
A Theoretical and Empirical Analysis of
Approximation in Symbolic Problem

Solving

SIKS Dissertation Series No. 2004-03
The reseach reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

c© 2004 by P.C. Groot
Cover design by P.C. Groot
Printed by huisdrukkerij VU

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the author.

ISBN: 90-9017799-X

VRIJE UNIVERSITEIT

A Theoretical and Empirical Analysis of
Approximation in Symbolic Problem

Solving

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op dinsdag 23 maart 2004 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Petrus Cornelis Groot

geboren te Alkmaar

promotor: prof.dr. F.A.H. van Harmelen
copromotor: dr. A.C.M. ten Teije

Epigraph

The Blind Men and the Elephant
It was six men of Indostan

To learning much inclined,
Who went to see the Elephant

(Though all of them were blind),
That each by observation

Might satisfy his mind

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here,

So very round and smooth and sharp?
To me ’tis mighty clear

This wonder of an Elephant
Is very like a spear!”

The Third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

“I see,” quoth he, “the Elephant
Is very like a snake!”

vi Epigraph

The Fourth reached out an eager hand,
And felt about the knee.

“What most this wondrous beast is like
Is mighty plain,” quoth he;

“’Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “E’en the blindest man

Can tell what this resembles most;
Deny the fact who can

This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope.

“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion

Exceeding stiff and strong,
Though each was partly in the right,

And all were in the wrong!

Moral:

So oft in theologic wars,
The disputants, I ween,

Rail on in utter ignorance
Of what each other mean,

And prate about an Elephant
Not one of them has seen!

—John Godfrey Saxe

Contents

Epigraph v

Contents vii

Preface xi

1 Introduction 1
1.1 Research goal and context . 1
1.2 Approach . 4
1.3 Related work . 5

1.3.1 Approximations related to the reasoning method 5
1.3.2 Approximations related to the knowledge base 8
1.3.3 Approximations related to the input 9

1.4 Contributions . 9
1.5 Structure of this dissertation . 9

I Quantitative Measures 13

2 Introduction 15
2.1 Approach and foundational definitions . 16

2.1.1 Robustness and degradation . 16
2.1.2 Output quality . 16
2.1.3 Knowledge-base system input . 18
2.1.4 Comparing robustness . 19

3 The degradation studies 23
3.1 Example knowledge-based system . 23
3.2 Results of the degradation study – preliminary notes 24
3.3 Results of the degradation study – data input 24

3.3.1 Which input quality measure to use? 25

viii Contents

3.3.2 Using the input sequence from the test-cases 25
3.3.3 Early conclusions on robustness 28
3.3.4 Exploring other input sequences 29
3.3.5 Further conclusions on robustness 30
3.3.6 Which sequence does the system actually use? 30

3.4 Results of the degradation study – knowledge base 32
3.4.1 Incomplete knowledge . 32
3.4.2 Incorrect knowledge . 34

4 Extensions and conclusions 41
4.1 Extensions . 41
4.2 Conclusions . 42
4.3 Future work . 43
4.4 Acknowledgements . 44

II Knowledge Compilation 45

5 Knowledge compilation 47
5.1 Introduction . 47
5.2 Knowledge compilation: terminology . 49
5.3 Exact knowledge compilation . 51

5.3.1 Prime implicants and prime implicates 51
5.3.2 Unit-resolution-complete compilation 52
5.3.3 Theory prime implicates . 52

5.4 Approximate knowledge compilation . 53
5.4.1 Anytime versions of exact compilation methods 55
5.4.2 Horn approximations . 55

5.5 Conclusions . 56

6 Planning 57
6.1 Introduction . 57
6.2 The STRIPS representation . 57
6.3 Planning as satisfiability . 58

6.3.1 The space of encodings . 59
6.3.2 Optimizations . 62

6.4 Conclusion . 63

7 Applying knowledge compilation 65
7.1 Introduction . 65
7.2 The knowledge compilation approach to planning 66
7.3 Choices and motivation . 67

7.3.1 Planning problems . 67
7.3.2 Translating planning problems . 69

ix

7.3.3 Knowledge compilation methods 70
7.3.4 Constructing a model . 73
7.3.5 Translating the model into a plan 73

7.4 Motivations for our experimental setup . 73
7.5 Experimentation: literature results . 74
7.6 Experimentation: our results . 75

7.6.1 Influence of different encodings 75
7.6.2 Influence of different domains . 80
7.6.3 Influence of different knowledge compilation methods 83

7.7 Conclusion . 88
7.8 Future work . 90
7.9 Acknowledgments . 91

III Approximate Classification 93

8 Classification 95
8.1 Introduction . 95
8.2 Characterizing classification . 96

8.2.1 The goal . 96
8.2.2 Ontological commitments . 96
8.2.3 Classification criteria . 97

8.3 Representation issues . 100
8.3.1 Classes defined by necessary conditions 100
8.3.2 Classes defined by sufficient conditions 102
8.3.3 Classes defined by necessary- and sufficient conditions 102

8.4 Approximate classification . 103
8.4.1 Dealing with missing attributes 103
8.4.2 Dealing with inconsistent attributes 107
8.4.3 Dealing with incorrect and missing attributes 108

8.5 Conclusion . 109

9 Approximating classification 111
9.1 Introduction . 111
9.2 Approximate entailment . 112
9.3 Approximating weak classification . 114

9.3.1 Restrictions on choosing S . 115
9.3.2 Interpreting S

S

W1
and S

S

W3
. 117

9.4 Approximating explanative classification 120
9.4.1 Restrictions on choosing S . 121
9.4.2 Interpreting S

S

E3
. 122

9.5 Approximating strong classification . 123
9.5.1 Restrictions on choosing S . 124

x Contents

9.5.2 Interpreting S
S

S3
. 124

9.6 Summary . 126
9.7 Conclusions . 127

10 Empirical analysis 129
10.1 Introduction . 129
10.2 Preliminary questions . 130
10.3 Experiment 1 . 130

10.3.1 The experiment . 132
10.4 Experiment 2 . 135

10.4.1 Approximate strong classification 135
10.4.2 Approximate explanative classification 138

10.5 Conclusion . 139
10.6 Future work . 140

IV Contributions and Discussion 143

11 Contributions and discussion 145
11.1 Contributions . 145
11.2 Discussion . 147

Notation 149

Bibliography 151

Samenvatting 158

Index 161

SIKS Dissertatiereeks 162

Preface

And finally, at the end of writing this dissertation, I can reflect on my work and time
as a PhD student and acknowledge those people that contributed in the process. First of all
there are my supervisors. Actually, I started with one, which became none, and ended up
with two.

My first year as a PhD student was in the theoretical computer science department,
which didn’t work out because after one year my supervisor left the university. The group
I worked in was nice, but I did not mind it too much, because a new position became
available in the group of Frank van Harmelen. We already knew each other from the time I
was a student, and he was eager to accept me as his PhD student.

Eager is just the term that describes Frank. Frank always seems to have plenty of energy
and does not seem to need any sleep. Don’t be surprised if you receive an answer to your
e-mail three o’clock in the morning. His energetic presence is also a very motivating force
for the people around him.

As Frank closely collaborated with Annette ten Teije, it was quickly decided that she
would also help in supervising my dissertation. The good qualities I like about her is her
thoroughness and her preciseness. Definitely useful when receiving feedback.

Furthermore, I like to thank some of my fellow PhD students. First of all Nam Kyoo,
who I already knew before coming to the Vrije universiteit. He was the one that moti-
vated me to also study Mathematics besides studying AI. A choice I’m glad to have made,
although he told me on multiple occasions he thought otherwise after I received my first
grade. Then there is Sandjai, who always seems to have an answer to any question I pose
him. I’m glad he returned to the Vrije universiteit before I finished my dissertation. Of-
course, this acknowledgement wouldn’t be finished without thanking the ‘hackers’ Jason,
Rob, and Ronald, who I met when I became a student and also stayed for a PhD position.
And finally a thanks to Martine for her tea breaks, although it was disappointing to hear her
say that bridge was not something for her to pursue (but at least she tried).

Bridge was sometimes played during lunch time. Something I enjoy doing and will
probably continue to do as long as I can hold the cards. Therefore, thanks to all those
people that participated. I won’t mention all their names because there are many and I
would risk forgetting someone.

I will close this preface with a final remark about the cover. The inspiration for the

xii Preface

cover comes from a poem ‘The Blind Men and the Elephant’ written by the American
poet John Godfrey Saxe (1816–1887). The poem is based on a fable which was told in
India many years ago. The poem can be found in the epigraph of this dissertation. It is a
nice example that shows that filling in blanks, because of incomplete or incorrect sensory
data, is definitely non-trivial and can easily lead to misinterpretations. In particular, using
approximation in symbolic problem solving, the topic of this dissertation, is a challenging
subject for further research.

Chapter 1

Introduction

1.1 Research goal and context
This dissertation addresses the following research goal:

“A theoretical and empirical analysis of the effect of approximation on sym-
bolic problem solving.”

This research goal contains a number of concepts that are clarified in this introductory
section.

The first concept in the research goal is the use of approximation, i.e., in dictionary
terms something that is fairly accurate but not totally precise. In particular, this dissertation
focusses on approximation that is used by programs used in the field of symbolic problem
solving. Those programs return approximate solutions that are fairly accurate but not totally
precise when compared to optimal solutions. Furthermore, this dissertation focusses on
approximation already present in currently existing methods and approximation obtained
by applying existing approximation techniques to new domains of interest.

The second concept in the research goal is the effect of approximation for solving prob-
lems. There has to be a reason to prefer approximating methods that produce sub-obtimal
solutions instead of methods that produce optimal solutions. In this dissertation such an
effect is focused on when analyzing approximation. Several reasons can be given that sup-
port the use of approximation, not just in the field of symbolic problem solving, but also
in many other disciplines, like Artificial Intelligence, Computer Science, Mathematics, and
Economics. Three of those reasons are discussed in more detail:

Reducing computational complexity: Problems exist that cannot be computed in a rea-
sonable time period. For example, suppose we have a problem that consists of n + 1
objects and to solve the problem requires twice as much time as solving the prob-
lem with n objects. If the problem with 1 object could be solved in 1 second, then
solving the problem with n objects would take 2(n−1) seconds. The problem with
13 objects would not be solvable within a hour, with 18 objects it would not be solv-
able within a day, and with 26 objects it would not be solvable within a year. For
n a number could even be chosen such that the problem would not solvable even

2 Introduction

if someone had worked on it without waisting a single minute since the creation of
mankind. An example of a problem that exhibits this kind of behaviour is the ‘Tower
of Hanoi’ problem, which is discussed in more detail in Section 7.3.1.2. Note that
even if a problem could be solved exactly in a reasonable time period it might not
do us any good. Situations occur in our everyday lives that need to be processed
before a certain deadline, e.g., publishing a newspaper, preventing a nucleair melt-
down, or administering medication to a (dying) patient. Even if the perfect solution
could be computed, obtaining it after the deadline has expired will make it useless.
For some problems, such a deadline may not always be known beforehand. Approxi-
mation allows us to make a trade off between computation time and solution quality:
a reasonable solution within reasonable time instead of the perfect solution (or no
solution) in an unreasonable amount of time.

Controlling the number of solutions: A method used to solve a problem might either re-
turn too many solutions, too few, or no solution at all. For some problems this may be
unsatisfactory. For example in diagnosis, giving a number of treatments to a patient
from which he may choose one or follow them all at once is usually not a good idea.
Some of the treatments might conflict with the other treatments, are more expensive
or more hazardous for the patient, or address a disease that is unlikely to be present.
Instead of returning many treatments only one (or a few) should be offered to the
patient. Obviously, telling a patient “to sit this one out and see what will happen”,
i.e., offering no explanation or treatment, may be just as unsatisfactory. Instead of
giving the responsibility of reducing or increasing the number of solution to for ex-
ample a docter, one can also try to restate the original problem in another form, e.g.,
by adding or removing restrictions. This will lead to an approximate problem, which
should allow for more or less solutions that approximate the solutions to the origi-
nal problem. Hence, approximation can be used to control the number of solutions
to a problem. (In Chapter 9 a method that can be used to increase or decrease the
outcome of any logical inference problem is described in more detail.)

Inherent approximation: Many systems, and in particular those found in symbolic prob-
lem solving, make use of knowledge and data input given by a user or another system.
It is unreasonable to assume that these elements are always perfectly represented.
Usually there are errors present in the data or knowledge or they may be incomplete.
There are many reasons that may lead to incorrect or incompete data and knowledge.
For example, errors may occur in the data, i.e., the observed quantity differs from its
true value, because the measuring device used is imprecise (e.g., our eyes). Data may
be incomplete, because to obtain them would be too costly or too risky. Knowledge
may be incorrect or incomplete because of limitations of the representation used by
the system, because the knowledge of an expert has been incorrectly interpreted by
the system designer, or because the knowledge of the expert is faulty. Note that even
among experts there is not always a consensus about what is true or false in their do-
main of expertise. Approximation is therefore inherently present in many problems.
Studying approximation may lead to a better understanding of these problems.

1.1 Research goal and context 3

Either one or a combination of all the above mentioned reasons can underly the choice
for using or analyzing approximations. These reasons occur in many areas and the use
of approximation occurs in many fields. This dissertation focusses mainly on the use of
approximation in symbolic problem solving.

The third concept in the research goal is the restriction to problems in symbolic problem
solving. A typical architecture for solving problems in symbolic problem solving is shown
in Figure 1.1. It consists of a reasoning method (i.e., algorithm), a knowledge base, and
an input, which together produce an output. For example, in diagnosis the knowledge base
consists of rules and facts about the way some system is expected to behave, while the input
consists of the observed behaviour of the system. The reasoning method can be some form
of logical inference that gives a diagnosis as output, which gives an explanation whenever
a discrepancy is found between the observed behaviour and the expected behaviour.

In this dissertation, various forms of approximation will be analysed. All these forms
of approximation can be applied to problems that fit the architecture of Figure 1.1. This
architecture can therefore be considered to be the underlying framework that links the var-
ious chapters to each other. More specifically, this dissertation is divided into three parts.
Part I describes a form of approximation related to the knowledge base and the data input.
Part II describes a form of approximation related to the knowledge base. Part III describes
a form of approximation related to the reasoning method.

Besides this typical architecture there are a number of characteristics typical for prob-
lems in symbolic problem solving when one wants to exploit approximation for solving
such problems. These characteristics are the following:

Use of logic: Many symbolic problem solving systems use some form of logic as repre-
sentation and logical inference to derive a solution. Hence, we are not dealing with
numerical problems. This means there is no obvious metric that tells us “how far we
are” from the right answer to an inference problem.

Knowledge
Base

Reasoning
Method

Input Output

Figure 1.1: A typical architecture for solving problems in symbolic problem solving.

4 Introduction

Multiple forms of approximation: Problems in symbolic problem solving can usually be
solved by approximations in more than one way. A problem that fits the architecture
in Figure 1.1 might be approximated in three different ways: the reasoning method,
the knowledge base, or the input. Either one of the components can be approximated,
or some combination of approximations can be used.

Inherent presence of approximation: Symbolic problem solving systems usually use
some knowledge about a domain or system. This knowledge is a model of something
in the real world, and therefore already an approximation. Hence, approximation is
already inherently present in many symbolic problem solving systems.

All concepts contained in the research goal stated at the beginning of this section have
now been discussed in more detail. However, the research goal is formulated quite gen-
erally. Section 1.2 discusses in more detail our approach in answering the research goal
by looking at three specific areas that fit the research goal. The rest of this chapter gives
a background of concepts and methods related to the research in this dissertation (Section
1.3), the contributions of this dissertation (Section 1.4), and an overview of the structure of
the dissertation (Section 1.5).

1.2 Approach
The approach taken in this dissertation is to analyse three areas in particular in which
approximation is already present or can be used in a promising way to solve a particular
problem. These areas are the following:

I. Knowledge Based Systems.

II. Knowledge Compilation.

III. Approximate Entailment.

In the area of KBSs approximation is always present because of the approximate na-
ture of knowledge and data (inherent approximation). Practice has proven that KBSs are
an important area in the field of symbolic problem solving. However, although KBSs are
claimed to be robust to incorrect and incomplete knowledge or data, little or no attempt has
been made to analyse and quantify this property of KBSs. In the area of knowledge compi-
lation the methods are claimed to be ready for practical use. Nevertheless, little is reported
on case studies and empirical results. Similar considerations also apply to the area of the
approximate entailment operator developed in [Schaerf and Cadoli, 1995]. From a theo-
retical point of view, the method satisfies some properties desirable for an approximation
method, yet little is reported on the practical usefulness of such a method.

This dissertation therefore looks at the following goals in more detail:

1. Quantifying the robust behaviour of KBSs in the presence of incorrect and incom-
plete knowledge or data.

1.3 Related work 5

2. Analyse the applicability of knowledge compilation techniques to planning prob-
lems.

3. Analyse the applicability of the approximate entailment operator to classifcication
problems.

These three specific goals all contribute to the more general goal of analysing the effect
of approximation on solving problems in symbolic problem solving.

1.3 Related work
There is a large amount of literature dealing in some way with approximation. It falls
outside the scope of this dissertation to describe this vast amount in detail. This section
is limited to those concepts that have a major influence in the field of symbolic problem
solving and those that are related to this dissertation. This related work section is divided
according to Figure 1.1 as this is the underlying structure that connects the various topics
discussed in this dissertation. Section 1.3.1 discusses approximations related to the rea-
soning method, Section 1.3.2 discusses approximations related to the knowledge base, and
Section 1.3.3 discusses approximations related to the input.

1.3.1 Approximations related to the reasoning method
Approximating the reasoning method to solve a problem approximately is probably the
most well known form of approximation among the forms of approximation identified in
Figure 1.1. A simple example of an approximation algorithm is demonstrated in the fol-
lowing two player game. Given an interval [a, b], either continuous or discrete, and two
players A and B, player A picks a number n from the interval [a, b] and player B has to
guess it. Player B may repeatedly pick any number m from the interval [a, b] and player A
will tell him if n < m, n > m or n = m holds. An approximation algorithm for player B
would be to repeatedly pick a number from the remaining interval that contains n.

Although simple, this algorithm belongs to an important group of approximation al-
ghorithms called ‘anytime algorithms’. Anytime algorithms are algorithms that exchange
execution time for quality of results. The term anytime algorithm was coined by Dean and
Boddy in the late 1980’s [Boddy and Dean, 1989, Dean and Boddy, 1988] in their work on
time-dependent planning. A similar idea, called flexible computation was introduced in
[Horvitz, 1987] in 1987 in solving time-critical decision problems.

Anytime algorithms are important for symbolic problem solving for two reasons. First,
although many problems require a lot of resources (e.g., time) to solve them, many systems
can already produce good partial solutions in a short amount of time. A system that can
reason about how much time is needed to obtain an adequate result may be more adaptive
in complex and changing environments. Second, a technique for reasoning about allocat-
ing time need not be restricted to the internals of a system. Intelligent agents must be
able to reason about how fast they and other agents can manipulate and respond to their
environment.

6 Introduction

Not every algorithm that trades execution time for quality of results is necessarily
an anytime algorithm. The properties desirable for anytime algorithms are the following
[Zilberstein, 1996]:

Measurable quality: The quality of an approximate result can be determined precisely.

Recognizable quality: The quality of an approximate result can easily be determined at
run time.

Monotonicity: The quality of the result is a nondecreasing function of time and input
quality.

Consistency: The quality of the result is correlated with computation time and input qual-
ity.

Diminishing returns: The improvement in solution quality is larger at the early stages of
the computation, and it diminishes over time.

Interruptibility: The algorithm can be stopped at any time and provide some answer.

Preemptability: The algorithm can be suspended and resumed with minimal overhead.

The alghorithm described in the beginning of

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Q
ua

lit
y

Algorithm step

Quality of algorithm

Figure 1.2: Quality of example algo-
rithm for first seven steps.

this section satisfies these properties. The result
of the algorithm after each step is the smallest re-
maining interval that contains the number n we
seek. By repeatedly choosing a number from the
interval that contains n, it will become smaller
and therefore be a better approximation of n. Let
us denote the interval given as output by the al-
gorithm by I , its length by l(I), and define the
quality of the algorithm by

Q =
(b− a)− l(I)

(b− a)
.

Then Q is a non-decreasing function which can
easily be computed. In fact, when we divide the
interval each time in halve and the number n has

not be found yet, the quality of the algorithm can be computed exactly beforehand without
running the algorithm and can graphically be represented as is done in Figure 1.2. This
graph clearly demonstrates some of the desired properties (e.g., monotoniciy, diminishing
returns, etc.). A graph like Figure 1.2 in which the quality of an algorithm is plotted against
execution time is called a performance profile.

Since the work of Dean and Boddy [Boddy and Dean, 1989, Dean and Boddy, 1988],
the context in which anytime algorithms have been applied has broaden from planning

1.3 Related work 7

and decision making to include problems from sensor interpretation to database manip-
ulation, and the methods for utilizing anytime techniques have become more powerful.
In 1991, S.J. Russel and S. Zilberstein completed work on composing anytime algo-
rithms into more complicated systems [Russell and Zilberstein, 1991, Zilberstein, 1993,
Zilberstein and Russell, 1996]. By proving composition could be optimally performed (i.e.,
using information about the algorithm’s performance to determine the best way to divide
the time between the components), it became possible to build complex anytime systems
by combining simple anytime components.

Section 1.1 stated that a characteristic of systems in symbolic problem solving is the
use of logic. This section looks at some approximate reasoning methods that can be used
to approximate any logical inference problem that uses the logical entailment operator.

One of those methods is Boolean Constraints Propagation (BCP) which is a variant of
unit resolution [McAllester, 1990]. BCP is a sound, but incomplete linear-time reasoner
that can be used to approximate the logical entailment relation. Sometimes BCP is also
called clausal BCP, because BCP is usually restricted to clauses. This restriction makes
BCP tractable. If BCP is not restricted to clauses, but general formulas are allowed, the
reasoner is called formula BCP and the method becomes intractable.

In [deKleer, 1990] two techniques are suggested for using clausal BCP for theories
containing arbitrary formulas. In one, CNF-BCP, the formulas are first converted into
CNF, and in the other, Prime-BCP, clausal BCP is applied to the prime implicants of each
formula. Since computing prime implicants is itself an intractable problem, Prime-BCP is
also inherently intractable.

For CNF-BCP there are two methods to transform the formulas into CNF. If no new
symbols are added, then the conversion to CNF may lead to an exponential increase of
the size of the given theory. The transformation of a theory to CNF can be done in linear
time and space if new symbols are allowed to be added to the theory [Cook, 1971]. Each
new symbol will be used to represent some sub-formula of the theory. However, with this
method, reasoning with CNF-BCP is strongly inhibited.

Another method that extends BCP to non-clausal theories is Fact Propagation (FP)
[Dalal, 1992]. FP can be specified using a confluent rewrite system, for which an algorithm
can be written that has quadratic-time complexity in general, but is still linear-time for
clausal theories. Another advantage of FP is that it sometimes performs more inferences
than CNF-BCP. A restricted form of FP (RFP) also exists which infers exactly the same
literals as CNF-BCP.

All the discussed methods (i.e., BCP, FP, and RFP) are incomplete reasoners. In
[Dalal, 1996a, Dalal, 1996b] a general technique is presented that can extend any in-
complete propositional reasoner satisfying certain properties to a family of increasingly-
complete, sound and tractable reasoners. Such a family of increasingly-complete, sound
and tractable reasoners is called an ‘anytime family’ of propositional reasoners, which, as
the name implies, can be used as an anytime algorithm.

