranks well-defined. In the presence of
binary and ordinal variables, ties make the rank correlations between observed
variables different from those between the corresponding latent variables in the
Gaussian copula setting. Ignorance of this difference typically leads to underes-
timates of the (absolute) correlations [13].

It is tempting to follow a similar two-step approach as for ‘Rank PC’: first
estimate the correlation matrix in the latent space and then use this as input to
the standard PC algorithm. This, however, is not as straightforward as it may
seem, for two reasons. First, because of the ties, estimating the correlation matrix
of Gaussian copula models for mixed data is considerably more complicated.
Second, the ties imply a loss of information, which makes that our estimate of
the correlation matrix will tend to be less reliable than in the fully continuous
case, which should be accounted for when applying the conditional independence
tests in the PC algorithm.

To solve both issues, we propose to make use of a Gibbs sampling procedure,
specifically the one derived by Hoff [13] based on the so-called extended rank
likelihood. This procedure is relatively straightforward and easy to implement
(see the code in the Appendix of [13]). For purely Gaussian data, the correlation
matrix samples follow a specific kind of inverse-Wishart distribution [3], which we
refer to as the projected inverse-Wishart distribution. Projected inverse-Wishart
distributions are characterized by two parameters: the scale matrix and the



degrees of freedom; the former relates to the average correlation matrix and the
latter to the number of data points. As we will show, under the projected inverse-
Wishart, the variance of each off-diagonal element of the correlation matrix is
an approximate function of its expectation and the degrees of freedom: the more
degrees of freedom, the smaller the variance. The idea is now to estimate the scale
matrix and degrees of freedom from the Gibbs samples of more general Gaussian
copula models on mixed data, as if they were also drawn from a projected inverse-
Wishart distribution. The scale matrix is translated into a correlation matrix and
the degrees of freedom into a so-called ‘effective number of data points’, to take
into account the reliability of our estimate of the correlation matrix. These are
then input to the standard PC algorithm for causal discovery.

We refer to our two-step procedure as the ‘Copula PC’ (CoPC) algorithm.
We also derive a stable version, referred to as ‘Stable Copula PC’ (SCPC), which
runs PC repeatedly on a number of Gibbs samples. Experimental results show
that both CoPC and SCPC outperform the current ‘Rank PC’ algorithm in
mixed databases with discrete and continuous variables.

The rest of this paper is organized as follows. Section 2 reviews some relevant
background information and analyzes issues of existing algorithms in more detail.
Section 3 proposes an approximate inference method for the correlation matrix
and the effective number of data points based on the projected inverse-Wishart
distribution, and then derives the resulting algorithms CoPC and SCPC. Sec-
tion 4 compares CoPC and SCPC with the ‘Rank PC’ algorithm on simulated
data and provides an illustration on real-world data of ADHD patients. Section 5
gives conclusions and future work.

2 Preliminaries and Problem Analysis

In this section, we first review some necessary background information on causal
discovery, then briefly introduce the PC and ‘Rank PC’ algorithm, and finally
analyze the challenges current PC algorithms face for mixed data.

2.1 Causal Structure Learning

A graph G = (V ,E) consists of a set of vertices V = {X1, . . . , Xp}, representing
random variables, and a set of edges E, representing relations between pairs of
variables. A graph is directed if it only contains directed edges while it is undi-
rected if it only contains undirected edges. Graphs containing both directed and
undirected edges are called partially directed graphs. A graph with no directed
cycles, e.g., Xi → Xj → Xi is acyclic. A graph which is both directed and acyclic
is a Directed Acyclic Graph (DAG). If there is an edge from Xi to Xj , Xi is the
parent of Xj . The set of parents of Xj in graph G is denoted by pa(G,Xj).

A multivariate probability distribution P over variables V = {X1, . . . , Xp} is
said to factorize according to a DAG G = (V ,E), if the joint probability density
function of P can be written as the product of the conditional densities of each
variable given its parents in G, i.e., f(X1, . . . , Xp) =

∏p
i=1 f(Xi|pa(G,Xi)). If



this condition holds, we can read off conditional independence relationships in
distribution P from the DAG via a graphical criterion called d-separation [24].
D-separation implies that each variable is independent of its non-descendants
given its parents.

Several DAGs may, via d-separation, correspond to the same set of con-
ditional independencies. Such DAGs form a Markov equivalence class, which
can be uniquely represented by a completed partially directed acyclic graph
(CPDAG) [6]. Arcs in a CPDAG indicate a cause-effect relation between vari-
ables since the same arc occurs in all members of the CPDAG. Undirected edges
Xi−Xj in a CPDAG indicate that some of its members contain an arc Xi → Xj

whereas other members contain an arc Xj → Xi. The aim of causal discovery
is to learn the Markov equivalence class of a DAG G = (V ,E) from n i.i.d.
observations of V .

2.2 PC Algorithm and Rank PC Algorithm

The PC algorithm starts from a complete undirected graph, and then removes
edges recursively according to conditional independencies yielding a partially
connected undirected graph called the skeleton, after which some orientation
rules are applied to direct as many edeges as possible, resulting in a completed
partially directed acyclic graph, i.e. the underlying CPDAG.

During the process, testing conditional independence plays the most impor-
tant role. The PC algorithm uses partial correlation, denoted by ρuv|S , to do it.
The correlation matrix from independent observations of a random vector Z can
be used to estimate ρuv|S [2]. Then, classical decision theory is applied to judge
conditional independencies using significance level α,

Zu ⊥⊥ Zv|ZS ⇔
√
n− |S| − 3

∣∣∣∣12 log

(
1 + ρ̂uv|S

1− ρ̂uv|S

)∣∣∣∣ ≤ Φ−1(1− α/2), (1)

where u 6= v and S ⊆ {1, . . . , p}\{u, v}. Thus in order to run the PC algorithm
we need the correlation matrix corresponding to the data to estimate ρ̂uv|S and
the number of observations n.

The PC algorithm has been extended to a broader class of Gaussian copula
by using rank correlations to replace Pearson correlations, resulting in the ‘Rank
PC’ algorithm [12]. Rank correlations, typically Spearman’s ρ and kendall’s τ ,
only consider the ranks among observations, ignoring the actual variables.

Definition 1 (Gaussian Copula Model). Consider two random vectors Z =
(Z1, . . . , Zp) and Y = (Y1, . . . , Yp), satisfying the conditions Z ∼ N (0, C) and
Yi = F−1i (Φ(Zi)) for i = 1, . . . , p where C denotes the correlation matrix of
Z and Fi

−1(t) = inf{y : Fi(y) ≥ t} is the pseudo-inverse of a cumulative dis-
tribution function Fi. Then this model is called Gaussian copula model with
correlation matrix C and univariate margins Fi.

In the Gaussian copula model, when all margins are continuous, ties occur
with zero probability making ranks well-defined. For such so-called nonparanor-
mal models, the sample correlations among ranks can naturally be used as an



estimator for the Pearson correlation in the latent space. In this nonparanormal
setting, RPC has been shown to perform well [12], [19].

2.3 Challenges for Mixed Data

RPC works well on continuous data, because tied observations occur with prob-
ability zero. In the presence of discrete margins, however, the estimator used in
RPC is no longer consistent because of the tied observations. In this case, stan-
dard rank-based correlation will be different from the true correlation in latent
space [13], typically underestimating it. Hence, our first challenge is to estimate
the underlying C efficiently and consistently from mixed data.

A second challenge concerns the information loss incurred by discrete vari-
ables. Specifically, simply setting n in Equation (1) to the number of data points
can lead to an underestimate of the p-values provided by the conditional inde-
pendence tests. To solve this problem, we introduce the notion of an effective
number of data points.

3 Approximate Inference and Copula PC Algorithm

In this section, we introduce an approximate inference approach for the under-
lying correlation matrix and the effective number of data points from mixed
data. Subsection 3.1 introduces the projected inverse-Wishart distribution and
its application to Gaussian models. Subsection 3.2 discusses how to obtain cor-
relation matrix samples from mixed data using a Gibbs sampling procedure.
Subsection 3.3 shows how to use these samples to estimate the two parameters
of the projected inverse-Wishart distribution: the scale matrix (as the underlying
correlation matrix) and the degrees of freedom (as the effective number of data
points). Subsection 3.4 gives the resulting Copula PC algorithm and the Stable
Copula PC algorithm.