Another method for approximating logical inferencing was devised by Cadoli and
Schaerf and is called S-1- and S-3-entailment [Schaerf and Cadoli, 1995], which is de-
scribed in more detail in Chapter 9. This method uses a semantical approach and is based

8 Introduction

on a ‘classic’ method for incomplete reasoning, which has been introduced by Levesque
[Levesque, 1984, Levesque, 1988, Levesque, 1989] and has since been studied by many
other authors.

The method of Cadoli and Schaerf allows both sound approximations and complete
approximations and the approximate answers can be improved when more resources (e.g.,
computation time) is given to the reasoner. The approximate answer will converge to the
right answer provided there is enough time and motivation. Summarizing, the method of
S-1- and S-3-entailment fulfill the following guidelines, that are proposed by Cadoli and
Schaerf to be desirable for any approximation method:

Semantically well-founded: Approximate answers should give semantically clear infor-
mation about the problem at hand.

Computationally attractive: Approximate answers should be easier to compute than an-
swers to the original problem.

Improvable: Approximate answers can be improved, and eventually they converge to the
right answer (provided there is enough time and motivation).

Dual: Both sound approximations and complete ones should be described.

Flexible: The approximation method should be general enough to be applicable to a wide
range of reasoning problems.

Some applications of this method to approximate diagnosis are reported in
[tenTeije and vanHarmelen, 1997, tenTeije and vanHarmelen, 1996]. Chapter 9 discusses
the method in more detail and analyzes its applicability to classification problems.

1.3.2 Approximations related to the knowledge base
Considering the three reasons stated in Section 1.1, two of those reasons apply in the con-
text of the knowledge base. These reasons are reducing the complexity of inferencing from
a knowledge base, and the inherent approximate nature of knowledge stored in a knowledge
base.

A well known problem in symbolic problem solving is the computational complexity of
reasoning. An area that deals with this problem for knowledge bases written in some log-
ical language is ‘knowledge compilation’. the underlying idea of knowledge compilation
is that a knowledge base does not change much over time. The goal of knowledge compi-
lation is to translate the knowledge into (or approximate by) another knowledge base with
better computational properties. This ‘compiled’ knowledge base can be re-used to solve
many problem instances, thereby saving time and computational resources when compared
to solving the problem instances with the original knowledge base. In Part II of this dis-
sertation we look at knowledge compilation techniques for speeding up solving planning
problems. Details of the ideas underlying knowledge compilation and of the methods that
belong to this research area will be deferred to Chapter 5.

1.4 Contributions 9

1.3.3 Approximations related to the input
With input any form of data is meant that is given to a system at runtime by either a user
or another system. Examples are observations, sensor data, database queries, etc. All three
reasons mentioned in Section 1.1 for using or analyzing approximations are applicable to
the input. First, reducing the complexity of a problem may be done by simplifying its input.
For example a query may be split into subqueries or may be approximated by another query
to reduce the complexity of computing an answer to the query. Second, the input can be
adjusted to change the number of solutions to the problem. For example, a user who poses
a query to a search engine on the WWW and receives 10.000 hits (i.e., matching pages)
may use this knowledge to adjust his original query into one that reduces the number of
hits. Third, input may be incomplete and incorrect.

1.4 Contributions
For each of the three areas explored, I. Knowledge-Based Systems, II. Knowledge Com-
pilation, and III. Approximate Entailment, the focus will be on a particular research goal
(Section 1.2). Time spent on these research goals lead to new insights, extensions of exist-
ing methods, and the development of new methods. The contributions of this dissertation
are summarized below.

I.1 Methodology for measuring the robustness of KBSs.

I.2 Application of the proposed methodology to a particular KBS.

II.1 Empirical analysis of the use of knowledge compilation for planning problems.

III.1 A formal analysis of classification, including forms of approximate classification.

III.2 A formal analysis of the use of approximate deduction for classification reasoning.

III.3 Empirical analysis of approximate classification through approximate deduction.

This list serves as an appetizer. At the end of this dissertation (Section 11.1), after
the research behind these contributions has been presented, these contributions will be
described in more detail.

1.5 Structure of this dissertation
Part I: Quantitative Quality Measures. KBSs model the knowledge about some part in

our world. Models are usually not exact, but only an approximation. This is in
particular true for KBSs as the knowledge they represent or the data they use can
be incorrect and incomplete. Nevertheless, KBSs containing errors can still function
at acceptable levels. How well KBSs can deal with incomplete and incorrect data

10 Introduction

and knowledge is an essential dimension of their validation. In this part a general
approach is proposed to provide a general setting for quantitative quality measures
for KBSs. To show the feasibility of the approach, the approach is applied on a large
and realistic vegetation-classificaton system.

Chapter 2 Introduction: This chapter gives the motivation for quantitatative anal-
ysis of KBSs. It introduces and formalizes the methodology one can use for
such quantitative analysis.

Chapter 3 The degradation studies: Using the methodology and KBS described
in the previous chapter, this chapter describes the experiments performed with
them. The experiments includes a robustness analysis with respect to incom-
plete input, an incomplete knowledge base, and an incorrect knowledge base.

Chapter 4 Final words: This chapter looks at other uses of the proposed method-
ology, gives conclusions based on the experimental results, and looks at future
work.

Part II: Knowledge Compilation. Many systems in symbolic problem solving use a
logic language for representation, which has a number of benefits. However, us-
ing a logic language also has a serious drawback: the computational complexity of
inference. Over the years many techniques have been devised to deal with this prob-
lem. One of those techniques is knowledge compilation. In knowledge compilation
the part of the theory that remains constant over many problem instances is translated
into (or approximated by) another theory with better computational properties. The
goal is to speed up the actual problem solving by using the compiled theory instead
of the original theory. This part of the dissertation investigates the applicability of
knowledge compilation techniques to a number of planning problems.

Chapter 5: Knowledge compilation. Describes knowledge compilation and gives
an overview of a number of compilation techniques.

Chapter 6: Planning. Defines the domain of planning problems. Shows how a
planning problem can be solved as a satisfiability problem. The rest of the
chapter deals with various encodings that can be used to encode a planning
problem into propositional logic.

Chapter 7: Applying knowledge compilation. This chapter starts by explaining
how knowledge compilation can be applied to planning problems. Thereafter it
describes the choices one has to make for applying knowledge compilation to a
planning problem: the planning problem, the translation of the planning prob-
lem, and the knowledge compilation method. After some motivated choices,
the rest of the chapter shows the experimental results.

Part III: Approximating Classification. Object and class descriptions need not always
be represented completely or without errors. For example, class descriptions may

1.5 Structure of this dissertation 11

have been constructed from incomplete and/or incorrect information sources like
system hierarchies or bookmark folders. Classification methods need therefore be
robust enough when dealing with such less than ideal information sources. In this
part classification is formalized and approximated using a general approximation
technique.

Chapter 8: Classification. Describes classification, identifies various criteria and
various representation choices, and gives a logical formalization of all obtained
variations of classification. The section concludes with two approximate forms
of classification.

Chapter 9: Approximating classification. Describes a general method developed
by Cadoli and Schaerf for approximating the logical entailment relation. This
method is applied to classification and the obtained approximations are anal-
ysed using the rules of propositional logic and properties of the approximate
entailment operator.

Chapter 10: Empirical analysis. As a theoretical analysis does not provide all an-
swers for an effective use of the approximate entailment operator, this chapter
looks at empirical methods for obtaining information that extends (or supports)
the results of the theoretical analysis of Chapter 9.

Part IV: Contributions and Discussion. The contributions of the dissertation are sum-
marized and the dissertation as a whole is reflected upon.

12 Introduction

Part I

Quantitative Measures

Chapter 2

Introduction

When asked about the essential differences between Knowledge-Based Systems (KBSs)
and ‘conventional software’, one often hears the claim that KBSs can deal with incomplete,
incorrect and uncertain knowledge and data, whereas conventional software is typically
very brittle in these respects (see e.g., [Hayes-Roth, 1984] for a very early formulation
of this claim). Although, nowadays researchers no longer view this distinction as either
necessary or sufficient to define a KBS, it is believed that the ability of KBSs to deal with
missing or invalid data is an essential dimension of KBS validation.

There has been both practical experience and theoretical analysis over many
years to back up the mentioned claim. As an example of practical experience,
[Preece et al., 1997] reports that in a number of verification exercises, errors were found
in the knowledge-base of KBSs which were nevertheless still functioning at acceptable
levels. As an example of theoretical analysis, [tenTeije and vanHarmelen, 1996] and
[tenTeije and vanHarmelen, 1997] prove that for a large class of diagnostic systems the
computed set of diagnoses degrades gracefully and predictably when either the system in-
put (observations) or the knowledge-base degrades in quality.

However, until now, the analysis of the robustness of KBSs in the face of incomplete,
incorrect or uncertain knowledge and data has been limited to such practical experience
and qualitative analysis. Little or no attempt has been made at a quantitative analysis of
the proclaimed robustness of KBSs. A recent special issue of a journal was dedicated
to methods for evaluating Knowledge-Based Systems [Menzies and vanHarmelen, 1999].
None of the papers in that special issue performed any quantitative analysis on the quality
of Knowledge Based Systems. The editorial of this special issue lists only a hand-full of
quantitative evaluation studies that have been performed over a decade or more of KBS re-
search. In fact, one paper in that special issue [Shadbolt et al., 1999] even seems to suggest
that global qualitative evaluations are about as much as we can expect from KBS evaluation
projects. Finally, one of the reviewers of this paper even remarked that ‘for a long time,
the KA community has decried the lack of good evaluation metrics to measure the quality
of the KA process and of the resulting knowledge bases.’ We consider this a serious defect
in the study of KBSs, particularly since such robustness is often proclaimed as a unique
characteristic of KBSs.

The aim of this research is to show that a quantitative analysis of the robustness of

16 Introduction

KBSs is both possible and useful. To argue this claim, we present a case study in which
we perform such a quantitative analysis for a particular KBS. In Section 2.1 we describe
our approach to measuring robustness by degradation studies, and we give definitions for
the basic notions involved in such degradation studies. In subsequent sections, we apply
this approach in a case study. Section 3.1 describes the KBS which we subjected to a
degradation study. Section 3 gives an overview of the degradation studies we performed.
Thereafter, Section 3.3 reports our robustness results with respect to the data inputted and
Section 3.4 the robustness results with respect to the knowledge base used. The results
obtained will be analysed in these two sections. Finally, in Section 4.2 summarizes the
main points of the paper and we look at future steps to be taken.

2.1 Approach and foundational definitions
In this section we describe our approach to measuring robustness by degradation studies,
and we give definitions for the basic notions involved in such degradation studies. Our
aim is to define a very general set of notions that can be widely used in future degradation
studies. We regard this section as the central contribution of this research: the definitions in
this section should form the basis of similar analyses by other researchers and practitioners.

2.1.1 Robustness and degradation
The IEEE Standard Glossary of Software Engineering Terminology [IEEE, 1990] gives the
following definition for robustness:

Informal Definition 2.1.1.1 (Robustness) The degree to which a system or component
can function correctly in the presence of invalid inputs or stressful environmental condi-
tions.

In other words, robustness of a KBS is concerned with the way in which the quality of
the KBS output degrades as a function of a decrease in the quality of the KBS input. This
definition immediately leads to the idea of degradation studies:

Informal Definition 2.1.1.2 (Degradation Study) In a degradation study we gradually
decrease the quality of the KBS input, and measure how the KBS output quality decreases
as a result.

This informal definition contains the concepts of ‘KBS input’ and ‘output quality’
which we will discuss in more detail in the Sections 2.1.2 and 2.1.3.

2.1.2 Output quality
Of course, we must be more precise about the rather vague notion of ‘quality’ of the KBS
input and output. Concerning the KBS output, we assume that this is always a set of an-
swers. In fact, for many typical KBS tasks, this is a realistic assumption: a set of consistent

2.1 Approach and foundational definitions 17

classes in a classification task, a set of likely hypotheses in a diagnostic task, a set of po-
tential designs in a configuration task, etc.i More explicitly stated:

Assumption 2.1.2.1 For the KBSs that we consider we assume that their output can be
interpreted as a discrete set of answers.

Under this assumption, we define two measures for KBS output quality. Let correct(I)
be the set of all correct answers for a given input I , and output(I) be the set of actually
computed answers for a given input I .

Definition 2.1.2.2 (Recall) The recall(I) of a KBS for a given input I is defined as:

recall(I) =
|correct(I) ∩ output(I)|

|correct(I)|
.

In other words: the recall is the fraction of correct answers that the system actually
computes. It can of course happen that correct(I) = ∅, i.e., there is no correct answer.
For example, this happens when the system is presented with a case I for which no correct
output exists, such as an inconsistent set of observations for a classification system, or an
inconsistent set of requirements for a design system. In this case we define:

if correct(I) = ∅ then recall(I) = 1,

as all correct answers are recalled by the system.

Definition 2.1.2.3 (Precision) The precision(I) of a KBS for a given input I is defined as:

precision(I) =
|correct(I) ∩ output(I)|

|output(I)|
.

In other words: the precision is the fraction of computed answers that are actually
correct. In the case output(I) = ∅ (i.e., the system returns no output) we define:

if output(I) = ∅ then precision(I) =

{

1 if correct(I) = ∅,
0 otherwise.

This reflects the intuition that the only correct output in this case is no output at all.
Ideally, both recall and precision would be 1 (i.e., the system returns all and only correct

answers), but in practice they are antagonistic: a higher precision (recall) is usually paid
for with a lower recall (precision).

There are two attractive aspects to these definitions for measuring the output qual-
ity. First of all, these definitions are well known from the literature on Information
Retrieval (e.g., [Salton and McGill, 1983]) and have proven to be useful, informative,
and intuitive measures in many studies in that field and elsewhere (see for instance

iOf course, even for KBSs which return a single answer, this assumption still holds since we can interpret such
a single answer x simply as the singleton set {x}.

18 Introduction

Data

KB

OutputAlgorithm

Figure 2.1: Knowledge-Based System components.

[Schumann and Fischer, 1997] for an application of these measures to deduction-based
software component retrieval). Secondly, these measures are completely general and make
no commitment to either the task or the domain of the KBS that we wish to study. Conse-
quently, the approach proposed can be directly applied to other KBSs, even when they are
very different from the one that we happen to have chosen in our own case study.

The above definitions are in fact gradual versions of the classical notions of soundness
and completeness: recall corresponds to the degree of completeness of the system, and
precision corresponds to the degree of soundness of the system. These measures provide a
quantitative angle on earlier work by [vanHarmelen and tenTeije, 1998] which was strictly
qualitative.

2.1.3 Knowledge-base system input
We can represent a KBS graphically as in Figure 2.1.3: the data, the knowledge base, the
algorithm and the output. By ‘KBS input’ we mean the data given for example by a user as
well as the knowledge base used by the system. The degradation experiments we propose
for measuring the robustness of the system will either be with respect to the quality of the
data inputted or with respect to the quality of the knowledge base.

For the input quality measure we give two general aspects to consider for measurement.
These aspects are incompleteness or incorrectness of the data or knowledge. Although
these aspects are quite general, they may not be applicable to every knowledge base. The
aspects proposed also do not cover all possible aspects one might want to measure. More
explicitly formulated, with incompleteness and incorrectness we mean the following:

Incomplete: A part of the data inputted or part of the knowledge used is missing from
the KBS input. For example, the data inputted could be a number of observations.
Some of the observations might be to hard or to expensive to obtain. A part of
the knowledge might be missing because the knowledge was obtained from human
experts who forgot to provide it.

Incorrect: In contrast with incomplete data or knowledge, a certain part of the data or
knowledge is provided by a user or expert. However, it is incorrectly represented. For
example, incorrect data could be caused by a user who has made a wrong observation.

2.1 Approach and foundational definitions 19

Incorrect knowledge could for example be caused by faulty knowledge of an expert,
misunderstandings when coding the knowledge into the system, or limitations of the
representation used by the system.

These two aspects are important in KBS validation. For example, a knowledge base
will most likely be incomplete and often partially incorrect. Hence, to analyse the robust-
ness of a knowledge base with respect to incompleteness or incorrectness is a realistic and
important issue.

Notice that we have already taken a step further than [vanHarmelen and tenTeije, 1998].
In that paper, the authors did not commit to any definition of quality on input or output, and
only demanded that whatever the definition was, it should respect a partial ordering. In
our approach with degradation testing, we commit to a specific definition of output quality,
while leaving input quality open to be defined for each specific application.

2.1.4 Comparing robustness
The only notion that is still left undefined is some ordering on robustness: when do we
call a system more robust or less robust than another? Unlike output quality (where we
have given a single widely applicable definition) and input quality (whose definition is
deliberately left open to depend on the task-type), we have not been able to determine a
good answer to this question.

When input quality decreases, a system that produces an output with a fluctuating qual-
ity is much less predictable than a system that produces an output with a monotonically
decreasing quality. We therefore demand that any system which is called robust at least
produces an output with monotonically decreasing quality as function of decreasing input
quality.

Definition 2.1.4.1 (Monotonicity) A robust system will show a monotonically decreasing
output quality as a function of deteriorating input quality.

Note that this demand corresponds precisely to the usual demand on anytime al-
gorithms that their output quality monotonically increases with increasing run-time
[Dean and Boddy, 1988]. However, this demand is insufficient for ordering various sys-
tems according to their robustness. We therefore give additional competing definitions
without choosing one over the other.

Definition 2.1.4.2 (Quality Value) A system S1 is more robust than a system S2 for a set
of inputs, if everywhere on that input set the output quality of S1 is higher than the output
quality of S2.

Definition 2.1.4.3 (Rate of Quality Change) A system S1 is more robust than a system S2

for a set of inputs, if everywhere on that input set the output quality of S1 decreases more
slowly than the output quality of S2.

20 Introduction
PSfrag replacements

S1

S2

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

input quality

ou
tp

ut
qu

al
ity

(a)

PSfrag replacements

S1

S2

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

input quality

ou
tp

ut
qu

al
ity

(b)

Figure 2.2: Comparing robustness of systems.

Definition 2.1.4.4 (Integral of Quality Value) A system S1 is more robust than a system
S2 for a set of inputs, if on that input set the integral of the output quality of S1 is larger
than the same integral for S2.

Formally speaking, Definition 2.1.4.2 compares the output quality of two systems (and
is concerned with which system produces the best output), while Definition 2.1.4.3 com-
pares the first derivative of the output quality of the systems (and is therefore concerned
with which system produces the most stable output). Definition 2.1.4.4 compares the over-
all quality of the output quality over an entire interval even when neither system always
dominates the other (as required in Definition 2.1.4.2). These definitions are illustrated in
Figure 2.2ii

Note that the definitions do not have to be applied on the entire input quality range.
Instead, they should be applied to an interval of interest. Usually this will be some interval
including 1 (i.e., [x, 1]).

In Figure 2.2(a), system S1 is more robust on for example the interval [0.1, 0.3] accord-
ing to Definition 2.1.4.2, since on that interval its output quality is always higher than that
of S2. However, according to Definition 2.1.4.3, S2 is the more robust of the two, since its
output quality decreases more gradually (reading the graph from right to left). Definition
2.1.4.4 allows to take a more overall perspective: it takes the size of the area under the
output quality graph as measure of the overall quality. Under this definition, S1 is more
robust on the entire interval [0,1], since the value of

∫ 1

0 output quality d(input quality)
is larger for S1 than for S2. Note that the situation is rather different in Figure 2.2(b). Al-
though the output quality again increases monotonically from 0 to 1 over the same interval,
the comparisons between S1 and S2 on various subintervals are very different. Now, for
example on the interval [0.1, 0.3], S2 is more robust than S1 when using Definition 2.1.4.2,
but S1 is more robust than S2 when using Definition 2.1.4.3.

iiIn our figures, we plot input quality against output quality. When speaking about ‘robustness’, we are inter-
ested in decreasing input quality, so the graphs must be read from right to left.

2.1 Approach and foundational definitions 21

At the current point in our research, we simply propose each of these definitions as
reasonable, without claiming superiority of any definition in all cases. In fact, we believe
that under different pragmatic circumstances, different definitions will be preferable: if
steep drops in system performance are to be avoided, the second definition is preferable.
If one is interested in upholding output quality as long as possible in the face of declining
input, the other two definitions may be preferred.

22 Introduction

Chapter 3

The degradation studies

In Chapter 2 a methodology for measuring the robustness of KBSs with respect to some
input quality is desribed. In this chapter the robustness results are reported on a case study
using the proposed methodology.

The structure of this chaper is as follows. We start in Section 3.1 by describing the
KBS used in the case study. Then some preliminary notes about the case study are given in
Section 3.2. The rest of this chapter reports the robustness results of the case study using
the proposed methodology. In Section 3.3 the robustness is analysed with respect to the
data input, while in Section 3.4 the robustness is analysed with respect to the knowledge
base.

3.1 Example knowledge-based system
For our case study we have used a classification system for commonly occurring veg-
etation in Southern Germany. The plant-classification system was created with the
D3 Shell-Kit which is a tool for the development of KBSs. We will not discuss
this tool here but refer to a number of publications about D3 [Puppe et al., 1996,
Puppe et al., 1994]. It is also possible to download a demo-version of the software from
the URL http://d3.informatik.uni-wuerzburg.de.

The plant-classification system that we studied can have 40 different observables as in-
put and has 93 different plant names as output. The knowledge base consists of 7586 rules.
Furthermore, with the system we received 150 test cases. Each of these cases consisted of
the set of observations for that case (colour and shape of flowers, leafs, stem, etc.), together
with the (supposedly correct) answer for these observations as given by a human expert.
Around 97% could be answered correctly by the system.

The input observations can be entered in a graphical user interface, but the user is not
restricted to the ordering in this interface. The observations can be entered in any order,
thus the input can be seen as a set. This is not entirely true because some observations
are dependent on other observations and will only appear when certain input-conditions
are met. Because of these dependencies, the maximum number of observations that can be
given for one case is 30.

24 The degradation studies

For our degradation tests we translated the plant classification system into Prolog code.
This resulted in a knowledge base with 11724 rules all with the following representation:

kb(Plant, Observation, Value, Score).

Each time a new observation is given to the system, all rules are collected containing
the same Observation and Value. For each of these rules the score of the Plant
mentioned in the rule is adjusted by adding the Score to its current score. When the score
crosses a threshold it is outputted by the system.

In fact the rules do not actually contain numerical scores but descriptions, which were
used to make it easier for the experts to express their knowledge. The descriptions are
however translated to numerical scores whenever they are used by the system. We will
therefore use the descriptions as if they are numbers. The descriptions range from P1

through P6 for positive scores and N1 through N6 for the negative scores. Furthermore,
|Pi| = |Ni| for i = 1, . . . , 6 and Pi+1 = 2 ∗ Pi for i = 1, . . . , 5.

3.2 Results of the degradation study – preliminary notes
Before discussing the results of the case study in more detail we emphasize that the case
study only serves to illustrate the proposal to anlyse the robustness of KBSs through degra-
dation studies. The important aspects of this case study are the quantities measured and
how they are analysed, not the obtained robustness results of the plant classification sys-
tem.

Before we discuss the results, a final remark must be made about the possible values of
recall and precision in this case study. Since for every case there is at most one correct an-
swer (namely the name of the actual plant on which the observations were made), we have
for any case I , |correct(I)| = 1 iff the case is in the knowledge base or |correct(I)| = 0
iff the case is not in the knowledge base. As a result, the only values that recall(I) can
assume are either 0 or 1. For the same reason, precision(I) is either 0 or 1/|output(I)|.
However, we are not interested in the specific behaviour of the system for a particular case,
but in the average behaviour of the system. Hence, we are interested in the average recall
(i.e., the sum of all recall values divided by the number of cases used) and the average pre-
cision. We will represent these averages in our figures, but will use for example the term
‘recall’ when in fact we mean ‘average recall’.