3.1 Projected Inverse-Wishart Distribution

Priors on correlation matrices are typically derived by choosing the inverse-
Wishart distribution, denoted by W−1(Σ;Ψ0, ν), as a prior on covariance ma-
trices and then turning the covariance matrices into a correlation matrix to end
up with an implied distribution on the correlation matrix. We choose Σ from
W−1(Σ;Ψ0, ν) and write

P (C) = PW−1(C;Ψ0, ν) (2)

where Cij =
Σij√
ΣiiΣjj

for ∀ i, j. Since many covariance matrices possibly cor-

respond to the same correlation matrix, the above process can be considered
as a projection from covariance matrices to a correlation matrix. Therefore, we
refer to this distribution on correlation matrix C as a projected inverse-Wishart
distribution.



For Gaussian models, the projected inverse-Wishart distribution gives exact
inference [21]. Specifically, given data Z = (z1, . . . ,zn), the posterior reads

P (Σ|Z) =W−1(Σ;Ψ0 + Ψ, ν + n) and P (C|Z) = PW−1(C;Ψ0 + Ψ, ν + n) ,

with Ψ = ZTZ. Also, the projected inverse-Wishart is scale invariant [3], [14],
in the sense that we can make the posterior distribution on correlation matrices
independent of the scale of the data by choosing Ψ0 = 0, or perhaps better,
Ψ0 = ε1 in the limit ε ↓ 0.

Summarizing, we consider the prior distribution

P (Σ) =W−1(Σ; ε1, p+ 1) in the limit ε ↓ 0,

which in fact boils down to the well-known improper Jeffreys prior [32]:

P (Σ) ∝ ‖Σ‖−(p+1) .

For Gaussian copula models, although there is no analytical expression, we
still expect that the posterior P (C|Y ) can be approximated through a projected
inverse-Wishart distribution, i.e., P (C|Y ) ≈ PW−1(C;Ψ, ν) for some Ψ and ν.

3.2 Gibbs Sampler Based on Extended Rank Likelihood

Hoff [13] describes an elegant procedure to obtain samples from P (C|Y ) for a
Gaussian copula model. The essence is that we only consider the ranks among
observations, hence the name extended rank likelihood, ignoring the actual vari-
ables. Since the cumulative distribution functions Fi(Yi) are non-decreasing, ob-
serving yi1,j < yi2,j implies that zi1,j < zi2,j , where yi1,j denotes the ith1 ob-
servation of the jth component of random vector Y , To be precise, observing
Y = (y1, . . . ,yn) tells us that Z = (z1, . . . ,zn) must lie in the set{

Z ∈ Rn×p : max {zk,j : yk,j < yi,j} < zi,j < min {zk,j : yi,j < yk,j}
}
.

Strong posterior consistency for C under the extended rank likelihood has
been proved in the situation with both discrete and continuous marginal distri-
bution functions [22].

An off-the-shelf sampling algorithm based on the extended rank likelihood
is full Gibbs sampling [13]. The code of this sampling algorithm is provided
in the Appendix of [13]. In this algorithm, each component of Z is initialized
according to the rank information of the corresponding component of Y , af-
ter which each component is resampled alternatively. Here we propose a slight
modification by just resampling the discrete components instead of all of them.
Experimental tests reveal that the results of this faster sampling approach are
indistinguishable from Hoff’s original Gibbs sampler. Although this modification
is quite straightforward, it significantly reduces computation time because sam-
pling continuous variables is far more time-consuming than sampling discrete
ones in Hoff’s Gibbs sampler. We will refer to this modified sampling algorithm
as SamplingAlgo.

So, given the observed data Y , samples on the underlying correlation matrix,
denoted by {C(1), . . . , C(m)}, can be obtained using SamplingAlgo.



3.3 Estimation of the Correlation Matrix and the Effective Number
of Data Points

This subsection aims to estimate the underlying correlation matrix and the ef-
fective number of data points from the obtained samples.

Theorem 1 suggests a procedure to estimate the parameters Ψ and ν from
samples of a projected inverse-Wishart distribution PW−1(C;Ψ, ν).

Theorem 1. If the correlation matrix C follows a projected inverse-Wishart
distribution with parameters Ψ (Ψii = 1) and ν, i.e.,

P (C) = PW−1(C;Ψ, ν),

then for each off-diagonal element Cij(i 6= j) and large ν, we have

E [Cij ] ≈ Ψij and Var [Cij ] ≈
(1− (Ψij)

2)2

ν
.

The proof is given in the Appendix.
According to Theorem 1, the mean over samples of C is an excellent approx-

imation of Ψ . As for ν, we have,

ν ≈ (1− (E [Cij ])
2)2

Var [Cij ]
. (3)

The idea now is to apply the same estimates, as if the samples obtained
by Gibbs sampling the Gaussian copula model on mixed data also (approxi-
mately) follow a projected inverse-Wishart distribution. Specifically, for the ef-
fective number of data points n̂, we propose to take the average over all p(p−1)/2
estimates on ν that can be computed by applying (3) to each upper triangular
element of a p-dimensional correlation matrix C.

3.4 Copula PC Algorithm and Stable Copula PC Algorithm

Now, we turn the previous results into a working algorithm. The two key input
arguments of the ‘Pearson PC’ algorithm are the correlation matrix and the
number of data points. In the general Gaussian copula model, we take the mean
over {C(1), . . . , C(m)} and the mean over p(p − 1)/2 estimates on ν as the two
arguments respectively, resulting in the Copula PC algorithm.

Next, we introduce a stable version of the Copula PC algorithm. We take l
instances from all the m samples. For each instance, a corresponding graph can
be obtained via the ‘Pearson PC’ algorithm using the earlier estimated effec-
tive number of data points, by which a collection of l graphs can be generated,
denoted by {G̃1, . . . , G̃l}. We keep those edge marks that emerge with a proba-
bility higher than a pre-defined threshold β and remove the others, leading to a
resulting graph. Since this resulting graph seemingly contains only ‘stable’ edge



Algorithm 1 Copula PC algorithm and its stable version

1: Input: Observations Y , Initialized parameters m, l, β
2: Output: Causal graph Gc by CoPC, Gs by SCPC
3: C(1), . . . , C(m) = SamplingAlgo(Y )
4: for all Cij with i < j (upper triangular elements) do

5: Compute and store νk =
(1−(E [Cij ])

2)2

Var [Cij ]
. Equation (3)

6: end for
7: n̂ = the average over {ν1, . . . , νp(p−1)/2}
8: if CoPC then . procedures for CoPC
9: Ĉ = 1

m

∑m
j=1 C

(j)

10: Gc = pc(Ĉ, n̂) . the ‘Pearson PC’ algorithm
11: else . procedures for SCPC
12: Choose l (l < m) instances from C(1), . . . , C(m)

13: for i = 1 : l do
14: Compute and store G̃i = pc(C(li), n̂)
15: end for
16: for all edge marks do
17: e = the number of graphs containing the current edge mark
18: if e/l > β then
19: keep the edge mark
20: end if
21: Gs = all kept edge marks among {G̃1, . . . , G̃l}.
22: end for
23: end if

marks, we call this method stable Copula PC algorithm (SCPC). The size of l
has a linear influence on running time because choosing l means the ‘Pearson
PC’ algorithm would run l times. As for β, a small value means keeping more
edge marks and vice versa. The Copula PC algorithm and its stable version are
summarized in Algorithm 1.

4 Experiments

In this section, we first verify the property of the projected inverse-Wishart
distribution described by Equation (3) and check whether it still holds in the
presence of discrete variables. Then, we compare the proposed CoPC and SCPC
with the ‘Rank PC’ algorithm on simulated data and give an illustration on
real-world data of ADHD patients.

Following Kalisch and Bühlmann [16], we simulate random DAGs and draw
samples from the distributions faithful to them. Firstly, we generate an adjacency
matrix A, whose entries are zero or in the interval [0.1, 1]. There exists a directed
edge from i to j in the corresponding DAG, if i < j and Aji 6= 0. The DAGs
generated in this way have the property E (Ni) = s(p − 1), where Ni is the
number of neighbors of node i, and s is the probability that there is an edge
between any two nodes, called the sparseness parameter. Then, the samples of
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Fig. 1: The relationship between the expectation and the variance of the elements
of sampled correlation matrices. Left panel: The samples are drawn from a given
projected inverse-Wishart distribution. Right panel: The samples are drawn via
SamplingAlgo, with circles for binary cases, triangles for ordinal cases with 4
levels, and squares for continuous cases.

a random vector Z are drawn through

Z = AZ + ε , (4)

where ε = (ε1, . . . , εp) is a vector of independent standard normal random vari-
ables. The data generated in this way follow a multivariate Gaussian distribution.

4.1 Estimation for the Effective Number of Data Points

As argued in Subsection 3.3, the expectation and variance of the elements of
correlation matrices drawn from a projected inverse-Wishart distribution are
strongly related. To check this relationship, we proceed as follows: 1) we generate
a random p-dimensional correlation matrix Ψ ; 2) we draw 500 samples from a
projected inverse-Wishart distribution with parameters Ψ and ν; 3) for each
upper triangular element, we plot its variance against its expectation.