3.3 Results of the degradation study – data input
In this section we present the robustness results with respect to the data inputted that we
have obtained in empirical experiments with the plant-classification system. First, we will
define the input quality measure we will use in Section 3.3.1. Thereafter we will give
results using the ordering on the observables found in the test cases (Section 3.3.2). We
also anlyze the effect of other orderings in Section 3.3.4.

3.3 Results of the degradation study – data input 25

3.3.1 Which input quality measure to use?
According to the definitions from Section 2.1 we must still decide on what to use as a
measure on the input quality. In this case study we choose the completeness of the input as
the measure of input quality. In our classification system, completeness of the input can be
directly translated as the number of available observations.

There are two reasons why this choice is reasonable and attractive:

Robustness: in many practical classification settings, the input observations are not com-
pletely available. It then becomes an interesting question how robust the system
functions under such incomplete input.

Anytime behaviour: Even when all observations are present, there are practical settings
where insufficient run-time is available to process all the observations: some output
from the system is required before a given real-time deadline, and not all observa-
tions can be processed before this deadline. Those observations that could not be
processed before the deadline can be regarded as ‘missing from the input’.

As a result of this second reason, the degradation results that we present in this section
can also be seen as anytime performance profiles for the plant-classification system. Perfor-
mance profiles are a basic tool in the study of anytime algorithms [Dean and Boddy, 1988].
They plot the output quality as a function of available run-time. Since available run-time
can be interpreted as one aspect of ‘input quality’, such performance profiles are simply a
special case of our more general proposal: performance profiles only study output degrada-
tion as a function of decreased run-time, whereas our approach is applicable to any aspect
of input quality that one chooses to model.

In the following we will present a number of graphs analyzing the robustness of the
plant-classification system. Each of these graphs plot output-quality (measured by either
recall or precision) against input-quality (measured by the number of observations that were
available to the system). If one is interested in anytime behaviour, these graphs can be read
from left to right: ‘what happens when the system has time to process more and more of
the inputs?’. If one is interested in robustness, these graphs should be read from right to
left: ‘what happens when the system is provided with fewer and fewer of the inputs?’

3.3.2 Using the input sequence from the test-cases
Now that we have established that the number of available observations will be the input-
aspect that we will degrade in our studies, we have to decide in which order observations
will be made available to the system. Our first choice is simply based on the order in which
the observations appeared in the test-cases for the plant-classification system. Each such
test-case consisted of a list of observables and their values for that case. Figure 3.1(a)
shows how the precision of the answers from the system (as defined in Definition 2.1.2.3)
increases when longer initial-sequences of the test-cases were given to the system. The first
surprise that this graph has in store for us is its monotonic growth:

26 The degradation studies

PSfrag replacements

0
0

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

observations

(a) Precision

PSfrag replacements

0
0

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

observations

(b) Recall

Figure 3.1: Measures with test-case order.

Surprise 3.3.2.1 Both average precision and average recall (see Figure 3.1(b)) grow
monotonically (or: almost monotonically in the case of precision) when adding more ob-
servations. This is somewhat surprising since this is not true for individual cases.i

The classification algorithm of the plant-classification system assigns both positive and
negative scores. This means that the answer-set can both grow and shrink when adding
more observations. In fact, only 58% of the test-cases has a monotonically growing answer-
set. As mentioned above, such monotonic behaviour is desirable from both a robustness
and from an anytime perspective, so on a case-by-case basis, the plant-classification system
does not score very well on this. Surprisingly, the average-case behaviour of the system is
apparently much better.

A second observation to make is that (as to be expected) initially the system is not able
to make any sensible guess at likely solutions (this holds up to about 6 observations). For
higher number of available observations, the graph is surprising for two reasons:

Surprise 3.3.2.2 After about 12 observations, adding more observations does not increase
the precision. This is surprising since most cases contain as much as 19-30 observations.
Figure 3.1(a) suggests that 12 observations is sufficient to obtain the maximally achievable
precision on average.

Surprise 3.3.2.3 The region in which additional observations actually contribute to an
increase in precision is surprisingly small, namely between the 6 and 12 observations. Of
the 19-30 observations per case, all observable changes to the output seem to be in this
small segment of observations!

Figure 3.1(b) shows similar results for the other dimension of output quality, namely
the recall from definition 2.1.2.2.

iThis result is not completely surprising because it is well known that the average of several variables can
indeed show a different distribution than the individual variables.

3.3 Results of the degradation study – data input 27

The dotted lines in Figure 3.1(a) indicate the variance of the precision, and this variance
is rather significant. It shows that the distribution of the actual precision-values that were
obtained for the different cases are actually spread rather widely around the average.ii

0

20

40

60

80

100

0 5 10 15 20 25 30

pe
rc

en
ta

ge
 o

f c
as

es

observations

PSfrag replacements
≥ 1

≥ 1

2

≥ 1

3

≥ 1

4

≥ 1

5

≥ 1

6

Figure 3.2: Precision with multiple levels.

Figure 3.2 gives more insight in the distribution of the precision than the simple average
from figure 3.1(a). Each line in this figure shows the percentage of cases that achieved a
precision of at least a certain value after the given number of observations. The lowest line
shows that after 12 observations, 40% of the cases have already reached the maximum pre-
cision (namely 1). Furthermore, and more surprisingly, this percentage then stops growing!
This means that:

Surprise 3.3.2.4 When aiming for the maximum precision of 1, there is no need to use any
more than 12 observations (out of a maximum of 30!). If the maximum precision has not
been reached after the first 12 observations, adding further observations will not help.

This is actually a more precise version of surprise 3.3.2.2 above. There we claimed that
extending beyond 12 observations was not useful on average. Here we see that for harder
cases, a few more observations do actually help, although not more than 20 observations in
total.

iiNo variance was plotted for the recall since, as explained above, in our application the recall is either 0 or 1.
Because of this, the variance for recall is not a meaningful notion.

28 The degradation studies

This is because at the other end of the scale (the top line in figure 3.2) , we see that the
percentage of cases with a precision of at least 0.2 continues to increase during a longer
interval. Apparently, harder cases (those that ultimately achieve a lower precision) benefit
more from additional observations than easy cases (those that achieve precision 1). Never-
theless, even there we see that no increase is gained after about 20 observations:

Surprise 3.3.2.5 Whatever the final precision that is ultimately obtained by the system, this
level of precision is already obtained after at most 20 observations. It seems that asking
for any more then 20 observations will not improve the output quality any further. This is
surprising since many cases (in fact 98% of the test set) contain more than 20 observations.

Looking at the initial segment of observations, we see another surprise: although we
may expect that a low number of observations leads to a low average precision, it is sur-
prising that the lines for the different precision-levels all coincide until the 6th observation:

Surprise 3.3.2.6 No increase in precision can be gained from the first 6 observations.

This means that in an anytime setting, interrupting the system before the 6th observation
is completely useless, since no increase in precision will have been obtained yet.

Figure 3.2 is particularly interesting from an anytime perspective: it tells us for each
partially processed input what the chance is that the system has already obtained a cer-
tain precision in its output: for instance, after having fed the system 10 observations, there
is a 30% chance that it has already obtained the maximum precision of 1, a 45% chance
that it has already obtained a precision of at least 0.5, and a 60% chance that it has al-
ready obtained a precision of at least 0.3.iii This information can be used by the user to
determine if it is useful to continue feeding the system more input, or if a sufficiently high
precision has already been obtained for the purposes of the user, so that processing (and
acquiring potentially expensive observations) can be stopped. Our graph (when interpreted
as a performance profile) contains much more information than the usual performance pro-
files presented in the literature (e.g., [Zilberstein, 1996]). These graphs typically give only
a single expected value for the output quality at any point in time (compare our Figure
3.1(a)), whereas we give a probability distribution of the expected output value, which is
much more informative.

Note that the ideas behind Figure 3.2 can in principle also be applied to the recall. We
omitted this because in our case study the recall is either 0 or 1, thus the resulting figure
would be the same as Figure 3.1(b).

3.3.3 Early conclusions on robustness
Since we are only studying a single system, we cannot apply the definitions from Section
2.1.4, which only speak about one system being more or less robust than another. However,
what is clear from the analysis until now is that the robustness of the plant-classification

iiiNote that these chances are cumulative, which is why they add up to more than 100%.

3.3 Results of the degradation study – data input 29

system is certainly not very uniform across the distribution of input quality. While degrad-
ing input quality (i.e., reading the previous graphs from right to left), the system at first
appears extremely stable against missing observations: no quality loss occurs at all. This
holds until we are left with somewhere between 12-15 observations (depending on the dif-
ficulty of the case). At that point, the robustness of the system is very low, and the input
quality drops dramatically.

Is this desirable behaviour or not? Would a more uniform behaviour (e.g., a straight
line connects bottom-left and top-right of figure 3.1(a)) be more attractive? This question
cannot be answered in general, but depends on the pragmatics of the system in use. The
‘straight line’ profile is on the one hand more attractive, because it avoids the dramatic
drop in quality seen in the figures above (Definition 2.1.4.3 from section 2.1.4); on the
other hand, it would start loosing output quality straight away, while the profiles discussed
above are all remarkably resistant to quality loss during early phases of input degradation
(Definition 2.1.4.2 from section 2.1.4).

3.3.4 Exploring other input sequences
In all the profiles above, we have degraded the input by removing observations in the order
in which they were listed in each test-case. Figure 3.3 shows what happens if the input is
degraded by removing observations in a different order.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

re
ca

ll

observations

Figure 3.3: Recall with various orderings.

30 The degradation studies

For reference, the dotted line shows the recall-profile from figure 3.1(b). The left-most
line shows the theoretically optimal average-recall profile: at each step in each case, we
computed which next observation would contribute maximally to an increase in recall. Of
course, this cannot be done in practice, since which observation will contribute most in
general depends on the observation-value that is obtained, so this computation can only be
done theoretically for test-cases where all observations are already present. The value of
the left-most line is therefore only to show what would be the theoretically fastest increase
in recall by the system with the fewest possible observations. The right-most line in Figure
3.3 does the same, but this time for the theoretically slowest average-recall profile. Every
other possible recall profile must lie between these two lines (as is indeed the case with
the earlier observed profile based on the test-case sequence). Finally, Figure 3.3 shows a
narrow bundle of recall profiles. Each of these profiles corresponds to a randomly generated
order of the observations.

The dotted line in this figure shows the profile based on the observation order obtained
from the test-cases (as originally plotted in Figure 3.1(b)). We can now see that this obser-
vation order actually scores rather well when compared with the random sequences:

Surprise 3.3.4.1 The degradation sequence taken from the test-cases is surprisingly effec-
tive in obtaining a high recall after only a few observations. In fact, it is much closer to the
theoretically optimal sequence than the randomly generated (information-free) sequences.

Currently, we have no good explanation for this phenomenon. It is possible that the
order of the input observables in the test-cases is influenced by the order in the graphical
user-interface. We will look more closely at this ordering in Section 3.3.6.

3.3.5 Further conclusions on robustness

The variation in the curves from Figure 3.3 shows that the plant-classification is very sen-
sitive to the specific order in which the observations are presented to the system. In other
words: when the same set of observations are presented to the system in a different order,
the behaviour of the system may change dramatically.

This type of robustness is not covered by our robustness definitions in Section 2.1.4.
The definitions there are all concerned with comparing the behaviour of different systems
on the same degrading input. The phenomenon observed in Figure 3.3 concerns the be-
haviour of a single system on different ways of degrading the input. We leave it for further
research how to include this type of robustness in our approach.

3.3.6 Which sequence does the system actually use?

The original plant-classification system has been designed in such a way that all observa-
tions can be entered at any time during the dialogue. The system does not enforce a partic-
ular order among the observations to be entered as input. Nevertheless, the user-interface

3.3 Results of the degradation study – data input 31

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

re
ca

ll

observations

S2

S1

Figure 3.4: Recall with user-interface ordering.

of the system does suggest a particular input sequence, namely the order in which the ob-
servations occur on the input form. Although the user can enter observations anywhere on
the input form, the top-to-bottom sequence of this form is suggestive.

The solid line in Figure 3.4 shows the increase in recall for this user-interface sequence.
The dotted lines show the theoretically fastest, the theoretically slowest gains in recall, and
the gains from random observation orderings and the test-case ordering as well (all copied
from Figure 3.3). As can be observed in this figure, the user-interface sequence performs
rather well when interpreted as an anytime performance profile (and certainly much better
than a random ordering). This suggests that the user-interface has to some extent been
designed with this behaviour in mind. Although this behaviour was not the reason for the
plant-classification system, it would be interesting to see how a dedicated dialogue strategy
can save time.

Actually, the real reason behind the ordering of the user-interface was the intended use
of the system. This means that we have to place our results in this context. The ordering of
the user-interface is based on the way people describe plants. First the system asks about
the flower, which is the most specific part of the plant and asks about the leaves and stem
afterwards. This specificity ordering may be the reason for the better curve in figure 3.4
when we compare it with a random ordering.

Furthermore, we like to note that the most optimal input order with respect to the recall

32 The degradation studies

or precision, may not be realizable in practice because it can decrease other factors like for
example the user-friendliness of the user-interface. Some trade off will usually have to be
made.

3.4 Results of the degradation study – knowledge base
The degradation experiments on data input already yielded interesting insights in the be-
haviour of a realistic KBS. In this section we will perform the same kind of analysis with
respect to the knowledge base used. For the input quality we will measure the incomplete-
ness and incorrectness of the knowledge base. In Section 3.4.1 we will analyse robustness
with respect to an incomplete knowledge base, whereas in Section 3.4.2 we will analyse
robustness with respect to an incorrect knowledge base.

3.4.1 Incomplete knowledge
Our experiment is as follows: we select some percentage of rules at random from the
knowledge base, remove the selected rules, and compute the recall and precision value
for each case with the modified knowledge base. The average recall (i.e., the sum of all
recall values divided by the number of cases) and the average precision will indicate the
robustness of the system with respect to the percentage of rules removed. Of course, the
experiment has to be repeated multiple times to obtain the robustness of the system on
average. Note that as we are no experts ourselves in plant classification and therefore unable
to check if some rules are missing from the knowledge base, we will call the provided plant
classification system complete, although in reality it may not be.

The results of the experiments are reported in Figure 3.5(b) for the recall and in Figure
3.5(a) for the precision. For each percentage, the average recall and average precision was
obtained over 10 different runs. Besides average values, the minimal and maximal obtained
values are also plotted in both graphs.

Both graphs show an almost smooth decrease of our measured values. The graphs are
surprising in that the measures start to decrease around 40% in both graphs.

Surprise 3.4.1.1 In the plant classification system almost 40% of the knowledge base can
be removed at random without severe quality loss.

A possible cause for this decrease at 40% and not at some earlier point is that the
average recall and precision are computed over 150 cases. When a rule is removed from
the knowledge base it will only have effect on a small number of cases and therefore only a
small effect on the average recall and precision. When more rules are removed, more cases
will be effected which results in a decreasing recall and precision.

This form of degradation experiment can lead to interesting insights into the robustness
behaviour of the system analysed. Nevertheless, the experiment performed has a drawback.
It is not realistic to assume that each element in the knowledge base has the same chance
of being forgotten. It would be more realistic to remove parts of the knowledge base based

3.4 Results of the degradation study – knowledge base 33

on some probability measure. Several measures should be compared when it is not obvious
which measure should be used.

In another experiment we partitioned the knowl-

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

partition

Probability measure of partition

Figure 3.6: Probability measure.

edge base into 7 partitions. The partitioning was
based on the scores given by the rules. Two rules
were put into the same class whenever their scores
were the same or only differed in their sign (e.g., a
rule with a score of 20 would be put into the same
class as a rule with a score of 20 or -20). (We will re-
fer to each class by a number and the smallest num-
bered class contains the rules with the smallest pos-
itive scores.) We then defined a probability measure
over this partition (Figure 3.6).

The reasoning behind our choice for the chosen
probability measure was the following. The parti-
tioning is based on the size of the scores of the rules.
Rules in a smaller numbered class have less effect on the final outcome than rules in a higher
numbered class. It seemes that in this domain rules with a smaller effect might easier be
forgotton. The probability measure in Figure 3.6 was chosen in such a way that when the
score of a rule A is twice the size of the score of a rule B then the probability to choose A
would be halve the probability of rule B.

Our results with this probability measure are shown in Figure 3.7. Obviously the results
have changed dramatically. Whereas our previous results (Figure 3.5) showed that 40% of
the knowledge base could be removed without severe quality loss, the new results show

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of incomplete KB

Precision with incomplete KB

average
min/max

(a)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of incomplete KB

Recall with incomplete KB

average
min/max

(b)

Figure 3.5: Recall and precision with incomplete knowledge base.

34 The degradation studies

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of incomplete KB

Precision with incomplete KB

average
min/max

(a)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of incomplete KB

Recall with incomplete KB

average
min/max

(b)

Figure 3.7: Recall and precision with incomplete knowledge base using a probability mea-
sure.

that when 40% of the knowledge base is removed in a biased way the system becomes
useless. Furthermore, the drop in output quality already starts at 15% and is much steeper
than before.

These new results should warn people before using the degradation studies for analyz-
ing the robustness of KBSs. The experimental setup should be as realistic as possible and
care has to be taken when interpreting the results as these can be sensitive to the chosen
setup as we demonstrated with our case study.

3.4.2 Incorrect knowledge

In our case study, the knowledge base consists of rules. Each rule consists of some ob-
servations, a name of a plant, and a score. To test the robustness with respect to incorrect
knowledge the rules need to be modified in some way. However, we like to do this in a
realistic setting. Modifying the observations at random is therefore no option. First of all
some observations are usually answered right while others are prone to errors. Secondly,
if an observation is wrong it is usually not done at random. Some answers lookalike while
others are clearly distinct. Modifying the observations of the rules realistically therefore
requires domain knowledge which we lack. However, modifying the score of a rule in our
case study does not require any domain knowledge.

In our experiments with incorrect knowledge we address the question: “How robust
is the system for incorrectly entered scores?”. Our experiment is therefore as follows: we
select some percentage of rules at random from the knowledge base, modify the score of the
selected rules, and compute the recall and precision value for each case with the modified

3.4 Results of the degradation study – knowledge base 35

knowledge base. The average recall (i.e., the sum of all recall values divided by the number
of cases) and the average precision will indicate the robustness of the system with respect
to the percentage of rules modified. Of course, the experiment has to be repeated multiple
times to obtain the robustness of the system on average.

Only one question remains: “In what way do we modify the score of a rule?” We
identified the following parameters:

Direction: Scores can be changed to a higher or lower value. Most likely scores are dam-
aged in both directions. Nevertheless, we also investigate the effect of a biased ex-
pert, i.e., an expert who always assesses something too high (or too low). We will
use the word ‘positive’ when scores are only changed to a higher value, and the word
‘negative’ when scores are only changed to a lower value. When both words do not
occur, scores will be changed in both directions.

Size: The scores of rules are changed from one class to another. Most likely the new class
is only one higher or one lower than the old class. We will call this kind of damage a
‘near miss’. To be complete we also investigate the effect when the difference of the
new class and old class is two classes. We will call this kind of damage an ‘error’.

The parameters lead to six different experiments, but before discussing the actual results
let us first consider what results are to be expected.

3.4.2.1 Hypotheses

The plant classification system we are analyzing uses a threshold and only gives plants
with a score higher than this threshold as output. When we change the scores of rules to
a higher value it follows that the final score of the plants can only increase. As the recall
only measures if the correct answer is given as output it follows that the recall can never
decrease. The recall will probably increase as more plants (including the correct answer)
are now more likely to cross the threshold and be given as output.

Hypothesis 3.4.2.1 When the scores of rules are increased, the recall of the system will
increase.

The converse also holds. When we change the scores of the rules to a lower value it
follows that the recall can never increase. When the scores are decreased sufficiently the
recall will decrease as outputted plants which are correct will drop below the threshold.

Hypothesis 3.4.2.2 When the scores of rules are decreased, the recall of the system will
decrease.

Some hypotheses for the precision can also be given, but the argument is more complex.
Considering the formula for the precision (Definition 2.1.2.3) we can identify two causes
for an increase in precision:

36 The degradation studies

I1. The score of the correct plant is increased and thereby crosses the threshold. In this
case the precision changes from 0 to some positive value.

I2. The scores of one or more incorrect plants decrease and thereby drop below the
threshold. If the correct answer remains in the output this will increase the precision
from some positive value to a higher positive value. For example, let A and B be two
plants given as output. Let A be the correct plant. In this case the system will have a
precision of 1/2. When the scores are changed such that B drops below the threshold
while A remains above the threshold the precision will change to 1.

In a similar way we can identify two causes for a decrease in precision:

D1. The score of the correct plant drops below the threshold. The precision changes from
a positive value to 0.

D2. The score of one or more incorrect plants increase and cross the threshold.

When we change the scores of rules to a higher value both I1 or D2 can occur. However,
I1 is unlikely as previous experiments showed that the recall of the system is already close
to the optimal value of 1. It follows that we expect a decrease in precision.

Hypothesis 3.4.2.3 When the scores of rules are increased, the precision of the system will
decrease.

When we change the scores of rules to a lower value both I2 or D1 can occur. As these
causes change the precision into two different directions it is not obvious to predict the
outcome of the precision.

The outcome is even harder to predict when we change the scores of rules both to lower
values and to higher values as all four causes for the change in precision can occur. Also the
recall can now both increase and decrease and is therefore harder to predict. Nevertheless,
for the recall we know that the performance profile has to lie somewhere in between the
results for the strictly positive and negative changes.

Hypothesis 3.4.2.4 When some rules are changed positively while other rules are changed
negatively, the recall of the system will be between the recall values of the stricly positive
and negative changes.

Besides direction of changes we will also look into the effect of the size of the changes.
We expect that a larger chance will have a larger effect on the average values. For example,
when the scores are changed positively and the recall increases with near misses, we expect
the recall to increase even more when we experiment with positive errors.

Hypothesis 3.4.2.5 When comparing experiments in which we make errors instead of near
misses without changing the direction of the changes, the effect observed in the near miss
experiment will be made stronger.

3.4 Results of the degradation study – knowledge base 37

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.8: Positive near misses.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.9: Positive errors.

3.4.2.2 Results

Now we will discuss the results which are shown in the Figures 3.8 through 3.13.
First note that our hypotheses hold in the shown figures. In case of positive changes the

recall increases as is shown by Figures 3.8(b) and 3.9(b) (Hypothesis 3.4.2.1). In case of
negative changes the recall decreases as is shown by Figures 3.10(b) and 3.11(b) (Hypoth-
esis 3.4.2.2). In case of positive changes the precision decreases as is shown by Figures

38 The degradation studies

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.10: Negative near misses.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.11: Negative Errors.

3.8(a) and 3.9(a) (Hypothesis 3.4.2.3). In case of near misses, the recall (Figure 3.12(b))
will lie between the values found in the strictly positive experiment (Figure 3.8(b)) and the
strictly negative experiment (Figure 3.10(b)). The same holds for the experiments with er-
rors (Figures 3.13(a), 3.9(a), and 3.11(a)) (Hypothesis 3.4.2.4). In case of positive changes,
we find that the recall in the experiment with errors (Figure 3.9(b)) lies everywhere above
the recall in the experiment with near misses (Figure 3.8(b)). In case of negative changes,

3.4 Results of the degradation study – knowledge base 39

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.12: Near misses.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

on

Percentage of damaged rules

Precision with damaged rules

average
min/max

(a) Average precision

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
ec

al
l

Percentage of damaged rules

Recall with damaged rules

average
min/max

(b) Average recall

Figure 3.13: Errors.

we find that the recall in the experiment with errors (Figure 3.11(b)) lies everywhere below
the recall in the experiment with near misses (Figure 3.10(b)) (Hypothesis 3.4.2.5).

Other points of interest are the specific curves we obtained in our experiments. For
example in case of positive near misses (Figure 3.8(a)) we find a linear decrease in preci-
sion whereas the decrease is non-linear when we increase the size of the changes (Figure
3.9(a)).

40 The degradation studies

In the case of negative near misses we could not predict the behaviour of the precision
as there are two causes that could change the precision in opposite directions (causes I2 and
D2 discussed in Section 3.4.2.1). Figure 3.10(a) tells us that I2 happens more often than
D1 in the first segment of the figure as the precision increases. Hence, in most cases first
some incorrect plants drop below the threshold before the correct plant drops below the
threshold. It follows that in most cases the correct plant has outscored most of the incorrect
plants, which is desired behaviour of the system.

The same curve as in negative near misses also occurs in the figure for negative errors
(Figure 3.11), however, the curve of the negative near misses is ‘compressed’ into the first
halve of the figure because the size of the changes has increased. Note that this holds for
both the precision and the recall.

Besides interesting behaviour we are of course interested in the robustness of the sys-
tem. Probably the most realistic setting is the experiment with near misses (Figure 3.12).
Both precision and recall show a very stable curve indicating a robust knowledge base for
‘near misses’. Although the knowledge base appears to be robust on the entire range of the
x-axis, from a practical point of view usually only the first part of the figure is important.

Chapter 4

Extensions and conclusions

In Chapter 2 a methodology is presented for measuring the robustness of a KBS with re-
spect to some input quality. In Chapter 3 an experimental analysis of this methodology
is presented on a large plant-classification system. In this final chapter of Part I some
extensions to the methodology are discussed in Section 4.1. Thereafter, in Section 4.2 con-
clusions are given about the results of the experimental analysis. The chapter finishes by
looking at which steps can be taken for future research (Section 4.3) and acknowledges the
people that contributed to this research (Section 4.4).

4.1 Extensions

Degradation experiments can lead to inter-

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

P
re

ci
si

on
/R

ec
al

l

Threshold

Precision/Recall with different threshold

average recall
average precision

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

P
re

ci
si

on
/R

ec
al

l

Threshold

Precision/Recall with different threshold

Figure 4.1: Parameter tuning.

esting insights into the bahaviour of a KBS.
These insights can be used to compare vari-
ous systems or to improve a system. For ex-
ample, the plant classification system we anal-
ysed shows a very high recall, but its precision
is much lower. However, the degradation ex-
periments we performed clearly shows that the
precision of the system can be improved (Figure
3.10).

The increase in precision in Figure 3.10 can
be explained by cause I2 discussed in Section
3.4.2.1. It seems that the score of the correct
plant is higher than most plants in the output.
Instead of changing the score of rules to a lower
value to increase the precision, we can obtain the
same effect by setting the threshold used by the
system at a higher value. Hence, in this case we
use degradation experiments to tune a parameter of the system.

42 Extensions and conclusions

The results of tuning the threshold parameter are shown in Figure 4.1. As can be seen,
the precision can be increased to 0.69 without any loss in recall by increasing the threshold
to 56. If the threshold is set above 56 some tradeoffs will have to be made. The precision
can be improved some more, but the recall will decrease.

4.2 Conclusions
In this part of this dissertation, we have argued for the need for quantitative analysis of the
quality of KBSs. In particular, we have shown how robust behaviour in the light of incom-
plete system-input as well as an incomplete and incorrect knowledge base is amenable to
such quantitative analysis. Our quantitative analysis is based on the idea of degradation
studies: analyse how the quality of the output changes as a function of degrading input.
We have proposed a set of general definitions which are general enough that they can be
used in similar degradation experiments by others, even if the systems concerned are of
a very different nature than the one in our case study. We have shown the practicality of
our approach by applying it to a particular case study. This yielded a number of surprising
insights into the behaviour of the system under study.

We believe that the following issues are the most important in our proposed approach
of degradation studies for measuring the robustness of KBSs:

Generality: Degradation studies are general enough to be applicable to many KBSs. The
output quality is measured using the recall and precision, which are well known
in information retrieval. Furthermore, the general concepts of incompleteness and
incorrectness can usually be used as measures for the quality of the input.

Insights: Degradation studies provide insights into the behaviour of the system analysed.
As we demonstrated in our case study this includes its anytime performance with
respect to incomplete data or its robustness with respect to incomplete or incorrect
data or knowledge.

Performability: The degradation study we performed could quite easily be performed. We
were able to do this because we had easy and quick access to the KBS (i.e., giving
input to the system and reading its output by an external program). Furthermore,
programs could be used to modify the input and knowledge base in a controlled way.
These conditions should not be too hard to realize for many other KBSs.

Setup: Before performing a degradation study on a KBS, one should carefully consider
the experimental setup. The way data or knowledge is removed or modified may
greatly influence the outcome of the degradation studies.

The ultimate suggestion that follows from this work is that any KBS should upon de-
livery come accompanied with a set of degradation statistics such as discussed in this paper
as a quantitative way of measuring interesting and important aspects of the systems qual-
ity. This would contribute to a more empirical and quantitative analysis of AI systems in
general and of KBSs in particular, very much in the spirit of [Cohen, 1995].

4.3 Future work 43

4.3 Future work

Although the results above already yield interesting insights in the behaviour of a realistic
KBS, many other aspects could still be uncovered using further degradation studies. We
discuss some of these extensions in this section:

The informal definition for robustness that we used as a starting point in Section 2.1
has not been carried through entirely in the paper. Functioning correctly in the presence
of invalid inputs has not been evaluated in the case study and should be included in future
research.

[Zilberstein and Russell, 1995] suggests a category of measures on output quality
which is not yet covered by the recall and precision that we have used in the above, namely
“specificity of a solution”. This is intended to represent the degree of detail in the systems’
answer. An example would be a system which can compute names of ever finer grained
plant-families instead of only individual species (as above). This property was irrelevant in
our case-study, since the plant-classification system only deals with a flat list of candidates,
not with a hierarchically organized space of candidates. We have therefore ignored this
potential third dimension of KBS output quality, but we expect that good measures can be
devised for this just as well as for the other two dimensions which we did handle.

The output quality measures we used (precision and recall) are geared towards systems
with a discrete output (a set of answers). Some KBS applications return real-valued answers
(e.g. ratings). We must study how these systems can also be subjected to degradation
studies using acceptable measures. In fact, the plant-classification system not only returns
a set of candidates, but indicates a numeric score for each candidate. Our current output-
measures completely ignore this score. A further step would be to also include this score
in the quality measures.

As mentioned in Section 3.3.2, Figure 3.2 can be interpreted as a prediction for the
expected quality of the output after a given number of observations. In effect, Figure 3.2 is
the result of learning the anytime performance profile through the test-cases. As with any
learning task, we can apply cross-validation to the set of test-cases [Cohen, 1995]: use a
subset of the test-cases to “learn” profiles as in Figure 3.2, and use the remaining cases to
check the accuracy of the predicted performance levels.

Our measures for output quality (recall and precision) can only be computed for cases
where the correct answer is actually known. This is not as obvious as it may sound. In
many applications (e.g., computing the best solution to a design problem) the correct (i.e.,
best) answer is not known to any human expert. In such cases, one must either resort to
known approximations of the correct answer, or fundamentally different quality measures
must be defined.

Our proposed definitions for output quality (precision and recall) focus on the correct-
ness of the answers computed by a system. Of course, there are many more aspects to the
“quality” of a KBS, such as the quality of its explanation, its computational efficiency, its
interaction with its environment (be it users or other systems), etc. It is an open issue to us
whether the same “degradation study” approach can be taken to quantifying any of these
other aspects of the systems quality.

44 Extensions and conclusions

4.4 Acknowledgements
We like to thank Frank Puppe for the help he has given us. This paper was inspired by a
discussion with him during the Banff’98 KAW workshop. He gave us access to the plant-
classification software and explained in detail its working. He was also always available to
answer any question by e-mail. Furthermore, we thank Eric de Vink for his contributions
to the early phases of this research and Nico Vink for participating in the experimental
analysis of the last phase of this research.

Part II

Knowledge Compilation

Chapter 5

Knowledge compilation

5.1 Introduction

Many systems in symbolic problem solving use logic as representation language. This
language can then be used to express basic truths from which other truths can be derived
mechanically by logical deduction. The first researcher who proposed the use of logic for
problem solving was probably John McCarthy [McCarthy, 1959] and since then various
researchers have advocated the favour of the logical approach. We will recall some of
those benefits.

First, logic comes with a formal semantics, which gives a precise description of the
meaning of expressions in the formalism. With this precise semantics, several logical lan-
guages can be compared with each other, which makes it possible to construct guidelines
that correlate characteristics of particular domains and tasks with appropriate logic based
representational and inferential mechanisms. From this, it is possible to make an informed
choice for a representation formalism.

Secondly, logic has well understood properties as regards to soundness, completeness,
and decidability. Although some of the results are negative (i.e., semi-decidable, incom-
pleteness), it is important that these results are known. For some other types of representa-
tion languages, no results have been obtained.

Thirdly, logic is expressively powerful. There are two reasons for this. First, logic is not
restricted to the standard two-valued, truth functional, first-order predicate calculus. Many
researchers have already proposed many alternative forms of logic. Examples are modal
logic, intuitionistic logic, epistemic logic, and tense logic. The other reason for logic to be
expressively powerful is its ability to express what might be called incomplete knowledge.
In logic, it is possible to express facts without some details that are not yet known. For
example in classical predicate calculus we are able to express the knowledge that an object
x exists with property P without knowing its identity: ∃x : P (x). Another example is the
disjunctive knowledge P ∨Q without stating, which disjunct is true.

However, the logical approach also has some drawbacks. The complexity of logical
entailment is such a drawback. It is well known that deduction in a logical formalism
is very much demanding from a computational point of view. Many problems and tasks

48 Knowledge compilation

(e.g., planning, diagnosis, and configuration) that we are typically dealing with in symbolic
problem solving are already intractable for the simple varieties. Since such tasks still have
to be performed, several methods were developed to deal with this kind of problem.

A technique called knowledge compilation is such a method that can be used to deal
with computational difficulties. The underlying idea of knowledge compilation is that many
reasoning problems can be split into two parts: a knowledge base and a query. For example,
in diagnosis the knowledge base consists of rules and facts about the way some system is
expected to behave. When there exists a discrepancy between the observed behaviour and
the way the system is expected to behave, the knowledge base is queried to give a cause for
this discrepancy. In this case the query can be a conjuction of specific facts reflecting the
current state (i.e., observations), which implies the cause for discrepancy (in the context
of the knowledge base). More specifically, in diagnosis the knowledge of the expected
behaviour of a system is represented by a theory T , the current state is represented by some
formula F (e.g., a conjunction of facts), and some cause is represented by a literal l. The
problem of determining T ∪ F ` l is logically equivalent to T ` F ⇒ l. This problem can
be considered to have two parts: the theory T is the ‘knowledge base’, and F ⇒ l is the
‘query’ of the problem.

In a typical scenario, the knowledge base remains unchanged over a long period of time
and is used to answer many queries. In knowledge compilation the idea is to split this kind
of reasoning into two phases:

1. In the first phase the knowledge base is pre-processed by translating it into an appro-
priate data structure, which allows for more efficient query answering. (This phase
is also called off-line reasoning.)

2. In the second phase, the data structure, which resulted from the previous phase, is
now used to answer the query. (This phase is also called on-line reasoning.)

The goal of the pre-processing is to make on-line reasoning computationally easier with
respect to reasoning in the case when no pre-processing is done at all.

Pre-processing is quite common in Computer Science. For example, compilers usually
optimize object code or a graph can be pre-processed to obtain a data structure that allows
for a fast node reachability test. However, in Computer Science pre-processing is usually
done for problems, which are already solvable in polynomial time. What characterizes the
same study of such techniques in the context of symbolic problem solving is that reasoning
problems are often NP-hard.

The rest of this chapter is divided as follows. In Section 5.2 we give the terminology we
will use as well as some formal definitions. Thereafter, we discuss several methods used
in knowledge compilation. These methods are divided in exact methods (Section 5.3) and
approximate methods (Section 5.4).

5.2 Knowledge compilation: terminology 49

5.2 Knowledge compilation: terminology
First we introduce a simple reasoning problem which will be used as running example. A
reasoning problem is always specified by means of (1) its instances, and (2) the question
we are expected to solve. The Literal Entailment problem, which is our running example,
is specified as follows:

Instance: Finite set L of Boolean variables, a propositional formula in Conjunctive Nor-
mal Form T , and a literal l (both T and l are built using variables in L).

Question: Is it true that all models of T are models of l (i.e., that T |= l)?

Usually a problem is represented as a pair Instance/Question. However, this
representation does not tell us which part of Instance is fixed. Another representation is
therefore needed that clearly splits an instance into a fixed and a variable part. For example,
we stated before that many reasoning problems can be considered to consist of two parts:
a knowledge base and a query. The knowledge base is not changed often and can therefore
be pre-processed and used to answer many problem instances. The query on the other
hand is posed to the knowledge base and will be different for each instance. To address
the pre-processing ascpects in knowledge compilation, we will therefore use the following
terminology [Cadoli, 1993, Cadoli, 1996]:

Fixed part of a problem: The part of a problem that goes to pre-processing when a prob-
lem is compiled (e.g., a propositional formula T in CNF). i

Variable part of a problem: The part that does not go through pre-processing (e.g., a lit-
eral l).

(Structured) problem: A triple consisting of the type of question that we ultimately want
to solve, its fixed part, and its variable part (e.g., [T |= l, T, l]).

Which part of the problem is considered fixed or variable may depend on the knowledge
about the domain. Our experiments, which we will discuss in Chapter 7, confirm that there
is a trade-off between the part of the problem that is considered fixed and the effectiveness
of the knowledge compilation techniques applied.

We stated before that the goal of knowledge compilation is to make on-line reasoning
easier with respect to reasoning in the case when no pre-processing is done at all. An
example problem for which this goal can be attained is our running example the Literal
Entailment problem. Without pre-processing, the Literal Entailment problem is coNP-
complete, but after compiling it, the problem [T |= l, T, l] can be solved on-line in time
polynomial in |T | + |l|. This can be done as we can record on a table, for each literal

iNote that the vague term ‘the part’ is intentionally used as knowledge compilation can be used on many kinds
of data structures (e.g., formulas, models). However, within this thesis we only consider knowledge compilation
of propositional formulas and ‘the part’ can be considered to be a set of propositional formulas representing for
example a knowledge base.

50 Knowledge compilation

l occurring in T , whether T |= l or not. The size of the table is in O(n), where n is
the cardinality of the alphabet L of T . The table can be consulted in O(n) time. Note
that creating the entire table means solving O(n) instances of a coNP-problem, but this
is done off-line and in knowledge compilation one is not concerned with these off-line
computational costs.

The compilation of our running example [T |= l, T, l] contains two aspects which are
important:

1. The output of the pre-processing part is a data structure (e.g., a set of propositional
formulas), which has size polynomial with respect to the fixed part.

2. On-line reasoning takes time polynomial in the size of the data structure and the size
of the variable part.

Furthermore, it is believed that the same pre-processing should facilitate the answer to
a whole class of queries – not just one. Intuitively, the effort spent in the pre-processing
phase pays off when its computation time is amortized over the answers to many queries.
Finally, even if the compilation process can take a substantial amount of time, it must
always terminate. The aspects mentioned above can be used as guidelines to formalize the
notion of a compilable problem. The following definition is from [Cadoli et al., 1994]:

Definition 5.2.0.6 (Compilable problem) A problem [P, F, V] is compilable if there exist
two polynomials p1, p2 and an algorithm ASK such that for each instance f of F there is a
data structure Df such that:

1. |Df | ≤ p1(|f |).
2. for each instance v of V the call ASK(Df , v) returns yes if and only if (f, v) is a

“yes” instance of P .
3. ASK(Df , v) requires time ≤ p2(|v|+ |Df |).

Remember, that in Definition 5.2.0.6 P stands for the type of question we ultimately
want to solve. For example, does the knowledge base entail a certain literal, or can a certain
cause explain the discrepancy between observations and system description. Furthermore,
in Definition 5.2.0.6 F stands for the fixed part of the problem, and V stands for the variable
part of the problem. In Definition 5.2.0.6, Constraint 1 states that the size of some data
structure Df is polynomial in the size of some instance f of F . Constraint 2 states that
Df can be used to answer an instance (f, v) of P for any instance v of V . Hence, from
Constraints 1 and 2 follows that Df stands for the compilation of f . Finally, Constraint 3
states that any instance (f, v) can be answered in time polynomial in the size |v|+ |Df |.

In case Definition 5.2.0.6 does not hold for a problem [P, F, V] such a problem is said
to be incompilable.

In the rest of this chapter, we will describe various knowledge compilation methods
(for propositional theories). The methods are divided into methods which exactly translate
the original theory into another form (Section 5.3) and methods which translate the original
theory into a form that approximates the original theory (Section 5.4).

5.3 Exact knowledge compilation 51

5.3 Exact knowledge compilation
A knowledge compilation method is called exact when the original theory is compiled into
a logically equivalent theory. Proposals for exact knowledge compilation can be classified
in three main methods [Cadoli, 1993]:

1. use prime implicants or prime implicates.
2. add to the knowledge base only those prime implicates that make any deduction

possible by unit resolution.
3. use prime implicates with respect to a tractable theory.

Note that an implicant of a theory Σ is a conjunction of literals D such that D |= Σ and
D does not contain two complementary literals; a prime implicant is a minimal implicant
with respect to set containtment. An implicate of a theory Σ is a disjuction of literals C
(a clause) such that Σ |= C and C does not contain two complementary literals; a prime
implicate is a minimal implicate with respect to set containment.

5.3.1 Prime implicants and prime implicates
The simplest proposals on exact knowledge compilation use the fact that knowledge bases
have normal forms (e.g., CNF and DNF) from which consequences can be easily computed.

For example by taking the disjunction of all prime implicants D1, . . . , Dk of a knowl-
edge base KB one obtains a DNF formula D1 ∨ · · · ∨ Dk which is equivalent to KB
[Quine, 1959], such that for every query Q, KB |= Q iff for every prime implicant Di,
Di |= Q. If Q is in CNF this amounts to verify that every clause of Q has a non-empty
intersection with each Di. Hence, entailment of CNF queries can be computed in time
polynomial in the size of the set of prime implicants plus the size of the query.

Dually one can take the conjunction of all prime implicates C1, . . . , Ck of a knowl-
edge base KB to obtain a CNF formula C1 ∧ · · · ∧ Ck which is equivalent to KB
[Reiter and deKleer, 1987]. For every CNF query Q, KB |= Q iff for each nontautolo-
gous clause C ′ of Q there is a prime implicate C of KB such that C |= C ′, i.e., C ⊆ C ′.
Hence, the entailment of CNF queries can be computed in time polynomial in the size of
the set of prime implicates plus the size of the query.

Intuitively all prime implicates of a CNF knowledge base can be found by resolving
clauses (each revolvent is an implicate) and discarding implicates which are not prime.
However, this method may require too many resolution steps. Research on algorithms for
computing prime implicates already started a long time ago and can be found for example
in [Tison, 1967, Jackson and Pais, 1990, deKleer, 1992, Simon and delVal, 2001].

However, the number of prime implicants and prime implicates of a knowledge
base with n variables were shown in [Chandra and Markowsky, 1978] to be exponen-
tial in n in the worst-case. An experimental study of the number of prime implicants
and prime implicates for CNF knowledge bases of increasing size was performed in
[Schrag and Crawford, 1996b]. We will discuss these results in more detail in Chapter
7 where we will use them to clarify some of our experimental results.

52 Knowledge compilation

5.3.2 Unit-resolution-complete compilation
Since the number of prime implicates can be exponential an enhanced method was pro-
posed in [delVal, 1994]. The method is based on the observation that entailment of a CNF
query and a prime-implicates-compiled knowledge base can be done by checking whether
each query clause is contained in a prime implicate. This check for containment is a form
of unit-resolution refutation, which is defined as follows:

Definition 5.3.2.1 Unit resolution is a form of resolution where at least one of the two
clauses to be resolved is a single literal.

Unit resolution is sound, but incomplete, i.e., not all refutations can be found by unit reso-
lution. Negating a clause in the query yields a set of negated literals, and by unit resolution
one obtains the empty clause if and only if there is a prime implicate made by a subset of
the literals in the clause.

By substituting the set-containment check with unit resolution refutation, one does not
need to keep all prime implicates, but only the subset of prime implicates from which each
prime implicate can be derived by unit resolution. Since every unit resolution refutation
needs polynomial time in the size of the initial clauses to be refuted, this method also turns
a coNP-complete method into a problem solvable in polynomial time with respect to the
size of the formula produced by pre-processing.

In [delVal, 1994] cases are given in which unit refutation can discard an exponential
number of prime implicates. However, the method is limited to CNF knowledge bases (i.e.,
although any formula can be translated into an equivalent CNF formula, this may increase
its size exponentially).

5.3.3 Theory prime implicates
Another method was developed by Marquis [Marquis, 1995]. He starts observing that
prime implicants and prime implicates methods are based on transforming the problem
KB |= Q (Q being a clause), involving the entire knowledge base KB, into local tests
involving one prime implicant/implicate at a time. He proposes to enhance such local tests
with a theory, while keeping its complexity to be polynomial-time.

Definition 5.3.3.1 A theory prime implicate of a knowledge base KB with respect to a
theory Φ is a clause C such that KB∪Φ |= C and for each other clause C ′ if KB∪Φ |= C ′

and Φ ∪ C ′ |= C then also Φ ∪ C |= C ′.

The theory prime implicates of a knowledge base KB with respect to a theory Φ will
be denoted by TPI(KB,Φ). Note that when Φ is an empty knowledge base one obtains the
definition of prime implicate, i.e., TPI(KB,∅) = PI(KB). Hence, theory prime implicates
extend prime implicates.

Observe that checking Φ ∪ {C} |= C ′ is equivalent to check, for each literal li ∈ C,
whether Φ |= ¬li ∪ C ′. The key point is that if deduction in the theory Φ can be done in

5.4 Approximate knowledge compilation 53

polynomial time entailment of CNF queries can be computed in time polynomial in the size
of the set of theory prime implicates.

Marquis suggests as good candidates for Φ the set of all Horn clauses of KB, the set
of all binary clauses of KB, and many others. In general, any subset of KB such that
entailment is tractable can be used. However, for a knowledge base KB and two theories
Φ and Φ′ such that KB |= Φ′ and Φ′ |= Φ holds we have that the number of clauses
of TPI(KB,Φ) can never be larger than TPI(KB,Φ′) (Corollary 2 in [Marquis, 1995]).
Hence, to get the best theory prime implicate compilation we only have to consider the
largest subsets (with respect to set inclusion) of a knowledge base KB.

Marquis gives examples in which the number of theory prime implicates is exponen-
tially smaller than the number of del Vals’ filtered prime implicates. Furthermore, in
[Marquis and Sadaoui, 1996] Marquis and Sadaoui give an algorithm for computing the-
ory prime implicates, which is based on Binary Decision Diagrams. With this algorithm,
the initial knowledge base does not need to be in CNF, and the prime implicates of KB
need not be generated. This reduces considerably compilation operations, as shown in
some experiments.