The left panel in Figure 1 shows a typical result for p = 20 and ν = 1000.
We see that almost all pairs are distributed around the theoretical curve (solid
line) especially when the expectation is far from zero, which indicates that it
is indeed possible to infer ν of a projected inverse-Wishart distribution via the
expectation and variance of off-diagonal elements.

Next, we study how our inference method works for estimating n̂ in differ-
ent cases. We first generate n samples of Z using Equation (4) and discretize
some of the variables to obtain the simulated samples of the observed random
vector Y . Then, we run SamplingAlgo to get samples of the underlying C. The
results for p = 20 and n = 1000 for different cases are shown in Figure 1 (right
panel), where ‘bins=2’ means that all variables are binary, ‘bins=4’ means that
all variables are ordinal with 4 levels and ‘continuous’ means that all variables
are kept continuous. We take (1− (E [Cij ])

2)2 for the x-axis and n × Var [Cij ]
for the y-axis, so that all data points are expected to be distributed around a



straight line with slope n/n̂. For purely continuous variables, a straight line with
slope 1 gives an almost perfect fit, as expected. For ordinal and binary variables,
we still find a clear trend, but mild deviations from a perfect straight line, indi-
cating that the projected inverse-Wishart distribution is a fine, but not perfect
approximation of the exact posterior. The stronger the discretization, the larger
the slope n/n̂ and thus the lower our estimated effective number of data points.

More extensive experiments (not shown) done with different numbers of vari-
ables, data points, Gibbs samples and sparseness parameters, reveal that these
hardly influence the general picture, as long as the number of data points and
the number of Gibbs samples are both at least 100.

4.2 Causal Discovery on Simulations

In this subsection, we compare CoPC and SCPC with the ‘Rank PC’ [12] algo-
rithm. All computations are implemented in the R-package pcalg.

We first generate multivariate normal data (p variables) via Equation (4).
After that, 25% of all p variables are discretized into binary variables, and an-
other 25% of them are discretized into ordinal variables with 5 levels. In this
way, we simulate the observations of Y which are generated from a Gaussian
copula model with both discrete and continuous margins.

Three measures are used to test the performance: 1) percentage of correct
edges in the resulting skeleton, usually called true positive rate (TPR); 2) per-
centage of spurious edges, usually called false positive rate (FPR); 3) Structural
Hamming Distance (SHD), counting the number of edge insertions, deletions,
and flips in order to transfer the estimated CPDAG into the correct CPDAG [30].
The first two measures are for the skeleton while SHD is for the CPDAG. A
smaller SHD indicates better performance.

Next, we compare the performance of three versions of the PC algorithm,
RPC, CoPC, and SCPC in terms of TPR, FPR, and SHD. We restrict the
significance level to α = 0.01, which has been shown to yield the best overall
SHD [16]. For CoPC, we drop the first 20 Gibbs samples and save the next
100 samples (m = 100). For SCPC, we take l = 20 equidistant samples, so
{C(1), C(6), . . . , C(96)}, and choose β such that the TPR for SCPC is more or less
equal to that of RPC, which amounts to β = 0.4 for sparse graphs with 10 nodes,
β = 0.45 for sparse graphs with 50 nodes, and β = 0.3 for dense graphs. The re-
maining parameters are set as follows: p ∈ {10, 50}, n ∈ {500, 1000, 2000, 5000},
and E [N ] ∈ {2 (Sparse), 5 (Dense)}.

The comparative results in Figure 2 (10 nodes) and Figure 3 (50 nodes)
provide the mean over 100 repeated experiments and errorbars representing 95%
confidence intervals. First, for sparse graphs (both small and large graphs), the
three algorithms get nearly the same results w.r.t. TPR, but CoPC and SCPC
show a large advantage over RPC w.r.t. FPR and SHD except SCPC with large
graphs, which becomes more prominent with increasing sample size. Second, for
dense graphs, the advantage of CoPC and SCPC over RPC still exists w.r.t. FPR,
although seemingly CoPC performs a little worse than SCPC and RPC w.r.t.
TPR. Third, we note that the performance of RPC deteriorates seriously w.r.t.
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Fig. 2: Performance of Rank PC, Copula PC, and Stable Copula PC for 10 nodes,
showing the mean of TPR, FPR, and SHD over 100 experiments together with
95% confidence intervals. The first row represents the results with sparse graphs
(E [N ] = 2) while the second row represents those with dense graphs (E [N ] = 5).