In summary, the three classes of exact knowledge compilation methods given in the
beginning of Section 5.3 are ordered according to the effectiveness of the method. Each
method is at least as good as its predecessors, and for each method there exists a theory that
can be compiled exponentially smaller than when using one of the earlier described knowl-
edge compilation methods. However, according to a theorem in [Selman and Kautz, 1996]
it is highly unlikely that one of the described methods (or any exact knowledge compilation
method) can compile every theory into a polynomial data structure.

To overcome some of the drawbacks of exact knowledge compilation methods some
of the requirements might be weakened. We will look at some of these methods in the
following section.

5.4 Approximate knowledge compilation

We gave some formal definitions in Section 5.2 for knowledge compilation. However, it
is not always possible to make on-line reasoning more efficient in all cases. For some
important problems the requirements mentioned in Section 5.2 are unlikely to be achieved.

Two classical approaches have been developed for addressing the computational hard-
ness of reasoning problems, which are language restriction and theory approximation. Tra-
ditionally these methods have been used for achieving tractability in reasoning problems
in which there is no distinction between an on-line and off-line part. In the context of
knowledge compilation, they can be described as follows:

Language restriction. The language used to represent knowledge in either the fixed or
variable part may be restricted such that one can still represent interesting cases and
one can compile the resulting problems.

54 Knowledge compilation

Theory approximation. One can give up the soundness or completeness in the answer to
the original reasoning problem. This means that either certain information is lost in
the off-line reasoning phase, or that the theory is compiled into an equivalent theory
and the soundness or incompletenes in the answer is lost in the on-line reasoning
phase.

Note that in both approaches the goal is to have fast on-line reasoning.
The language restriction has not been considered often in the knowledge compilation

setting. On the other hand, the theory approximation approach, which we will discuss in
more detail, has had some success.

The theory approximation approach is

Return "don’t know" or
fall back on original theory

Return
"yes"

Return
"no"

"no"

"yes"

PSfrag replacements

ΣUB |= α

ΣLB |= α

Σ |= α?

Figure 5.1: Fast querying using theory ap-
proximations.

analogous to optimization problems. In both
cases, we are interested in approximate so-
lutions that are meaningful. However, in
Knowledge Representation we are not deal-
ing with numerical problems. This means
there is no obvious metric that tells us “how
far we are” from the right answer to an entail-
ment problem. The approximation of the an-
swer to an entailment problem should there-
fore be grounded on a semantical basis.

The underlying idea in approximate
knowledge compilation is that answers to a
query can be approximated from two sides.
Either with an answer that is sound but in-
complete or with an answer that is complete
but unsound. A sound-but-incomplete an-
swer approximates the correct answer as a

‘yes’ answer is correct while a ‘no’ answer is in fact a ‘don’t know’. A complete-but-
unsound answer approximates the correct answer as a ‘no’ answer is correct while a ‘yes’
answer is in fact a ‘don’t know’. Obviously, in both cases one wants to have an approxima-
tion that can be computed using fewer resources.

The ideas mentioned above can be formalized as follows. An approximation A of a
knowledge base Σ is sound when for every query Q, if A |= Q then Σ |= Q. In this case A
is called an upper bound for Σ. Observe that A is an upper bound (UB) for Σ if and only
if Σ |= A holds. Dually, an approximation B of a knowledge base Σ is complete when for
every query Q, if B 6|= Q then Σ 6|= Q. In this case, B is called a lower bound (LB) for Σ,
and B |= Σ holds.

The approximations can be used to improve the efficiency of query answering. Suppose
we have a knowledge base Σ and we want to determine if a formula α is implied by the
knowledge base Σ. This can be done as depicted in Figure 5.1 where ΣUB is an upper
bound of Σ and ΣLB is a lower bound of Σ. First, the system tries to answer the query
quickly by using the approximations. If ΣUB |= α then it returns ‘yes’, or if ΣLB 6|= α

5.4 Approximate knowledge compilation 55

then it returns ‘no’. In case no answer is obtained, the system could simply return ‘don’t
know’, or it could decide to spend more time and use a general inference procedure to de-
termine the answer directly from the original theory. In the latter case, the approximations
could still be used to prune the search space of the inference procedure. For example, in
[Kautz and Selman, 1994] queries are answered using a knowledge base Σ and also an-
swered using the knowledge base Σ conjoined with its unit LUB. The latter is shown to
speed up the query answering in their experimental setup.

5.4.1 Anytime versions of exact compilation methods
Any of the exact knowledge compilation methods discussed previously in Section 5.3 can
be turned into an approximate method by stopping it before it is completed, because these
methods are anytime algorithms. In fact, we can be a bit more precise about the approxi-
mations of some algorithms.

The methods based on implicates as del Val’s [delVal, 1994] and Marquis’
[Marquis, 1995], yield upper bounds when stopped before the entire compilation is fin-
ished. As for each implicate C by definition Σ |= C holds, it also holds that Σ |= PIn(Σ),
with PIn(Σ) denoting all implicates computed after n steps of one of the algorithms de-
scribed in Section 5.3. Hence PIn(Σ) is an upperbound of Σ.

The methods computing implicants like Schrag’s [Schrag and Crawford, 1996a], yield
lower bounds when stopped before the entire compilation is finished. As for each implicant
D of Σ it holds by definition that D |= Σ, it follows that whenever D 6|= Q for each already
computed implicant and for some query Q that Σ 6|= Q. Hence, the computed implicants
form a lowerbound of the theory Σ.

5.4.2 Horn approximations
An original method to approximate knowledge bases was developed in
[Selman and Kautz, 1991] and extended in [Selman and Kautz, 1996]. The idea is to
compile a knowledge base into a formula which belongs to a syntactic class which
guarantees polynomial-time inference.

In the method developed in [Selman and Kautz, 1991] a knowledge base is approxi-
mated by a Horn formula. The basic idea is to bound a set of models of the original theory
from below (i.e., complete) and from above (i.e., sound) which is formalized in the follow-
ing definition.

Definition 5.4.2.1 Let Σ be a set of clauses. The set ΣLB and ΣUB of Horn clauses are
respectively a Horn lower bound and a Horn upper bound of Σ if and only if

M(ΣLB) ⊆M(Σ) ⊆M(ΣUB)

or, equivalently,

ΣLB |= Σ |= ΣUB .

56 Knowledge compilation

Instead of using any pair of bounds to characterize the original theory, we would like to
use the best possible bounds. This leads to a greatest Horn lower bound and a least Horn
upper bound.

Definition 5.4.2.2 Let Σ be a set of clauses. The set ΣGLB of Horn clauses is a greatest
Horn lower bound of Σ if and only ifM(ΣGLB) ⊆ M(Σ) and there is no set Σ′ of Horn
clauses such thatM(ΣGLB) ⊂M(Σ′) ⊆M(Σ).

Definition 5.4.2.3 Let Σ be a set of clauses. The set ΣLUB of Horn clauses is a least Horn
upper bound of Σ if and only ifM(Σ) ⊆M(ΣLUB) and there is no set Σ′ of Horn clauses
such thatM(Σ) ⊆M(Σ′) ⊂M(ΣLUB).

Each theory has a unique LUB (up to logical equivalence), but can have many different
GLBs.

As shown in Figure 5.1, inference can be approximated by using the Horn GLBs and
Horn LUBs. In this way, inference could be unsound or incomplete, but it is always possible
to spend more time and use a general inference procedure on the original theory.

Similar to Horn bounds other bounds can also be used. In [Selman and Kautz, 1996]
the GLB and LUB are computed, which only contain unit clauses (i.e., substitute in the
definitions above unit clause for Horn clause). Their experimental results show that such a
restricted language for the bounds can already lead to a substantial savings in computation
time.

5.5 Conclusions
We have given an overview of knowledge compilation, which can be used to address the
computational complexity of logical inference. The central idea behind knowledge com-
pilation is the observation that many problems can conceptually be split into two parts: a
fixed part and a variable part. Several knowledge compilation methods have been described.
These methods were divided into exact knowledge compilation methods and approximate
knowledge compilation methods.

In the next chapter we will look at planning problems, which belong to the problems
that can be divided into a fixed part and a variable part. Thereafter, in Section 7, we will
give an experimental analysis of some of the knowledge compilation methods described in
this chapter on various planning problems.

Chapter 6

Planning

6.1 Introduction
Artificial Intelligence Planning is concerned with choosing a sequence of actions that will
achieve certain goals. The basic description of a planning algorithm has remained constant
for nearly three decades: Given the input, which consists of

1. a description of the initial state of the world,
2. a description of the goals to be achieved, and
3. a description of the possible actions that can be performed (i.e., domain theory),

compute a sequence of actions which, when executed in any world that satisfies the initial
state, will achieve the goals.

The formulation of a planning problem as given above is quite abstract as it really
specifies a class of planning problems parameterized by the languages used to repre-
sent the world, goal, and actions. In this dissertation, we will restrict ourselves to one
of the earlier representational methods for planning domains that is known as STRIPS
[Fikes et al., 1971].

In the following section we describe the STRIPS representation in more detail. There-
after we will describe in Section 6.3 how planning can be tranlated to a satisfiability prob-
lem. This will allow us to apply the techniques from Chapter 5 to study the application of
knowledge compilation methods to planning problems in Chapter 7. However, there are
various ways to encode a planning problem as a satisfiability problem. The rest of this
chapter (Section 6.3.1) gives a framework for the various encodings that can be used to
encode a planning problem as a satisfiability problem. Furthermore, some optimizations
are given in Section 6.3.2 for the various encodings in the framework.

6.2 The STRIPS representation
The STRIPS representation describes the initial state of the world with a complete set of
ground literals. The goals are defined as a propositional conjunction and restricted to goals
of attainment. Furthermore, all world states satisfying the goal formula are considered

58 Planning

equally good. The actions in the domain theory are described with a conjunctive precon-
dition and conjunctive effect that define a transition function from worlds to worlds. The
action can be executed in any world w satisfying the precondition formula. The result of
executing an action in world w is described by taking w’s state description and adding each
literal from the action’s effect conjunction in turn, eliminating contradictory literals along
the way.

6.3 Planning as satisfiability

There has been a widespread belief in the AI community that planning problems could
only be solved by special purpose planning algorithms. However, improvements in the last
decade on planning as satisfiability have cast this belief in doubt [Kautz and Selman, 1992,
Kautz and Selman, 1996].

The architecture of a typical SAT-based planning system is shown in Figure 6.1. The
encoder takes a planning problem as input, which consists of the initial state, goal and
domain theory written in some formal language, and generates a propositional theory in
Conjunctive Normal Form based on a guessed length for the plan, which is usually one.
(Note that the length of the plan is necessary to determine the alphabet for the encod-
ing.) Furthermore, a symbol table is generated, which records the correspondence between
propositional variables and the planning instance. Because the theory is encoded in such
a way that every satisfying assignment corresponds to a successful plan it can be given
to a SAT solver. If the SAT solver finds that the propositional theory is unsatisfiable, the
compiler is called to generate a new encoding based on a plan length, which is larger than
previous attempts (usually the length of the plan is incremented by one). Finally, if the SAT
solver finds a model of the propositional theory this is given to a Decoder. The decoder
uses the symbol table to translate the model into a plan that can be used by a human user.

Propositional
Encoder

Initial State
Goal

Domain Theory

Increment plan length
if unsatisfiable

Decoder

Symbol
Table

Plan SAT Solver
Model

CNF

Figure 6.1: Architecture of a typical SAT-based planning system.

6.3 Planning as satisfiability 59

6.3.1 The space of encodings
It is well known that the representation of a problem can have a major impact on the effi-
ciency of the algorithms that try to solve that particular problem. Since a systematic SAT
solver may in the worst case take time exponential in the size of the input theory, one wants
to make the theory created by the encoder as small as possible. For logical theories, the
measure of the size of the theory is complicated because it can be measured in several
ways (e.g., number of variables, number of clauses, total number of literals summed over
all clauses). The decrease in one parameter usually increases another. To support the anal-
ysis of various encodings [Ernst et al., 1997] developed a parameterized space with two
dimensions:

1. Action representation: This choice specifies the correspondence between proposi-
tional variables and ground (fully-instantiated) plan actions. Options are a regular,
simply split, overloaded split, or bitwise action representation. These choices repre-
sent different points in the tradeoff between the number of variables and the number
of clauses in the formula.

2. Frame axioms: The choice of classical or explanatory frame axioms varies the way
that stationary fluents are constrained.i

Each of the encodings uses a standard fluent model in which time takes nonnegative
integer values. State-fluents occur at even-numbered times and actions at odd times. All of
the encodings use the following set of universal axioms:

INIT: The initial state is completely specified at time zero, including all properties pre-
sumed by the closed world assumption.

GOAL: In order to test for a plan of length n, all desired goal properties are asserted to be
true at time 2n.

A⇒P,E: Actions imply their preconditions and effects. For each odd time t between 1 and
2n− 1 and for each consistent ground action, an axiom asserts that execution of the
action at time t implies that its effects hold at t+1 and its preconditions hold at t−1.

6.3.1.1 Dimension: action representation

For the action representation one has to choose whether the names of ground action in-
stances should be represented in regular, simply split, overloaded split, or the bitwise for-
mat. The choice is irrelevant for purely propositional planning problems, but can be crucial
for parameterized action schemata.

As systematic solvers may need exponential time in the number of variables, one wants
to reduce this number. In the regular representation a logical variable represents a ground
action. Different ground actions are represented by different logical variables. This leads

iA fluent is an instantiated predicate, e.g., at(pkg,loc1,time1) in the Logistics domain.

60 Planning

to an encoding containing n|Ops||Dom|Ao variables (The symbols are defined in Figure
6.2). The other options for the action representation are methods developed to reduce the
number of variables in an encoding.

With simple action splitting, which was developed in [Kautz and Selman, 1996],
each n-ary action fluent is represented by n logical variables in the encoding. For
example, Move(A,B,C,t) is replaced by the conjunction of MoveArg1(A,t),
MoveArg2(B,t), MoveArg3(C,t). (Note that each conjunct is in fact represented
by a propositional variable, not a functional term. The notation used here, is to emphasize
the combinatorics and clearly represent the effect of various encodings on the CNF size.)

In simple splitting propositional variables are only shared between instances of the
same operator. Another method, called overloaded splitting, also allows the shar-
ing of propositional variables between instances of different operators. More pre-
cisely, all operators share the same split fluents. For example, overloaded splitting
replaces Move(A,B,C,t) by the conjunction of Act(Move,t), Arg1(A,t),
Arg2(B,t), Arg3(C,t), while a different action Paint(A,Red,t) is replaced
with Act(Paint,t), Arg1(A,t), Arg2(Red,t).

In the bitwise encoding a number of bit symbols are added to the theory and all ground
action instances are numbered. The number encoded by the bit symbols determines the
ground action, which executes at each odd time step. For example, if there were four ground
actions then (¬ bit1(t) ∧¬ bit2(t)) would replace the first action, (¬ bit1(t) ∧
bit2(t)) would replace the second, and so forth.

The size of the number of variables for each action representation is summarized in
Figure 6.2. Note that they are in decreasing order. The effect of the various encodings
on the number of variables has been investigated in [Ernst et al., 1997]. The results of
[Ernst et al., 1997] are prelimanary results, but indicate that the regular and simply split
representations are good choices. Although, the regular and simply split representations
contain more variables than the overloaded and bitwise representations (Figure 6.2), this
no longer holds after simplifying the various representations. The bitwise and overloaded
representations result in extremely complex encodings that resist simplification. For ex-
ample, in [vanGelder and Tsuji, 1996] a linear-time procedure is described for simplifying
the representations and they show that bitwise representations, which initially contained
the smallest number of propositional variables, afterwards contained the highest number of
propositional variables.

6.3.1.2 Dimension: frame axioms

The second major choice that has to be made is about the axioms that deal with the frame
problem. The frame axioms constrain unaffected fluents when an action occurs. There are
two alternatives: classical or explanatory frame axioms.

Classical frame axioms [McCarthy and Hayes, 1969] state which fluents are left un-
changed by a given action. For example, in the Blocksworld planning problem moving a
block A from B to C leaves intact whether block D is clear. With classical frame axioms
this would be represented as

6.3 Planning as satisfiability 61

Clear(D, t− 1) ∧Move(A, B, C, t)⇒ Clear(D, t + 1).

The universal axioms together with the classical frame axioms almost produces a valid
encoding of the planning problem. The encoding is not valid as it does not enforce some
action to occur at each odd time t. If no action occurs at time t, the axioms of the encoding
can infer nothing about the truth-value of fluents at time t + 1, which can therefore take on
arbitrary values. The encoding can be made valid by adding AT-LEAST-ONE axioms for
each time step.

AT-LEAST-ONE: A disjunction of every possibly, fully-instantiated action ensures that
some action occurs at each odd time step. (A maintenance action is inserted as a
pre-processing step.)

The resulting plan consists of a totally ordered sequence of actions. If more than one
action occurs at one time step either one can be selected to form a valid plan. This follows
from the A⇒ P, E and classical frame axioms, because any two actions occurring at time
t lead to an identical world-state at time t + 1.

Explanatory frame axioms [Haas, 1987] enumerate the set of actions that could have
occurred in order to account for a state change. For example in the Blocksworld planning
problem, if the status of a block D changes from clear to not clear this can be represented
by an explanatory frame axiom as follows:

Clear(D, t− 1) ∧ ¬Clear(D, t + 1)⇒ (Move(A, B, D, t)∨
Move(A, C, D, t) ∨ . . . ∨Move(C, Table, D, t)).

The precondition states that the status of D is changed from clear to not clear at time t.
The postcondition enumerates all actions that could have caused this change, which are all
possible movements of blocks (different from D) on top of D. Adding the explanatory
frame axioms to the universal axioms leads to a reasonable encoding (i.e., no other axioms
are necessary) [Ernst et al., 1997].

Since explanatory frame axioms do not explicitly force the fluents not affected by an
executing action to remain unchanged they bring an important benefit: parallelism. To

Action Representation Nr. of Variables
regular n|Ops||Dom|Ao

simple splitting n|Ops||Dom|Ao

overloaded splitting n(|Ops|+ |Dom|Ao)
bitwise dlog2(|Ops||Dom|Ao)e

Figure 6.2: The number of variables for each action representation. |Ops| is the number of
operators; |Dom| is the number of constants in the domain; n is the number of odd time
steps in the plan; Ao is the maximal arity of operators.

62 Planning

guarantee a linear plan or a plan that can easily be transformed into a linear plan one can
add EXCLUSION axioms.

EXCLUSION: Transforming a plan into a linear plan is guaranteed by restricting which
actions may occur simultaneously.

Two kinds of exclusion axioms enforce different constraints in the resulting plan.

1. Complete exclusion: For each odd time step, and for all distinct, fully-instantiated
action pairs α, β, add clauses of the form ¬αt ∨ ¬βt. In this way a totally ordered
plan is guaranteed as complete exclusion ensures that only one action can occur at
each time step.

2. Conflict exclusion: For each odd time step, and for all distinct, fully-instantiated,
conflicting action pairs α, β, add clauses of the form ¬αt∨¬βt. Two actions conflict
if one’s precondition is inconsistent with the other’s effect. Conflict exclusion results
in plans whose actions form a partial order. Any total order consistent with the partial
order is a valid plan.

The two kinds of exclusion axioms cannot be used with every action representation. In
simple splitting there is no unique variable for each fully-instantiated action.

The bitwise representation requires no action EXCLUSION axioms. At any time step,
only one fully-instantiated action’s index can be represented by the bit symbols, so a total
ordering is guaranteed.

6.3.2 Optimizations

The automatic encodings from the parameterized space discussed above can be improved
in several ways. The methods that will be discussed here are compile-time optimizations
like factoring, and the addition of domain specific information.

6.3.2.1 Factoring

Some choices that lead to a small number of variables (i.e., splitting strategies and bitwise)
tend to explode the number of clauses or size of each clause. For example, this can happen
when using the AT-LEAST-ONE axioms, which is a disjunction of all fully-instantiated
actions. Substituting a conjunction of split or bitwise variables for each regular action
literal produces a DNF formula that blows up exponentially when converted to CNF.

Factoring can reduce both the number of clauses and their sizes for simple and over-
loaded splitting. The idea is to use only a subset of the full conjunction for an action when-
ever possible. Such a partially-instantiated action represents the set of all fully-instantiated
actions consistent with it. The bitwise action representation is unsuitable for factoring be-
cause partial conjunctions of bit variables are not useful.

6.4 Conclusion 63

6.3.2.2 Domain specific information

The addition of domain specific information is another way to optimize the encoding gener-
ated by the compiler. Typically this knowledge is impossible to express in terms of STRIPS
actions but can easily be given in general logical axioms. Some of the domain specific
knowledge could be given by a user, while other information could be induced automati-
cally by processing the action schemata and initial state specifications.

Domain axioms may be classified in terms of the logical relationship between the
knowledge encoded and the original problem statement [Kautz and Selman, 1998]:

1. Action conflicts and derived effects are entailed solely by the preconditions and ef-
fects of the domain’s action schemata.

2. Heuristics, which are entailed by the operator and initial state axioms together, in-
clude state invariants. For example, in the Logistics domain moving a vehicle from
one location to another does not entail that a truck is always at a single location.
However, if in the initial state every truck is at exactly one location, the operator will
propagate that invariant to all future states.

3. Optimality heuristics restrict plans by disallowing unnecessary subplans. For exam-
ple, in the Logistics domain one could add the rule “do not return a package to a
location from which it has been removed”.

4. Simplifying assumptions are not logically entailed by the domain theory and therefore
introduce incompleteness into the encoding. However, in many cases assumptions
can be made without transforming a solvable instance into an inconsistent one. For
example, in the Logistics domain one could add “once a truck is loaded, it should
immediately move”.

[Ernst et al., 1997] shows that the addition of domain specific knowledge of the types
listed above increases the clause-size of the resulting CNF formulae, but decreases the
number of variables (after simplification) to as much as 15% which speeded solver time
significantly.

6.4 Conclusion
We introduced planning and the STRIPS language for its representation. The rest of this
chapter dealt with a framework for the various encodings that can be used to represent
planning as a satisfiability problem. The framework is a parameterized space with two
dimensions: the action representation and the frame axioms. The choice for the action rep-
resentation determines the number of variables needed in the encoding. Furtermore, some
optimizations were given to shrink the size of the encoding even further, i.e., factorization
and additional domain specific knowledge.

Preliminary results suggest that for the action representation the regular and simply
split representations are good choices [Ernst et al., 1997]. In contrast, the bitwise and over-
loaded representations result in complex encodings that resist simplification and type anal-
ysis. For the frame axioms, results by [Kautz and Selman, 1996, Ernst et al., 1997] show

64 Planning

that explanatory frame axioms are clearly superior to classical frames in almost every case.
Another benefit is the parallelism permitted when used in combination with conflict exclu-
sion.

In the next chapter we will perform an empirical analsysis of knowledge compilation
techniques (discussed in Chapter 5) on planning problems. For our analysis we will use the
framework discussed in this chapter and analyse the properties of the various encodings it
contains.

Chapter 7

Applying knowledge compilation

7.1 Introduction

The computational intractability of propositional reasoning is a fundamental is-
sue in Knowledge Representation. In the last decade knowledge compilation has
emerged as a research direction for dealing with this problem [Selman and Kautz, 1991,
Kautz and Selman, 1991]. The goal of knowledge compilation is to reduce the complexity
of the on-line computation by pre-processing a part of the problem in an off-line phase. Al-
gorithms for knowledge compilation have improved considerably since the first proposals
based on implicates. For example, Marquis has developed a method based on prime impli-
cates [Marquis and Sadaoui, 1996] and [Simon and delVal, 2001] has developed a method
based on kernel resolution. Also guidelines are being developed for using knowledge com-
pilation techniques. In [Darwiche and Marquis, 2001] guidelines are given for choosing
the target language. It is believed that knowledge compilation is mature for applications
[Cadoli and Donini, 1997]. This belief is supported by empirical analysis reporting positive
results [Kautz and Selman, 1994, Schrag and Crawford, 1996a, Simon and delVal, 2001].
On the other hand, theoretical results indicate that knowledge compilation has some serious
limitations. It is well known that it is highly unlikely that there exists an exact knowledge
compilation approach that can compile any given knowledge base into an appropriate poly-
nomial data structure [Selman and Kautz, 1996]. Also many interesting problems (e.g.,
diagnosis, planning) have been proven to be incompilable [Liberatore, 1998].

Although knowledge compilation techniques have been improving it is still not clear
what can and what cannot be achieved by these methods. On the one hand positive re-
sults have been obtained, but it is not clear if these can be extended to other problem
domains. On the other hand negative results have been obtained, but some of these results
are based on a worst-case complexity analysis and therefore provide little information for
typical problems found in practice. (To support this, take for example the regular action
representation for planning problems discussed in Section 6.3.1.1. Contrary to worst-case
complexity results [Ernst et al., 1997] showed that the regular action representation was
surprisingly effective in practice.) To make the boundaries of knowledge compilation more
clear, empirical analyses of current knowledge compilation techniques on various problem

66 Applying knowledge compilation

domains should be performed. We believe that this area of research is still limited.

To investigate the practical value of knowledge compilation some knowledge compila-
tion methods are analysed by applying them to planning problems. Planning is a notori-
ously hard problem [Erol et al., 1995, Cadoli, 1993] which can be divided into a fixed part
(domain and operators) and a variable part (initial state and goals) and is therefore a prime
candidate for knowledge compilation. Furthermore, techniques exist to translate planning
problems from some planning description language into a propositional theory, for which
compilation techniques are available.

The rest of this chapter is divided as follows. Section 7.2 discusses how to adjust
the planning as satisfiability approach such that knowledge compilation techniques can be
applied. This leads to a process containing several components. Section 7.3 describes in
more detail which choices need to be made for the various components. Section 7.4 gives
the motivation for the choices made in the empirical analysis reported in this chapter. After
that related work from the literature is described in Section 7.5 to give the context of our
work. Section 7.6 gives the results of the empirical analysis of knowledge compilation
on planning problems. This section is the largest of this chapter and divides into three
subsections. Each subsection deals with a specific choice that can have an influence on the
performance of knowledge compilation. First, the influence different encodings can have
on knowledge compilation is analysed. Second, the influence different domains can have,
and finally the influence of different knowledge compilation methods. The chapter ends
with conclusions (Section 7.7), and gives ideas for future work (Section 7.8).

7.2 The knowledge compilation approach to planning

In Section 6.3 planning as satisfiability is discussed and a typical architecture for a SAT-
based planning system (Figure 6.1) is given. When knowledge compilation is applied to
planning, an additional step needs to be added to the architecture, which is shown in Figure
7.1.

The encoding from the propositional encoder is split into two parts, the fixed part, which
contains the domain and operator descriptions, and the variable part, which contains the
initial state and goals. The fixed part is given to a knowledge compilation method, which
compiles it into another language. The compiled fixed part together with the variable part
is then given to a SAT solver. If the SAT solver finds that the propositional theory is
unsatisfiable, the variable part is adjusted by setting the goals at a larger point in time. (Note
that in Figure 6.1 the Propositional Encoder is called again when the SAT encoding is found
to be unsatisfiable, whereas in Figure 7.1 the SAT solver is called again. This difference
will be discussed in more detail in Section 7.6.1.2.) The SAT solver is called again on the
adjusted variable part and the compiled fixed part until a model of the propositional theory
is found. The model is then given to a decoder, which translates the model into a plan.

7.3 Choices and motivation 67

Propositional
Encoder

Knowledge
Compilation

Method

Initial State
Goal

Domain Theory

Increment plan length
if unsatisfiable

Decoder

Symbol
Table

Plan

CNF fixed part

SAT Solver

Compiled
fixed part

Model

 CNF variable
 part

PSfrag replacements

(Section 7.3.1)

(Section 7.3.2) (Section 7.3.3)

(Section 7.3.4)

(Section 7.3.5)

Figure 7.1: The process of performing knowledge compilation in the planning as satisfia-
bility framework.

7.3 Choices and motivation
The architecture in Figure 7.1 describing knowledge compilation in the planning as satis-
fiability framework contains several components. This section describes the choices that
need to be made for these components.

7.3.1 Planning problems
The planning problems used in the empirical analysis come from a set of bench-
mark problems used in the Artificial Intelligence Planning Systems (AIPS) competi-
tion.i The problems are written in the Planning Domain Definition Language (PDDL,
[Ghallab et al., 1998]), which is the standard language for encoding planning domains.
However, any formal language can be used as long as there is a means to translate the
planning problems into propositional logic. The benchmark problems used in the empirical
analysis are the Logistics planning problem, the Tower of Hanoi problem, and the Monkey
problem.

7.3.1.1 The Logistic problem

The basic elements of the Logistic problem are the infrastructure, the transportation units,
and the packets. The infrastructure consists of a set of cities, and each city consists of
a set of locations. The fact that a location loc is situated in a city cit is denoted by

iftp://ftp.cs.washington.edu/pub/ai/domains-pddl.tgz

68 Applying knowledge compilation

the relation in-city(loc,cit). In each city there is at least one location loc that is
also an airport, denoted by airport(loc). Transportation units consist of trucks and
airplanes. Trucks may move freely within a city, but airplanes between airports can only do
intercity transport. The objective of the planning problem is to transport all packets from
locations specified in the initial state to locations specified in the goal. A packet pkg can be
at a location loc, denoted by at(pkg,loc), or in a transportation unit unit, denoted
by in(pkg,unit). Each transportation unit has a set of actions associated to it, which
can be one of the following types: (1) a move action to represent driving or flying from
one location to another, (2) a load action to load a packet in a transportation unit, or (3) an
unload action. Each transportation unit is assumed to have unlimited capacity.

One of the benchmark problems that used in the empirical analysis is shown in Figure
7.2. This benchmark problem can be solved in 3 steps.

PGH BOS

pgh−airport

bos−airport
airplane1
package1

Domain Information
city(PGH); city(BOS);
location(pgh-airport);
location(bos-airport);
in-city(pgh-airport,PGH);
in-city(bos-airport,BOS).

Initial State
at(package1,pgh-airport);
at(airplane1,pgh-airport).

Goal Formula
at(package1,bos-airport).

Figure 7.2: The att-log0a benchmark problem.

7.3.1.2 The Tower of Hanoi problem

The French mathematician Edouard Lucas invented the Tower of Hanoi puzzle in 1883.
The puzzle consists of a number of disks and three pegs. Each disk has a hole in the middle,
which allows it to be placed on one of the pegs. Furthermore, each disk has a different size
and can only be placed on a larger disk or an empty peg. The relative size of two disks is
denoted by smaller(dsk1,dsk2). The objective of the puzzle is to transfer the disks
from some initial position to a position specified in the goal. The standard instance of this
problem is to move a tower of disks from one peg to another. The only action associated to
each disk is a move action, which moves one disk at a time from one peg to another. The
operator is only allowed when the disk to be moved has no other disks on top, denoted by
clear(dsk), and when the disk is moved onto a larger disk or an empty peg.

One of the benchmark problems that used in the empirical analysis is shown in Figure
7.3. This benchmark problem can be solved in 15 steps.

7.3 Choices and motivation 69PSfrag replacements

D1

D2

D3

D4

peg1 peg2 peg3

Domain Information
smaller(Di,Dj) i, j ∈ {1, 2, 3, 4}, i < j;
smaller(pegi,Dj) i ∈ {1, 2, 3},

j ∈ {1, 2, 3, 4}.

Initial State
on(Di,Di+1) i ∈ {1, 2, 3};
on(D4,peg1);
clear(X) X ∈ {d1, peg2, peg3};
not clear(Di) i ∈ {1, 2, 3}.

Goal Formula
on(Di,Di+1) i ∈ {1, 2, 3};
on(D4,peg2).

Figure 7.3: The Hanoi-strips4 benchmark problem.

7.3.1.3 The monkey problem

In the monkey problem there is a room with a monkey who wants to have some bananas,
which are hanging from the ceiling. However, the bananas are out of reach for the monkey.
In the room a box is available, which enables the monkey to reach the bananas if he climbs
on it. Before the monkey can actually get the bananas he will have to cut them with a knife
which is lying somewhere on the floor. Furthermore, there is a waterfountain and a glass.
If the monkey wants to have some water, he will have to get the glass and climb the box
in front of the fountain. The objective of the problem is for the monkey to get the bananas
and/or the water.

In the room several locations are identified, denoted by location(loc), and all
objects are assigned a location (e.g., at(box,loc1)). The monkey can perform the
following actions: (1) a move action to get to another location, (2) a push action, to push
the box to another location, (3) a climb action to stand on the box, and (4) a grasp action to
get an object.

One of the benchmark problems that used in the empirical analysis is shown in Figure
7.4. This benchmark problem can be solved in 10 steps.

7.3.2 Translating planning problems

The Medic Planner [Ernst et al., 1997] was used to translate the planning problems into
propositional logic. The Medic planner is an automatic compiler, which accepts traditional
planning inputs (initial state, goal formula, and STRIPS action schemata) and generates an
encoding dependent on certain switch settings. These switch settings, which are described
in Section 6.3.1, include the action representation, frame axioms, exclusion and type opti-
mizations. By choosing different switch settings, Medic can generate up to twelve different
encodings.

Each encoding generated by Medic can be characterized by its switch settings, which
can be represented by a four-letter word. The four letters correspond to the following

70 Applying knowledge compilation

P1

P2 P3

P4

P5P6

monkey

box bananas

knife

waterfountainglass

Domain Information
location(Pi) i ∈ {1, . . . , 6}.

Initial State
at(monkey,P1); onfloor;
at(box,P2); at(bananas,P3);
at(knife,P4); at(glass,P6);
at(waterfountain,P5).

Goal Formula
has bananas;
has water.

Figure 7.4: The monkey-test2 benchmark problem.

abbreviations for the flag settings:

Frames: c=classical, e=explanatory.

Action representation: r=regular, s=simple split, c=factored simple split, o=overloaded
split, f=factored overloaded split, b=bitwise.

Exclusion: s=sequential pairwise, p=parallel.

Types: n=no special treatment, t=don’t replicate per step, e=eliminate.

In Section 7.6, which presents the empirical analysis of knowledge compilation, this
shorthand notation is used for the various encodings.

7.3.3 Knowledge compilation methods
Three knowledge compilation methods were used for the knowledge compilation proces.
This section describes these methods in some detail.

7.3.3.1 Kautz and Selmans LUB approximation

The first method used is the LUB approximation algorithm of Kautz and Selman
[Selman and Kautz, 1991], which is one of the earliest attempts in making an algorithm
for knowledge compilation. Originally, the algorithm was used for approximating a logical
theory by a Horn upper bound, but the LUB algorithm has also been proven to be correct
for any target language closed under subsumption in [delVal, 1995].

7.3 Choices and motivation 71

Procedure Generate-LT -LUB(Σ)

begin
ΣT := {C ∈ Σ | C ∈ LT and C is not tautologous}
ΣN := {C ∈ Σ | C 6∈ LT and C is not tautologous}
loop

choose clauses C1 ∈ ΣT ∪ ΣN , C2 ∈ ΣN

with a non-tautologous resolvent C which
is not subsumed by any clause in ΣT ∪ ΣN .

if no such choice is possible then exit loop endif
if C ∈ LT

then delete from ΣT and ΣN any clause subsumed
by C; ΣT := ΣT ∪ {C}

else delete from ΣN any clause subsumed by C

ΣN := ΣN ∪ {C}
endif

endloop
return ΣT

end

Figure 7.5: Pseudocode for Kautz and Selmans
LUB approximation algorithm.

The procedure to compute the
LT -LUB for any target language LT

that is closed under subsumption is
shown in Figure 7.5. The algorithm
is a brute force resolution algorithm
modified to avoid resolving pairs of
clauses both of which belong to the
target language LT .

7.3.3.2 Zres

The second method used was re-
ported in [Simon and delVal, 2001].
This method is based on kernel
resolution [delVal, 1999] using
Zero-Suppressed Binary Decision
Diagrams (ZBDDs) for its imple-
mentation. The method can be used
to compute all prime implicates of
a given theory and has been shown
to be effective even on theories with
very large numbers of prime implicates.

Kernel resolution is a consequence-finding generalization of ordered resolution. A
total order is assumed of the propositional variables x1, . . . , xn. A kernel clause C is
a clause partitioned into two parts, the skip s(C), and the kernel k(C). Given any target
languageLT closed under subsumption, a LT -kernel resolution deduction is any resolution
deduction constructed as follows: (1) for any input clause C, set k(C) = C and s(C) =
∅; (2) resolutions are only permitted upon kernel literals; (3) the literal l resolved upon
partitions the literals of the resolvent into those smaller (the skip), and those larger (the
kernel) than l, according to the given ordering; and (4) to achieve focussing, any resolvent
R is required to be LT -acceptable, which means that s(R) ∈ LT .

In order to search the space of kernel resolution proofs, to each variable xi a bucket
b[xi] is associated of clauses containing xi. The clauses in each bucket are determined by
an indexing function ILT

, so that C ∈ b[xi] iff xi ∈ ILT
(C).

Bucket elimination (BE), is an exhaustive search strategy for kernel resolution. BE
processes buckets b[x1], . . . , b[xn] in order, computing in step i all resolvents that can be
obtained by resolving clauses of b[xi] upon xi, and adding them to their corresponding
buckets, using ILT

. The algorithm, which uses standard subsumption policies, is complete
for finding consequences of the input theory which belongs to the target language LT , that
is, BE(Σ) ∩ LT = PILT

(Σ).
All prime implicates can be computed by setting the target language LT mentioned

above to be full propositional logic. As is shown in [delVal, 1999], BE is in this case

72 Applying knowledge compilation

identical to Tison’s prime implicate algorithm [Tison, 1967].

A ZBDD is an extension of a binary decision diagram (BDD), which is a directed
acyclic graph with a unique source node, only two sink nodes (1 and 0, interpreted as
true and false respectively) and with labeled nodes ∆(x, n1, n2). Such a node x has only
two children (n1 and n2, connected respectively to its 1-arc and 0-arc) and is classically
interpreted as the function f = if x then f1 else f2 with f1 and f2 the functions that
interpret the BDDs n1 and n2 respectively.

The power of a BDD comes from the reduction rules that can be applied on it. A
reduced ordered BDD (ROBDD) is a BDD in which the variables are sorted according to a
given order and does not contain any isomorphic subgraph (node-sharing rule). In addition,
the node-elimination rule deletes all nodes ∆(x, n, n) that do not care about their values.
With the classical semantics, each node is labeled by a variable and each path from the
source node to the 1-sink represents a model of the encoded formula. Hence, the ROBDD
can be viewed as an efficient representation of all models of a formula.

In order to use the compression power of BDDs for encoding sparse sets instead of
just Boolean functions, [Minato, 1993] introduced ZBDDs. The principle is to encode
the Boolean characteristic function of a set. For this purpose, Minato changed the node-
elimination rule into the Z-elimination rule for which useless nodes are those of the form
∆(x, 0, n). So, if a variable does not appear on a path, then its default interpretation is now
false. If one wants to encode only sets of clauses, each ZBDD variable needs to be labeled
by a literal of the initial formula, and each path to the 1-sink now represents the clause
which contains only the literals labeling the parents of all 1-arcs of this path.

The usefulness of ZBDDs is illustrated by the fact that there exist theories with an ex-
ponential number of clauses that can be captured by ZBDDs of polynomial size. Therefore,
operators can be designed which can handle sets of clauses efficiently, which depends only
on the size of the ZBDD and not on the size of the encoded set.

7.3.3.3 Directional resolution

The third method used is Directional Resolution [Dechter and Rish, 1994], which is a vari-
ation of the original Davis and Putnam algorithm [Davis and Putnam, 1960]. In addition
to determining the satisfiability of a theory, the algorithm generates an equivalent theory
that facilitates model generation and processing of queries. Directional Resolution can
therefore be seen as a knowledge compilation algorithm.

The algorithm can be described as follows. Given an arbitrary ordering of the propo-
sitional variables, each clause is assigned the index of the highest ordered literal in that
clause. Then the clauses are resolved having the same index and only on their highest
literal.

The algorithm can also include additional steps like forcing unit resolution, preferring
resolution over literals that appear only positively or only negatively, or subsumption elim-
ination. However, the elimination of highest indexed variables is the core of the algorithm.

This core can also be seen as a bucket elimination algorithm. Given a variable ordering

7.4 Motivations for our experimental setup 73

Q1, . . . , Qn, the bucket for Qi bucketi contains all clauses Qi that do not contain any
symbol higher in the ordering. Directional Resolution then processes the buckets in reverse
order. When processing bucketi, it resolves over Qi all possible pairs of clauses in the
bucket and inserts the resolvents into the appropriate lower buckets.

7.3.4 Constructing a model

Planning can be solved as a satisfiability problem because a planning problem can be en-
coded in such a way that every model of the propositional encoding corresponds to a suc-
cessful plan. This also holds for the planning problems generated by the Medic planner. A
plan can be found by first finding a model using some SAT solver and translate the model
afterwards into a plan. The SAT solver is used on the compiled fixed part of the planning
problem together with the variable part. This variable part is iteratively adjusted by setting
the goals at larger points in time. In other words, the SAT planner is asked to answer the
question “is there a plan of length n?” where n is increased by one after a negative answer.
In this way, the shortest solution will always be found.

It should be clear that any SAT solver could be used for this component in the architec-
ture. For the empirical analysis zChaff was used, as this was one of the fastest SAT solvers
at the time of writing.

7.3.5 Translating the model into a plan

The last step in the process is a translation of the model found by the SAT solver into a
form, which is readable for a human user. This can easily be accomplished by writing a
small program in some programming language.

7.4 Motivations for our experimental setup

An empirical analysis is only useful if the experimental setup is well chosen and the motiva-
tion behind certain choices are made clear. This section gives the motivations for choosing
the prime implicates as target compilation language.

In [Darwiche and Marquis, 2001] several dimensions are given which can be used to
choose between different target languages for knowledge compilation. These dimensions
include the succinctness of the target language, the type of queries one wants to solve with
the compiled theory, and the transformations you want to perform on the compiled theory.

In the planning as satisfiability framework, the final plan is constructed from a model
given by some SAT solver. Hence, the target language should be able to generate a model
in polynomial time.

Furthermore, after the compilation a variable part is added before it is processed by
some SAT solver. This adding of the variable part is a transformation of the compilation
and should be possible in the chosen target language.

74 Applying knowledge compilation

Finally, from the languages that satisfies the above two criteria a language should be
chosen that is the most succinct.

Although there are more target languages possible than the fifteen sublanguages dis-
cussed in [Darwiche and Marquis, 2001], the analysis of that paper shows that prime im-
plicates satisfy all of the above requirements. This makes prime implicates in principle
a good candidate compilation language. The empirical analysis can be used to evaluate
whether this also holds in practice. A possible objection might be that the set of prime
implicates is often very large, making this not a very suitable choice. However, some of the
compilation method that are used have been shown to be able to cope with very large sets
of prime implicates.

7.5 Experimentation: literature results
A limited number of empirical analyses have been reported in the literature. Of these,
[Kautz and Selman, 1994] evaluates knowledge compilation of planning problems. They
only evaluate unit bounds (i.e., the target compilation language consists of unit clauses), but
show that such a restricted target language can already lead to substantial savings in com-
putation time. However, the queries Kautz and Selman are trying to speed up answering
time for are significantly different from ours. They are interested in speeding up answers
to queries for specific planning problems (e.g., ‘Do all plans for this problem involve a par-
ticular action?’). Such queries are only reasonable for a planning scenario with an initial
state and goal formula.

In our experimental setup we use the same fixed-varying pattern used in
[Liberatore, 1998]. Each planning instance consists of a domain theory, an initial state,
and a goal formula. The domain theory is the fixed part and the initial state together with
the goal formula is the variable part. Our motivation for this split is the need to solve many
problem instances in the same world in many cases. Hence, we compile planning problems
in order to speed up the construction of plans for different initial states and goal formulas.

In contrast with [Kautz and Selman, 1994], the information about initial state and goal
formula is removed before performing knowledge compilation. It turns out that this leads
to an enormous (and somewhat surprising) increase in computational complexity. This is
shown in more detail in the next section.

This difference in experimental setup means that it is not possible to use the same
compilation technique as [Kautz and Selman, 1994]. Removing the information about ini-
tial state and goal formula from the planning problems used in the empirical analysis
resulted in the removal of all unit clauses from the theory. Using the technique from
[Kautz and Selman, 1994] would lead to empty unit bounds and therefore useless com-
pilations. From the results of [Schrag and Crawford, 1996b] follows that this is not only
true for our benchmarks, but probably also for most other realistic planning problems.

When the initial state and goal formula is removed from the planning problem the re-
sult is a theory which is easily satisfied. To see this, take an arbitrary initial state and let
the goal formula be satisfied in the initial state. Then a plan of length zero will satisfy the

7.6 Experimentation: our results 75

theory. Hence, considering the phase transition in random 3SAT [Mitchell et al., 1992] it
follows that the fixed part of the planning problem lies in a non-critical region. It was ob-
served in [Schrag and Crawford, 1996b] that an approach that uses small prime implicates
(e.g., unit clauses) to approximate satisfiable formulas is unlikely to formulate a non-empty
approximation outside of the critical region.

There is a second reason why the algorithm used in [Kautz and Selman, 1994] cannot
be used in the empirical analysis of this chapter. [Kautz and Selman, 1994] describes an
adapted version of the algorithms in [Selman and Kautz, 1991]. In the experimental anal-
ysis of [Kautz and Selman, 1994] unit LUBs are computed in 5 minutes for 75 variable
theories, to one hour for 200 variable theories. Reproducing these results actually led to
different results. Closer inspection of the code, which was made available to by Kautz and
Selman, revealed that an “encoding trick” was used. Generating all prime implicates is in
general very hard. However, [Kautz and Selman, 1994] was only interested in a small sub-
set of the prime implicates (namely prime implicates of length one (unit clauses)). Because
this set is small, a simple generate and test algorithm sufficed. However, this optimization
only works for small subsets of the prime implicates, but not in general.

7.6 Experimentation: our results

This section reports the experimental results with knowledge compilation applied to plan-
ning problems using the approach described in Section 7.2. Within this approach, several
choices have to be made that can have an influence on the performance. These choices are
the problem domain, the encoding used to represent the problem, and the knowledge com-
pilation method used to compute the compilation. These choices are the major parameters
in the empirical analysis. The following three subsections investigates the influence of the
parameters on the knowledge compilation of planning problems.

7.6.1 Influence of different encodings

The first problem to be compiled was an instance from the Logistics domain, shown in Fig-
ure 7.2. For reasons that will become clear later, the most trivial element was deliberately
chosen from the benchmark collection.