FPR with the increase in sample size, while CoPC and SCPC are very stable.
Apparently, using sample size as the effective number of data points, RPC incurs
more false positives especially for larger sample sizes. Overall, CoPC and SCPC
clearly outperform RPC, especially in the sparse cases with larger sample sizes.

4.3 Application to Real-World Data

In this subsection, we give an illustration on a real-world dataset on pheno-
typic information about children with Attention Deficit Hyperactivity Disorder
(ADHD) [5]. It contains 23 variables for 245 subjects. We focus on nine variables
as in [26], but keep all subjects with missing values since these are easily handled
by the Gibbs sampler. The nine variables considered are: gender (G), attention
deficit level (AD), hyperactivity/impulsivity level (HI), verbal IQ (VIQ), per-
formance IQ (PIQ), full IQ (FIQ), aggressive behavior (Agg), medication status
(Med), handedness (HN), where four of them (G, Agg, Med, HN) are binary.

We run CoPC and SCPC (l = 30, β = 0.4) on the dataset and consider prior
knowledge that no variable can cause gender. The resulting graphs are shown in
Figure 4. The graphs suggest that gender has an effect on attention deficit level,
which then causes hyperactivity/impulsivity level. This point has been confirmed
by many studies [4], [31]. It is common that AD and Agg cause patients to take
medicine. Also, VIQ, PIQ, and FIQ are connected to each other by bi-directed
edges. This indicates that the causal sufficiency assumption is violated, i.e., that
there should be a latent common cause related to IQ, as also suggested in [26].
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Fig. 3: Performance of Rank PC, Copula PC, and Stable Copula PC for 50 nodes,
showing the mean of TPR, FPR, and SHD over 100 experiments together with
95% confidence intervals.
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Fig. 4: The resulting graphs by CoPC (left panel) and SCPC (right panel) on
ADHD dataset.

5 Conclusions and Future Work

In this paper we introduced a novel two-step approach for estimating the causal
structure underlying a Gaussian copula model on mixed data. The essence is to
estimate the correlation matrix in the latent space, which can then be given to
any causal discovery algorithm to search for its underlying structure. Ties be-
tween the discretized observations incur information loss, making the estimate of
correlation matrix less reliable than in fully continuous cases. For this, we intro-
duced the notion of ‘effective number of data points’ that can be estimated from
the expectation and variance of the correlation matrix elements. Our approach,
based on ranks and correlation matrices, is fully scale invariant and has a nat-
ural uninformative setting when choosing a uniform distribution over pairwise
correlations, which can be adjusted to account for different assumptions.



We like to think of our two-step approach as a general principle, where for
each of the two steps one could plug in one’s favorite choice: e.g., a different
MCMC method [15] or a MAP approach along the lines of [1] for estimating
the correlation matrix and its reliability, and another method, like FCI [28] or
BCCD [7], for causal structure learning. Having generated samples, running the
PC algorithm several times to gain an insight into the reliability of structure esti-
mates is an obvious thing to do. Similar procedures have been proposed, e.g., by
bootstrapping the original dataset [8], [10]. In our simulations, the Gibbs sampler
appears to converge quite fast, which makes Gibbs sampling cheap compared to
running the PC algorithm, in particular for models with many variables. Our
choice to only resample the discrete random variables and not the continuous
ones, here also helps. Being fully Bayesian about structure learning as well may
be very nice in theory [11], but is computationally infeasible in practice for any
reasonable number of variables. Altogether, our Bayesian approach to sample
correlation matrices in combination with a more frequentist approach towards
structure learning attempts to combine the best of both worlds.

Our methods require the setting of just a few parameters: the significance
level α to be used in the PC algorithm (typically 0.01 or 0.05), the number of
Gibbs samples and burn-in (the more, the better), and for SCPC, the number
of instances l in the ensemble (the more, the better), and the threshold β (the
higher, the more conservative).