As stated before, the goal of knowledge compilation is to reduce the complexity of on-
line reasoning by pre-processing a part of the problem in an off-line phase. In principle,
the cost of this pre-processing stage is not important, since this step is performed off-line,
and its costs can be amortized over solving many problem instances. However, the costs of
this off-line stage must of course remain within humanly practical bounds. It will be shown
that this is, rather surprisingly, not the case for even this trivial problem (remember that
this problem can be solved with any reasonable planner almost instantaneously). In order
to make this point, the compilation times are reported instead of problem-solving times.
(Given the compilation, a SAT planner can solve the problem rather fast).

76 Applying knowledge compilation

Encoding Information Knowledge Compilation Information
Medic Nr. of Nr. of Clauses KC Time KC Time Factor of

Encoding Vars Clauses var. part fixed+var fixed part Increase
CBSE 29 165 6 0.6s 3024s 5040
EBSE 29 210 6 1.1s 9493s 8630
ERPE 38 117 6 0.6s 50s 83
CRSE 41 213 6 1.2s - -
EOSE 50 237 6 1.5s 624s 416
COSE 53 258 6 4.0s - -
ESSE 59 207 6 1.3s 370s 285
CSSE 62 345 6 4.3s - -
CCSE 170 381 6 8.8s - -
CFST 240 559 - 12.2s - -
ECSE 295 473 - 14.9s - -
EFST 365 786 - 38.3s - -

Figure 7.6: First results: Fifth Column shows the computation time to perform knowledge
compilation on the fixed and variable part. The sixth column reports the knowledge com-
pilation time for the fixed part only. The -’s in the time columns indicated that these did not
return results after many hours of computation.

The experiments were started by generating twelve different encodings of the Logistics
problem mentioned in Figure 7.2. These encodings are based on different switch settings
used by the Medic Planner. The notation described in Section 7.3.2 is used for these switch
settings.

The results of the first experiments are reported in Figure 7.6. The first column shows
the encoding used. The second, third and fourth column gives some information about
the encoding. The fifth and sixth column report the time needed to perform knowledge
compilation. In the fifth column, the fixed and the variable part are used in the compilation
whereas in the sixth column only the fixed part is used. (Note that the fifth column in Figure
7.6 resembles the experimental setup in [Kautz and Selman, 1994] discussed in Section
7.5.) Finally the last column shows the increase in computation time when the fifth and
sixth column are compared. Several observations can be made from Figure 7.6, which are
summarized below.

Influence of different encodings on knowledge compilation time: Looking at the fifth
column (or the sixth) shows that there is a large difference in computation time var
the various encodings. The experiment shows that in column five there is a differ-
ence of a factor of 60 in computation time between the results of the most efficient
encoding CBSE and the most inefficient encoding EFST. Looking at the sixth col-
umn, where only the fixed part is used instead of the fixed and variable part, shows
that the variation in computation time is even greater (including encodings that did

7.6 Experimentation: our results 77

not even yield an answer).

Not all encodings are equally useful for knowledge compilation: Before performing
knowledge compilation, a SAT encoding is generated by giving the fixed and
variable part to the Medic Planner. The SAT encoding is then split into a fixed
and variable part. This splitting depends somewhat on the readability and size of
the variable part and is therefore easier done for some encodings than others. In
particular it was not obvious how to separate the fixed and variable parts under the
EFST encoding. The splitting problem is more a problem of the used Medic Planner
then a problem of knowledge compilation.

Removing variable part increases knowledge compilation time: As already mentioned
in the previous section removing the variable part from a planning problem increases
the computational complexity when performing knowledge compilation. This phe-
nomenon can be seen in Figure 7.6 when the fifth and sixth column are com-
pared. As can be seen, for some encodings computation time can increase by a
factor of 8000! This illustrates that an alternative experimental setting as used in
[Kautz and Selman, 1994] can dramatically change the applicability of knowledge
compilation techniques to solve planning problems.

Increase of knowledge compilation time is unpredictable: It is very hard to predict the
increase in computational complexity when the variable part is removed from a plan-
ning problem. Figure 7.6 shows that the CBSE and ERPE encodings take about the
same time when knowledge compilation is performed on the fixed and variable part.
However, when the variable part is removed, the computation time on the CBSE en-
coding increases with a factor of about 5000 while the ERPE encoding only increases
with a factor of about 80. This behaviour of knowledge compilation techniques on
planning problems will make it very hard to choose appropriate strategies for apply-
ing such techniques.

7.6.1.1 Domain specific knowledge

In [Kautz and Selman, 1998] it has been shown that domain dependent knowledge or
heuristics can be added to a problem representation in order to decrease the computation
time when solving the problem on-line. The same technique was applied and results show
(Figure 7.7) that it can also be used to decrease the computation time when compiling the
problem off-line.ii

The domain specific knowledge that was used consisted of just two rules: (1) An object
is at only one location, and (2) Don’t return a package to a location. The results in Figure
7.7 only report the gain when using both heuristics, but for these two rules the gain was
incremental. Note that the first rule falls in the category ‘state invariant’ and the second
rule in the category ‘optimality heuristic’ discussed in Section 6.3.2.2.

iiThe compilation times reported in Figure 7.9, 7.7 and 7.10 do not include the variable part.

78 Applying knowledge compilation

Without domain knowledge With domain knowledge
Encoding Time Nr. of PI Cl. added Time Nr. of PI

CBSE 3024s 124556 20 190s 29697
EBSE 9493s 124556 20 639s 29697
ERPE 50s 20809 20 8s 9255

Figure 7.7: Influence of adding domain specific knowledge.

Besides using automatically generated encodings, we were also interested in how much
could be gained with domain specific hand-tailored encodings. One such encoding for the
logistics domain is the State Based Encoding (SBE) from [Kautz and Selman, 1996].

The term ‘state-based’ was used in [Kautz and Selman, 1996] to emphasize the use
of axioms that assert what it means for each individual state to be valid, and to give a
secondary role to the axioms describing operators.

In the Logistics domain the state axioms include assertions that (1) each package can
only be in a single unit (i.e., trucks and planes), (2) each packet or unit can only be at a
single location, and (3) each packet is either at some location or in a unit, but not both at
the same time.

The axioms for the state transitions can be formalized by using the schemas in Figure
7.8 that relate the at and in predicates.

at(obj,loc,i)⇒ in(obj,unit,i)⇒
at(obj,loc,i+1) ∨ in(obj,unit,i+1) ∨
∃x ∈ truck ∪ airplane. ∃x ∈ Location.

in(obj,x,i+1) ∧ at(obj,x,i+1) ∧
at(x,loc,i+1) ∧ at(unit,x,i+1) ∧
at(x,loc,i+1) at(unit,x,i)

Figure 7.8: Schemas for generating the axioms that describe the state transitions.

The left schema asserts that if a package is at a location, it either remains at that location
or goes into some truck or plane that is parked at that location. The right schema asserts that
if a package is in a truck or plane, it either remains in that unit or becomes at the location
where the unit is parked. Besides these two schemas, no additional axioms are needed for
the operators that lead to state changes (e.g., drive-truck).

A solution to a state-based encoding of a planning problem results in a sequence of
states and not in a sequence of actions. However, in the Logistics domain, the actions can
easily be derived from the sequence of states.

The results of compilation with the state-based encoding are shown in Figure 7.9, which
shows that this encoding improves compilation time even further.

The results presented here confirm the insights in the literature that choosing the right

7.6 Experimentation: our results 79

Encoding Nr. of Nr. of KC Nr. of PI
Vars. Clauses Time

SBE 20 85 1.0s 2870

Figure 7.9: Influence of hand-tailored encoding.

encoding for a specific domain is very important. Methodological support for this choice
is therefore required.

7.6.1.2 Domain specific problems

The planning as satisfiability has a drawback not mentioned earlier in the context of knowl-
edge compilation. To find an optimal plan, SAT planners use iterative deepening on the
length of the plan in the propositional encoding. Longer plans contain larger points in time.
Therefore, longer plans contain more points in time. Because every letter in the proposi-
tional encoding corresponds to one state at a certain point in time, longer plans need more
letters for their encoding. From this, it follows that SAT planners continually extend the
alphabet at each iteration. This scheme is not possible in knowledge compilation because
the compilation will only be performed once, ahead of planning, with a fixed alphabet. It
follows that we need to choose the alphabet large enough such that it can represent the
optimal plan.

This is problematic because the optimal length of the plan is not known beforehand.
If, on the one hand we choose an alphabet which is too small we may not be able to
retrieve any plan from the compilation. If, on the other hand we choose an alphabet which
is too large, our results (Figure 7.10) show that the cost for knowledge compilation may
become too much because of an exponential increase. Even for knowledge compilation,
which is performed off-line, such an exponential increase in the costs will quickly make
this approach unfeasible for realistic domains.

Encoding Max. length Nr. of Nr. of KC
of plan Vars. Clauses Time

SBE 3 20 85 1.0s
SBE 4 25 103 7.3s
SBE 5 30 127 30.0s
SBE 6 35 151 360.9s

Figure 7.10: Influence of increasing the length of the plan.

One might think this problem can be avoided by estimating an upper bound for the
length of the plan and use this to determine the alphabet. At least two reasons indicate
otherwise. First known complexity results tell us that determining the length of the plan is

80 Applying knowledge compilation

as hard as finding a plan [Cadoli, 1993]. Secondly, the bounds must be independent from
the variable part. Thus the bound will be a loose one and Figure 7.10 shows that such a
bound has a very high computational prize. For example, in the blocksworld this general
bound is as high as 2n (n the number of blocks). This bound cannot be made any tighter
(since problem instances with this minimal solution size exists), but is at the same time
much to high for many other problem instances.

Problems as the one mentioned here are somewhat domain specific and make it very
hard to choose the right knowledge compilation techniques for a specific domain.

7.6.1.3 Scalability

As we mentioned earlier, all results reported in previous sections were obtained by per-
forming experiments on the most trivial benchmark problem. Although this already lead
to severe problems, this becomes worse when we consider the scalability of the used tech-
niques.

Small changes in a problem description can already lead to drastic increases in com-
putation time. We extended the used benchmark problem by adding one location and one
truck.

Whereas the problem in Figure 7.2 could be compiled within a second, the new problem
already needed 30 minutes for the compilation. For larger problems, we were not even able
to get any results within several days of computation.

Because the problems used in our experiments are nowhere near the size of a real-world
problem, this seriously casts a doubt on the usefulness of knowledge compilation without
methodological support.

This is all the more surprising since we are using a recent implementation of knowledge
compilation techniques, which in some cases could efficiently deal with up to 1060 prime
implicates [Simon and delVal, 2001].

Although generating the set of prime implicates has been tried before in many areas
(e.g., diagnostic reasoning), without much success due to the large number of prime im-
plicates, we were surprised that the modern techniques employed in our experiments could
not cope with even small extensions of the trivial input problem from Figure 7.2.

7.6.2 Influence of different domains
The various aspects that we will consider in this section are the hardness of solving an
instance of the domain, symmetries that may occur in the domain, and subtheories written
in a language which can be solved in polynomial time.

7.6.2.1 The hardness of instances

When considering the impact of the domain on knowledge compilation one of the questions
that may rise is the difficulty to solve various instances of a planning problem by a SAT
solver. If the instances are easily solved it would indicate that the problem is unsuitable

7.6 Experimentation: our results 81

for knowledge compilation, because the cost for knowledge compilation would have to be
amortized over too many queries.

To measure the hardness of various instances we used the SAT solver zChaff to solve
them, which is one of the fastest SAT solvers at the time of writing.

Monkey-Test2 Hanoi-Strips4
Enc. # Vars # Clauses zChaff # Vars # Clauses zChaff

CBSE 274 19671 21.62 489 48238 35.47
CCSE 1640 11191 1.99 1935 16039 49.94
CFST 1750 9078 0.42 2025 16444 227.89
COSE 418 19743 37.01 654 48658 51.18
CRSE 670 19680 1.92 1419 48253 1218.00
CSSE 490 20112 135.32 639 48643 44.10
EBSE 274 5460 0.86 489 17413 122.50
ECSE 4051 8292 0.03 3488 13452 49.98
EFST 4161 11030 0.14 3578 14937 174.21
EOSE 409 13659 0.07 639 44128 121.51
ERPE 661 5991 0.47 1404 18988 427.77
ESSE 481 13659 0.05 624 43408 17.39

Figure 7.11: The hardness to solve an instance from the Monkey and Tower of Hanoi
domain measured by zChaff.

Figure 7.11 shows some of the obtained results for an instance of the Monkey domain
and one from the Tower of Hanoi domain. The first column shows the encoding used to
represent the instance. After the first column follows the results for the two instances. Both
are divided into three columns. The first and second columns give information about the
size of the problem by showing the number of variables and number of clauses respectively.
Note that these numbers are with respect to the fixed and variable part of the problem, be-
cause we are dealing with an instance. The third column gives the running time in seconds
of zChaff to solve the problem.

7.6.2.2 Symmetric difficulties

The removal of the initial state from the encoding makes knowledge compilation much
harder because it introduces symmetries. This phenomenon can be seen in Figure 7.12,
which shows a part of a planning problem from the logistics domain. The part consists of
two locations A and B, both in which a truck is present. However, in the encoding of the
fixed part we only encode the existence of the trucks and not their location, because this
information is considered variable. Hence, the situation in Figure 7.12 can be instantiated
in two ways. Both the left truck is called truck1 and the right truck truck2 or vice versa.
Only one of these instantiations is necessary for finding all possible plans while the other
instantiation can be safely omitted.

82 Applying knowledge compilation

When compiling a theory all these semantically equivalent subproblems are included
in the compiled theory. Hence, the compilation process “solves” many equivalent sub-
problems. This problem does not occur when solving a problem instance, because many
variables are already given a value.

It depends on the planning domain how

A B

Truck Truck

Figure 7.12: Symmetry in the Logistics do-
main.

problematic these symmetric subproblems
can be. For example, in the Logistics do-
main the symmetric subproblems are quite
problematic because their number increases
rapidly when the number of trucks and/or lo-
cations increases. However, in the Monkey
domain this problem does not exist, because
we only have one object of each type.

Using the technique from Section 7.6.1.1, i.e., adding domain specific knowledge, some
of these semantically equivalent subproblems can already be removed from the compilation
process. For example, in the Logistics domain some trucks could already be assigned to
cities. This is reasonable, as transport within a city is impossible when no truck is present.
However, not all symmetries can be reduced this way. For example, in the Logistics domain
the symmetries mentioned above for trucks also happen for packages for which nothing
may be known about their starting locations.

Reducing symmetries by adding domain information can lead to an enormous decrease
in encoding size. For example, we used the domain in Figure 7.12 where A and B now
represent cities, both containing two locations. The encoding needed to represent plans
with a maximum length of six steps. Using the state-based encoding this resulted in an
encoding with 1581 clauses and 116 variables. When we added assertions to restrict the
trucks to a city, the state-based encoding was reduced to an encoding with 479 clauses and
88 variables.

The reduction in encoding size is even more significant when the size of the problem
increases. Adding a location to both cities A and B in the example shown in Figure 7.12
leads to a reduction of the state-based encoding with 8418 clauses and 158 variables to an
encoding with 834 clauses and 116 variables.
7.6.2.3 Subtheories

A typical condition in a planning problem is for example “A truck can only be in a sin-
gle location”. Translating such a condition into a propositional formula results in a Horn
formula. Because Horn theories can be solved in time linear in the length of the theory
combined with the query [Dowling and Gallier, 1984] the question rises how much of a
planning problem in propositional logic is written in an easy format.

We therefore computed the number of Horn formulas in the fixed part of our bench-
marks. In Figure 7.13 the number of Horn formulas are given for a planning problem from
the Monkey domain. The first three columns give information about the encoding used and
the size of the fixed part of the planning problem. The fourth column gives the number of
Horn formulas in the fixed part. The fifth column gives the percentage of Horn formulas in

7.6 Experimentation: our results 83

the fixed part with respect to the total number of clauses in the fixed part.

Medic Fixed Part Fixed Part Fixed Part Percentage of
Encoding Nr of Variables Nr of Clauses Nr of Horn Clauses Horn Clauses

CBSE 274 19647 441 2.24
CFST 1750 6795 6462 95.01
COSE 418 19719 19647 99.63
CRSE 670 19656 19647 99.95
CSSE 490 20088 19647 97.80
EBSE 274 5436 1215 22.35
EOSE 409 11115 10467 94.17
ERPE 661 5967 5679 95.17
ESSE 481 13095 12447 95.05

Figure 7.13: The number of clauses of the Horn subtheory of the Monkey-Test2 problem
under various encodings.

Figure 7.13 shows that the problem from the Monkey domain comprises of a remark-
ably high percentage of Horn clauses. Almost every encoding results in a theory with 95%
or more Horn clauses. The only exceptions are the bitwise encodings.

However, a higher percentage in Figure 7.13 does not imply that any instance can be
solved in less time using that encoding than any other encoding. We can easily see this
by looking up the solution times in Figure 7.11. For example, the CRSE encoding has
a percentage of 99.95 of Horn clauses, which is higher than the 94.17 percentage of the
EOSE encoding. However, the EOSE encoding can be solved in 0.07 seconds which is
smaller than the 1.92 seconds for the CRSE encoding. Clearly, other factors like number of
variables or number of clauses are also important.

The results shown in Figure 7.13 do suggest that it might be profitable to split the
theory into two parts, the Horn part, which consists of all the Horn clauses, and the non
Horn part, which consists of the remainder. The high percentages suggest that it might be
profitable to use the technique of theory prime implicates (Section 5.3.3) with respect to
the set of all Horn clauses, because the larger the subset the smaller the compiled theory as
was explained in Section 5.3.3. However, no quantitative measures are known for the size
of the compiled theory and this is still part of our future work.

7.6.3 Influence of different knowledge compilation methods

Different methods have different performance profiles. In this section, we will look more
closely at the different methods to see which method is more suitable for knowledge com-
pilation of planning problems.

The first method we looked at was Kautz and Selmans LUB approximation (see Chapter
7.3.3 for a description of all knowledge compilation methods we used). We chose this

84 Applying knowledge compilation

method mainly for historical reasons, as it is one of the earliest knowledge compilation
methods, and for reproducing results reported in the literature mentioned in Section 7.5.
We did not use the method in any other experiment as it is easily outperformed by the other
methods we used.

Besides comparing different knowledge compilation methods it is also possible to com-
pare variations of the same method, because every knowledge compilation method comes
with its own parameters which have to be set before it can be employed. Typical parameters
are the target language and the order in which certain steps are performed. We will investi-
gate the impact of some of these parameters on the effectiveness of knowledge compilation
of planning problems.

7.6.3.1 Various orderings

Directional Resolution performs resolution steps, which depends on a given variable order-
ing. It is known that the performance of the algorithm can differ enormously under various
variable orderings. However, to find the optimal variable ordering for a specific problem
is NP-complete. To investigate the impact of various orderings we just started with two
variable orderings that seemed reasonable. These orderings were:

Minimal Diversity Heuristic Ordering: For a variable the number of positive occur-
rences are counted as well as the number of all negative occurrences. These two
numbers are multiplied and the result defines the order. A lower number indicates
that less resolution steps will have to be performed for the related variable and should
therefore be processed earlier than variables with a higher number.

Temporal Ordering: The encoding contains variables which refer to a certain point in
time (e.g., variable x could represent “truck A is at location B at the point in time
C”). Variables that refer to lower points in time are processed earlier than other
variables. (Note that this resembles forward reasoning from the initial state.)

The influence of the orderings is shown in Figure 7.14 for the Monkey domain and in
Figure 7.15 for the Tower of Hanoi domain. In both figures, the first column shows the
encoding used. Thereafter follow two columns, one for each variable ordering used. Both
are divided into two columns. The first column shows the time in seconds to perform the
knowledge compilation. The second column shows the number of clauses in the compiled
theory. A ‘-’ in a column indicates that either the compilation process needed too much
time or that the compiled theory contained more than a million clauses.

Figures 7.14 and 7.15 confirm that the performance of Directional Resolution is depen-
dent on the chosen variable ordering as the results for both orderings differ. It also follows
from Figures 7.14 and 7.15 that in this case there is no best ordering. In some cases the
temporal ordering performs better, in other cases the minimal diversity heuristic ordering
performs better. However, remarkably the orderings perform better with exactly the same
encodings in both domains.

7.6 Experimentation: our results 85

Temporal Ord. Min. div. heuristic Ord.
Encoding KC Time Nr. Clauses KC Time Nr. Clauses

CBSE 187 185748 - -
COSE 2260 621401 - -
CRSE 1897 153305 507 54331
CSSE - - - -
EBSE 137 139282 - -
EOSE 109 14550 109 24813
ERPE 182 14694 210 9586
ESSE 154 19701 177 37250

Figure 7.14: Overview of knowledge compilation time and size of the compilation for the
Monkey planning problem under various encodings and two different variable orderings.

Temporal Ord. Min. div. heuristic Ord.
Encoding KC Time Nr. Clauses KC Time Nr. Clauses

CBSE - - - -
COSE - - - -
CRSE - - 2474 143691
CSSE - - - -
EBSE - - - -
EOSE 313 16332 - -
ERPE 1816 51702 1235 19306
ESSE 333 19455 - -

Figure 7.15: Overview of knowledge compilation time and size of the compilation for the
Hanoi planning problem with four rings under various encodings and two different variable
orderings.

7.6.3.2 Exact versus approximate knowledge compilation

Until now, we have only considered exact knowledge compilation, i.e., the original theory
was compiled into a logically equivalent theory. However, it would be interesting to see if
computation time could be traded for approximate results. Basically there are two options
to make knowledge compilation approximate (discussed in more detail in Section 5.4):

Language: The target language may be less expressive than the language used for the
representation of the problem.

Algorithm: The algorithm can be interrupted to produce a partial compilation (i.e., any-
time compilation).

86 Applying knowledge compilation

0

50000

100000

150000

200000

250000

300000

350000

0 2000 4000 6000 8000 10000 12000

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, CCSE encoding

DR + lexical order

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, CCSE encoding

DR + min. div. heur. order (UNFINISHED)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

180 200 220 240 260 280 300 320 340 360 380

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, CRSE encoding

DR + lexical order (UNFINISHED)

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 500 1000 1500 2000 2500

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, CRSE encoding

DR + min. div. heur. order

Figure 7.16: Performance profiles of Directional Resolution on the Hanoi four ring plan-
ning problem under various encodings.

Suppose that we use the language approximation technique and approximate the origi-
nal theory Σ by a theory Σ′. Solving a planning problem with Σ′ means finding a model of
Σ′ ∪ I ∪G where I and G are respectively the initial state and goal formula of the problem
under consideration. Of course, when we find a solution we would also like this to be a
solution with respect to the original theory. Hence, any model for Σ′ ∪ I ∪ G should also
be a model for Σ ∪ I ∪G. It follows that Σ′ has to be a lower bound of Σ (i.e., Σ′ |= Σ).

However, planning as satisfiability is an iterative process. In each step in this process
the SAT planner is asked to answer the question “is there a plan of length n?” where n
is set to one in the initial step and increased by one after each negative answer. Suppose
that we approximate the original theory Σ by a theory Σ′. If we want the compilation to
satisfy that whenever there is no model for Σ′ ∪ I ∪G it also holds that there is no model
for Σ ∪ I ∪G it follows that Σ′ is an upper bound for the original theory Σ (i.e., Σ |= Σ′).