Our estimate of the ‘effective number of data points’ appears to work nicely in
practice, but can and perhaps should be further improved. Instead of considering
the variance of the elements of the correlation matrix, one may come up with
another, more direct estimate, for example the entropy of the distribution and
translate that into an effect number of data points. Preliminary attempts in that
direction failed by being typically much less robust than the one described in this
paper. Our current estimate gives a single, global value for the effective number
of data points. Future work may consider estimating a different value for each
conditional independence test, since each test only relies on a local structure,
involving only part of the variables. Such estimates then can be integrated into
the causal discovery algorithm itself. Another line of future research concerns the
theoretical analysis of CoPC and SCPC, where it can be studied to what extent
and under which conditions consistency can be proven. Our conjecture here is
that consistency of our two-step procedure follows from the proven consistency of
the two separate steps: Gibbs sampling to estimate the correct correlation matrix
C [22] and the PC algorithm to arrive at the correct causal structure [16].

Appendix: Proof of Theorem 1

Consider partitioning the matrix Σ and Ψ as

Σ =

[
Σaa Σab
Σba Σbb

]
and Ψ =

[
Ψaa Ψab
Ψba Ψbb

]
.



Then, if P (Σ) =W−1(Σ;Ψ, ν), we have

P (Σaa) =W−1(Σaa;Ψaa, ν − dim(b)) ,

P (Σbb|a) =W−1(Σbb|a;Ψbb|a, ν) , (5)

P (Σ−1aa Σab|Σbb|a) = N (Σ−1aa Σab;Ψ
−1
aa Ψab, Σbb|a ⊗ Ψ−1aa ) ,

where dim(b) is the dimension of Σbb and Σbb|a = Σbb −ΣbaΣ−1aa Σab [9].
Without loss of generality, we restrict our analysis to a two-dimensional sys-

tem and suppose that we draw

Σ ∼ W−1
((

1 ρ
ρ 1

)
, ν

)
.

Then, according to (5), we have

Σ11 ∼ W−1(1, ν − 1) , Σ22|1 ∼ W−1(1− ρ2, ν) , Σ−111 Σ12|Σ22|1 ∼ N (ρ,Σ22|1) .

Rewriting the resulting ρ̂ in terms of these variables, we obtain

ρ̂ =
Σ12√

Σ11

√
Σ22

=
(Σ−111 Σ12)

√
Σ11√

Σ22|1 +Σ11(Σ−111 Σ12)2
. (6)

Since for large ν,

E [Σ11] =
1

ν − 3
≈ 1

ν
, E [Σ22|1] =

1− ρ2

(ν − 2)
≈ 1− ρ2

ν
,

Var [Σ11] =
2

(ν − 3)2(ν − 5)
≈ 2

ν3
, Var [Σ22|1] =

2(1− ρ2)2

(ν − 2)2(ν − 4)
≈ 2(1− ρ2)2

ν3
.

we can approximate,

Σ11 ≈
1

ν

(
1 +

√
2

ν
x

)
, Σ22|1 ≈

1− ρ2

ν

(
1 +

√
2

ν
y

)
,

Σ−111 Σ12 ≈ ρ+

√
1− ρ2
ν

z , (7)

where x, y, and z are independent random variables, all with mean zero and
unit variance. Indeed, for large ν, all noise terms scale with

√
1/ν relative to the

mean, and can hence be ignored when computing the expectation, to yield, as
expected,

E [ρ̂] ≈ ρ . (8)

To estimate the variance, we substitute (7) into (6), and compute (in leading
order, and evaluated for x = y = z = 0),

∂ρ̂

∂x
≈ ρ(1− ρ2)

√
1

2ν
,
∂ρ̂

∂y
≈ ρ(1− ρ2)

√
1

2ν
,
∂ρ̂

∂z
≈ (1− ρ2)3/2

√
1

ν
,

yielding the variance

Var [ρ̂] =

(
∂ρ̂

∂x

)2

+

(
∂ρ̂

∂y

)2

+

(
∂ρ̂

∂z

)2

≈ (1− ρ2)2

ν
. (9)
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Bühlmann, P.: Causal stability ranking. Bioinformatics 28(21), 2819–2823 (2012)

30. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Machine learning 65(1), 31–78 (2006)

31. Willcutt, E.G., Pennington, B.F., DeFries, J.C.: Etiology of inattention and hy-
peractivity/impulsivity in a community sample of twins with learning difficulties.
Journal of Abnormal Child Psychology 28(2), 149–159 (2000)

32. Yang, R., Berger, J.O.: Estimation of a covariance matrix using the reference prior.
The Annals of Statistics pp. 1195–1211 (1994)


	Copula PC Algorithm for Causal Discovery  from Mixed Data