Obviously, Σ′ cannot be a lower bound and an upper bound at the same time unless Σ′

is logically equivalent to Σ. This means that if we want to approximate the theory, we need
two approximations (i.e., a lower bound and an upper bound) or we can restrict ourselves
to the use of a lower bound and loose the optimality of the found plan (i.e., the approximate

7.6 Experimentation: our results 87

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 200 400 600 800 1000 1200 1400 1600 1800

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, EOSE encoding

DR + lexical order

18950

19000

19050

19100

19150

19200

19250

19300

19350

100 200 300 400 500 600 700 800 900 1000 1100 1200

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, EOSE encoding

DR + min. div. heur. order

13000

14000

15000

16000

17000

18000

19000

20000

140 160 180 200 220 240 260 280 300 320 340

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, ESSE encoding

DR + lexical order

0

200000

400000

600000

800000

1e+06

1.2e+06

100 150 200 250 300 350 400 450 500 550 600 650

N
r.

of
 C

la
us

es

Time

Hanoi-strips4, ESSE encoding

DR + min. div. heur. order (UNFINISHED)

Figure 7.17: Performance profiles of Directional Resolution on the Hanoi four ring plan-
ning problem under various encodings.

solution found is guaranteed to be correct, but it might be that there is a more efficient,
e.g., shorter, plan. However, the algorithms we have been considering cannot be used to
generate a lower bound of a theory. We therefore postpone this step and leave it for future
work.

However, the second option for approximation mentioned earlier is much easier to ex-
ecute. Our first step was therefore to look at an anytime version of our knowledge compi-
lation methods. Using Figure 7.15 to choose some interesting cases (i.e., where one of the
variable orderings outperforms the other variable ordering), we ran Directional Resolution
on them and generated their performance profiles (Figures 7.16 and 7.17).

In these performance profiles, we plot the size of the compiled theory against the time
in seconds. Each row shows the performance profile on Directional Resolution on a specific
encoding. The left subfigure in each row shows Directional Resolution with the temporal
ordering and the right subfigure in each row shows Directional Resolution with the minimal
diversity heuristic ordering. Note that in some cases only a partial performance profile
is given as the compilation process was terminated before full completion (denoted by
“Unfinished”).

88 Applying knowledge compilation

From the performance profiles, it can be seen that the growth of the compiled theory
is enormous for all shown cases, even in those cases where the growth is linear or less
than linear. It is well known that the main bottleneck of knowledge compilation is the
enormous growth of the compiled theory. However, the size of the compiled theory is not
the most important property. What really matters is if the compilation solves the problem
knowledge compilation addresses: has on-line reasoning become more efficient using the
compiled theory?

In order to measure the effectiveness of the compi-

Figure 7.18: Possible scenario.

lation we therefore need to compare the time to solve
an instance before and after compilation. However,
the size of the compiled theory might influence this
result. A possible scenario is depicted in Figure 7.18
where the time to solve an instance of a planning prob-
lem is mapped against the time invested in the knowl-
edge compilation process. First, the compilation im-
proves the solution time, but after some time, a point
is reached where the compiled theory grows too large
and reading/processing the compiled theory therefore takes too much time. This results in
an increase in solution time.

To get the optimal compilation with respect to the solution time we therefore generated
new performance profiles in which we mapped the solution time of an instance against the
steps taken by the algorithm. The results are shown in Figure 7.19. It should be clear
that the behaviour shown in Figure 7.19 is nothing like the preferred performance profile
of an anytime algorithm as it is non-monotonic and there is no significant improvement in
solution time.

7.7 Conclusion

Knowledge compilation is a research direction for dealing with the computational in-
tractability of propositional reasoning. The central idea behind knowledge compilation
is that many problems can conceptually be split into a fixed part and a variable part. Plan-
ning, which is a notoriously hard problem, allows for such a split into a fixed part and a
variable part and is therefore a prime candidate for the application of knowledge compila-
tion techniques. Although knowledge compilation is theoretically appealing we argued that
empirical studies are necessary to study the practical value of knowledge compilation. As
this is a somewhat neglected area of current research we performed an empirical analysis of
knowledge compilation on several planning problems. The empirical analysis was divided
into three parts according to the three major parameters we identified that influence the ef-
ficiency of knowledge compilation: the problem domain, the encoding, and the knowledge
compilation method.

The nature of the results of our empirical analysis makes our research by definition in-
conclusive as all our obtained results are negative. Such negative experimental results are

7.7 Conclusion 89

0

20

40

60

80

100

120

140

160

0 50 100 150 200

So
lu

tio
n

tim
e

Z
ch

af
f

Nr. of Cuts

Hanoi-strips4, ESSE encoding

DR + lexical order
Original Instance

0

100

200

300

400

500

600

0 50 100 150 200

So
lu

tio
n

tim
e

Z
ch

af
f

Nr of Cuts

Hanoi-strips4, EOSE encoding

DR + lexical order
Original instance

Figure 7.19: Performance profiles (with respect to solution time) of Directional Resolution
on the Hanoi four ring planning problem under various encodings.

90 Applying knowledge compilation

always inconclusive because it can always be argued that positive results could have been
obtained if only we had used another experimental setup, another compilation method,
another encoding method, etc. Nevertheless, to know what cannot be achieved with knowl-
edge compilation gives us a greater understanding of its boundaries. More specifically, the
following observations summarize our negative results:

1. Compilation time was high.
2. Compiled theory grew enormous.
3. Anytime profiles were non-monotonic.
4. Parameters were sensitive.
5. On-line computation time did not improve significantly.

As stated earlier, our research is still inconclusive. Therefore, no definitive choice can
be made between the following two possible hypotheses we started with:

1. Knowledge compilation is not suitable for planning problems.
2. Knowledge compilation is suitabel for planning problems.

Nevertheless, some evidence can be given that supports the first conclusion. As we
already discussed in Section 7.5, removing the initial state and goal formula from the plan-
ning problem leads to a theory which is easily satisfied. Hence, the fixed part of a planning
problem belongs to the non-critical region. According to [Schrag and Crawford, 1996b]
any knowledge compilation approach that uses small prime implicates to approximate sat-
isfiable formulas is unlikely to formulate a non-empty approximation outside the critical
region. It follows that our planning problems can only be compiled into a non-empty com-
pilation by using long prime implicates. This has of course consequences for the size of
the compilation and the speed of deducing facts from the compiled theory.

7.8 Future work
As not all possible choices for the parameters in the empirical analysis (e.g., knowledge
compilation method, planning problem) have been explored, one can make other choices
and use them for similar empirical analyses.

The presented analysis has focussed mainly on exact compilation of planning problems.
A more promising direction for future research would be to look at approximate compila-
tion techniques where some of the quality of the compiled theory is sacrificed in order
to make the compilation more efficient. This will raise questions about how to evaluate
these approximate compilations as the time to generate a solution is not the only quantity
which needs measuring. For example, when applying approximate knowledge compilation
to planning problems this may lead to a longer plan than the optimal one.

Another area worth considering is the use of other logics. When using propositional
reasoning, the alphabet had to be chosen before we could perform knowledge compilation.
Hence, for planning problems we already had to choose the maximal length of the plan for

7.9 Acknowledgments 91

the solutions that could be found. This problem might be solved with for example first-
order logic. Another logic may also lead to a more compact representation of a problem
domain and therefore be a better candidate for knowledge compilation techniques.

These options for future research are, however, means towards the same goal of making
knowledge compilation applicable for solving problems in planning. Two steps seem to be
needed for making knowledge compilation suitable for applications in general. First, larger
problems are needed that are compilable, i.e., knowledge compilation needs a set of bench-
marks. These benchmarks can be used for individual research, but also for competitions.
Second, knowledge compilation needs better guidelines. These guidelines should inform
us which type of problem is (probably) a good candidate for knowledge compilation and
which type of problem is (almost certainly) not.

7.9 Acknowledgments
We like to thank Laurent Simon and Alvaro del Val for making their implementation avail-
able as well as the productive correspondence we had through numerous e-mails.

We are also indebted to Henry Kautz and Bart Selman. They have provided us with
the code they used in their experiments from ’94, and they gave us insightful comments
on earlier versions of our research. Furthermore, their work is one of the few in the AI
literature, which is reported precisely enough that independent researchers can reproduce
the results, as we have done in the early stages of our research.

92 Applying knowledge compilation

Part III

Approximate Classification

Chapter 8

Classification

8.1 Introduction

A fundamental research issue in AI is how to reason in the presence of incorrect and/or
incomplete information. AI tasks in particular use knowledge and observations which are
often inherently incorrect and/or incomplete for some part. For example, in diagnosis,
information may be incomplete, because obtaining it may be too costly or too dangerous
for the patient. Also information may be incorrect, as patients may describe their symptoms
incorrectly. Methods need therefore be developed that are robust enough to deal with data
input that is not entirely correct or complete. This means that those kind of methods should
generate the solutions that closely approximate the solutions that would be generated under
ideal circumstances.

However, current approximation methods suffer from some limitations. First, some of
the current methods use a numerical metric to measure the difference between optimal and
approximate solutions. Such a metric is not applicable to many AI tasks as those tasks use
logical inference to obtain solutions. Hence, there is no obvious way to tell us ‘how far’
an approximate solution is from the correct solution. Second, some of the methods are not
general enough to apply them to tasks needed in new research areas. Third, for some of
the methods that are general enough to apply them to more than one task, there is a gap
between theory and practise because there are not enough case studies performed for the
proposed methods. Therefore, it is unclear if those methods result in an approximation of
the task which is useful enough for practice.

In this part of this thesis we present an analysis of the approximate entailment oper-
ator developed in [Schaerf and Cadoli, 1995] applied to the task of classification. There
were several reasons that motivated this research. First, the proposed method of Cadoli
and Schaerf allows us to approximate tasks that use logical entailment for obtaining so-
lutions. Second, the method is general as it can be applied to any task that can be for-
mulated in propositional logic and uses logical entailment for inferencing. Third, the
method has some properties that are desirable for any general approximation method,
which have not been evaluated beyond diagnosis in [vanHarmelen and tenTeije, 1995,
tenTeije and vanHarmelen, 1996, tenTeije and vanHarmelen, 1997] by means of a quanti-

96 Classification

tative and qualitative analysis. Fourth, classification seems to be a useful task to approx-
imate as, for example, many tasks on the Semantic Web [Fensel et al., 2003], which is
currently rapid progressing as a research area, can be translated into terms of classification.

In general classification amounts to the following: given a number of classes defined
in terms of their properties, determine for a specific object in which class it belongs. As
some of the semantic information will be extracted from information sources that may be
incorrect and/or incomplete (e.g., file system hierarchies, mail folder hierarchies, WWW-
bookmark folders) one needs classification methods robust enough to be able to deal with
these less than ideal information sources.

This part of the thesis is divided into three chapters. In this chapter we will address the
question what is meant by classification, which forms of classification exist, and how to
formalize classification. More specifically, Section 8.2 describes the conceptualization of
classification given by [Jansen, 2003]. Section 8.3 gives several ways to formalize classifi-
cation in propositional logic. Section 8.4 looks at some approximate forms of classification
and formalizes them using standard propositional logic and the classical entailment opera-
tor. All concepts developed in this chapter will form the basis for the next chapters about
approximate classification in which we study the effect of the approximate entailment op-
erator developed in [Schaerf and Cadoli, 1995] applied to classification.

8.2 Characterizing classification
This section describes the conceptualization of classification given by [Jansen, 2003]. Clas-
sification can be characterized by defining three aspects: the goal of the task, the ontological
commitments, and the classification criteria.

8.2.1 The goal
The goal in classification is to determine to which class a certain object belongs. The object
is identified with a set of observations, which may be incomplete. Example classification
tasks are bird classification, flower classification, and rock classification. Examples of
object descriptions are the size of the bird, the colour of the flower, and the grain size of
the rock.

8.2.2 Ontological commitments
The ontological commitments describe the assumptions on the representation of the domain
to which classification may be applied. In [Jansen, 2003] six basic ontological types are
defined, namely attribute, object, value, class, feature, and observation. An attribute is a
quality which can be associated with a list of possible values. For example, the attribute
fur can be associated with the list {white, black, brown}. The (finite) set of attributes is
denoted with A. An attribute-value pair (AV-pair) will be written as 〈a, v〉, or shorter av.
An admissible AV-pair is called a feature. Objects that need to be classified are described by

8.2 Characterizing classification 97

a finite number of AV-pairs. These AV-pairs are called observations. The set of observations
for a particular object is called Obs.

In the conceptualization it is assumed that each attribute can only have one
value at a time. For example, if there exists an attribute fur with possible values
{white, black, brown} then it can never be the case that an object description contains
the AV-pairs 〈fur, white〉 and 〈fur, black〉 simultaneously.

Every attribute that has more than two values can be transformed into a number of
binary attributes that only have {true, false} as possible values. For example, the attribute
fur with values {white, black, brown} can be transformed into the three binary AV-pairs
fur-white, fur-black, fur-brown.

Applying this transformation may lead to a conceptualization that does not enforce the
assumption that each attribute can only have one value. After applying the transformation
one has to additionally assume that at most one of the newly created binary AV-pairs can
obtain the value true. In this way, each multi-valued attribute can be represented as a set
of atomic propositions, which we will use when representing classification in propositional
logic in Section 8.3.

8.2.3 Classification criteria

The classification criterion states what relationship should exist between a class and an
object for the object to belong to the class. To determine whether an object, which is
described by a number of AV-pairs, belongs to a certain class, the AV-pairs in the class
must be compared to the observations. We assume that the same attributes occur in both the
class and the observations. In this case, matching one AV-pair from a class with one from
the observations is simply checking that they are syntactically identical. If the assumption
does not hold, some mapping has to be performed from which it should be clear when two
AV-pairs match.

Before formulating a classification criterion [Jansen, 2003] first considers all possible
scenario’s when an AV-pair from a class is compared to an AV-pair from the observations.
This is done in two steps. First, the focus is limited to attributes. Second, values are
included when needed.

8.2.3.1 The attribute level

[Jansen, 2003] identifies four possible scenario’s when comparing an attribute in an AV-
pair from the class and from the observations as not al attributes have to occur in a class or
in the observations:

1. The attribute occurs in both the class and the observations.
2. The attribute does not occur in the class, but does occur in the observations.
3. The attribute occurs in the class, but not in the observations.
4. The attribute occurs neither in the class nor in the observations.

98 Classification

Next, [Jansen, 2003] considers these four options and also includes the value for the
attributes when needed in the consideration. In the first case there are two possibilities:

1. The two values of the attribute do not match. In that case the two AV-pairs are said
to be inconsistent.

2. The two values of the attribute match. Now the AV-pair in the observations is said to
be explained by the matching AV-pair in the class. Similarly, the AV-pair in the class
is said to explain (or is an explanation for) the matching AV-pair in the observations.

In the second case the attribute is present in the observation, but not in the class. There
is no match possible, but this case does not lead to an inconsistency. The attribute in the
observation is said to be unexplained.

In the third case, the attribute is present in the class, but not in the observations. Anal-
ogously to the second case, there is no match possible, but this case does not lead to an
inconsistency. The attribute in the class is said not to be an explanation of the absent
attribute in the observation.

The fourth case represents an empty statement. The attribute is neither observed nor
mentioned in the class and does not lead to an inconsistency.

Summarizing the above mentioned cases, an attribute of a class c is said to be consistent
with the observations o iff it does not occur in o or has the same value in o. Analogously,
an attribute of an observation is consistent with a class c iff it does not occur in c or has the
same value in c.

8.2.3.2 Classification criteria – definitions

The options on the attribute level can be used to formulate several classification criteria
with respect to the goal of the classification process. In [Jansen, 2003] the following criteria
(amongst others) are formulated:

Definition 8.2.3.1 (Weak classification) A class c is a weak solution for a set of observa-
tions Obs iff all the AV-pairs in Obs are consistent with all the AV-pairs in c.

Definition 8.2.3.2 (Strong classification) A class c is a strong solution for a set of obser-
vations Obs iff all the AV-pairs in Obs are explained by some AV-pair in c.

Definition 8.2.3.3 (Explanative classification) A class c is an explanative solution for a
set of observations Obs iff all the AV-pairs in c are explanations for some AV-pair in Obs.

Definition 8.2.3.4 (Strong explanative classification) A class c is a strong explanative
solution for a set of observations Obs iff c is both a strong solution and an explanative
solution for Obs.

In case of class descriptions with multi-valued attributes we look at the subclasses cor-
responding to a specific combination of values for all the attributes. For example, let bear
be the class that consists of the elements that have a brown fur or a white fur, and

8.2 Characterizing classification 99

have a large size. The class bear can then be seen as the union of the two subclasses
white-bear (white fur and large size) and brown-bear (brown fur and large size). A
class with multi-valued attributes is then a weak solution if at least one of its subclasses
corresponding to a value combination for its attributes is a weak solution. The other classi-
fication criteria are defined analogously for classes with multi-valued attributes.

8.2.3.3 Classification criteria – related facts

Weak

Strong Explanative

Strong−
Explanative

Figure 8.1: Lattice structure of various classification criteria in which an upward line means
set inclusion.

The various classification criteria can be ordered into a lattice ([Jansen, 2003]). Every
strong explanative solution is both a strong solution and an explanative solution. Further-
more, every strong solution or every explanative solution is also a weak solution. The
lattice is shown in Figure 8.1.

Another way to look at strong- and explanative classification is the way they allow
more or less observations than the ones mentioned in the class definitions. Every class can
be identified with a set of AV-pairs. For a class to be a strong solution we are allowed to
make less observations than the identified set of AV-pairs. For a class to be an explanative
solution we are allowed to make more observations than the identified set of AV-pairs. This
can be made more precise by defining the following sets of attributes ([Jansen, 2003]):

Definition 8.2.3.5 Let c be a class, o a set of observations, and v some value. Then

Ac = {a | 〈a, v〉 ∈ c}, Ao = {a | 〈a, v〉 ∈ o}.

Now c is a strong solution iff AObs ⊆ Ac and the values for the attributes occurring in
AObs match. Analogously, c is an explanative solution iff Ac ⊆ AObs and the values for
the attributes occurring in Ac match.

100 Classification

8.3 Representation issues
There are several ways to represent classes as a logical formula: by necessary conditions,
sufficient conditions, or a combination of both. We will investigate here how these different
representations influences the formalization of the various classification criteria given in
Section 8.2.3.2.

The alphabet we use consists of classes and observations (AV-pairs). The set of all
classes will be denoted by C. The set of all observations will be denoted by O. The sets
C and O are disjoint. Classes are usually denoted by c or d, whereas sets of classes are
denoted by C or D. Observations are usually denoted by a, b, or o, whereas a set of
observations is denoted by O. The object we need to classify can be identified with a set
of AV-pairs, which is denoted by Obs. The representation of all class descriptions is called
the domain theory and is denoted by DT .

Furthermore, we make a number of assumptions. We assume that DT ∪Obs is consis-
tent as well as DT ∪ {c} for any class c ∈ C. We also assume Obs 6= ∅.

8.3.1 Classes defined by necessary conditions
One representation one can use for representing class descriptions is by stating them in
terms of necessary conditions (e.g., [Wielinga et al., 1998]). For example

c→ (a1 ∨ . . . ∨ an) ∧ . . . ∧ (b1 ∨ . . . ∨ bm).i

A class is represented by a proposition c, which implies its features. Features are here
represented by an atomic proposition, denoting the attribute, and an index, denoting the
value. For example

bear → (fur = white ∨ fur = brown) ∧ (size = large).

Furthermore, we will assume that whenever c→ a1∨ . . .∨an is part of the domain theory,
each a1, . . . , an contains the same attribute.

The representation that states class descriptions in terms of necessary conditions can
be considered an alternative definition to the set theoretic conceptualization described in
Section 8.2. All results given in [Jansen, 2003] for the set theoretic conceptualization can
also be given for the representation of class descriptions by necessary conditions.

In Section 8.2.2 we assumed that an attribute can only have one value at a time. In
case multi-valued attributes are transformed into a number of binary attributes we need to
add additional rules to the domain theory to enforce this assumption. This can be done by
adding rules for each feature of the following form ([Jansen et al., 2000]):

a1 → (¬a2 ∧ . . . ∧ ¬an).

iNote that c → a ∧ b is equivalent to (c → a) ∧ (c → b) and equivalent to ¬c ∨ (a ∧ b). We will use these
equivalent representations without further notice.

8.3 Representation issues 101

Under this representation the candidate solutions S with respect to some classification
criteria can be formulated using logical entailment. We will first consider the case where
class descriptions are given without disjunctions.

Definition 8.3.1.1 Let DT be a domain theory containing class descriptions with neces-
sary conditions in which disjunctions are not allowed. Then the classification criteria can
be formalized as follows:

Weak classification:
SW = {c | DT ∪ {c} ∪ Obs 6` ⊥}.

Strong classification:
SS = {c |DT ∪ {c} ` Obs} ∩ SW .

Explanative classification: Let o represent an AV-pair, then

SE = {c | {o |DT ∪ {c} ` o} ⊆ Obs} ∩ SW .

These definitions can also be found in the literature (e.g., [Jansen et al., 2000]). Usu-
ally the definitions for strong- and explanative classification are simplified because of the
following facts:

Lemma 8.3.1.2 Every class c satisfying DT ∪ {c} ` Obs is a member of SW .

Proof Suppose c 6∈ SW . Then DT ∪ {c} ∪ Obs ` ⊥. As DT ∪ Obs (and DT ∪ {c}) is
consistent it follows there must be a rule of the form c → ¬o with o ∈ Obs. Therefore,
DT ∪ {c} 6` o because this would contradict the assumption that DT ∪ {c} is consistent.
Hence, c 6∈ {c | DT ∪ {c} ` Obs}. 2

Lemma 8.3.1.3 Every class c satisfying {o | DT ∪ {c} ` o} ⊆ Obs is a member of SW .

Proof Suppose c 6∈ SW . Then DT ∪ {c} ∪ Obs ` ⊥. As DT ∪ Obs (and DT ∪ {c})
is consistent it follows there must be a rule of the form c → ¬o with o ∈ Obs. As Obs
is consistent we have ¬o 6∈ Obs and DT ∪ {c} ` ¬o. Hence, for c it does not hold that
{o |DT ∪ {c} ` o} ⊆ Obs. 2

Hence, these results show that the intersection with SW can be left out. Nevertheless,
we will keep them in our definitions as it might influence results when we approximate the
entailment operator that also occurs in SW .

Of these three formula’s only the one for weak classification can also be used in case
of class descriptions that may contain disjunctions. For example, when the domain theory
consists of the class description c→ (a1∨a2)∧b and {a1, b} are observed then c should be
given as a solution when using either strong- or explanative classification. However, with
the definitions given above c is not part of the solution set as {c → (a1 ∨ a2) ∧ b, c} does
not entail a1 (or a2). Hence, the formalizations given above for strong- and explanative
classification are only useful for class descriptions without disjunctions.

102 Classification

8.3.2 Classes defined by sufficient conditions
Another option is to represent classes by sufficient conditions, i.e.,

c← (a1 ∨ . . . ∨ an) ∧ . . . ∧ (b1 ∨ . . . ∨ bm).

Obviously, this influences the logical representation of the various classification criteria.
Each class c can be identified with a number of AV-pairs. In the following we denote this
set of AV-pairs with obsc.

Definition 8.3.2.1 Let DT be a domain theory containing class descriptions with sufficient
conditions in which disjunctions are not allowed. Then the classification criteria can be
formalized as follows:ii

Weak classification:
SW = {c | Obs ∪ obsc 6` ⊥}.

Strong classification:
SS = {c |Obs ⊆ obsc} ∩ SW .

Explanative classification:

SE = {c | DT ∪ Obs ` c} ∩ SW .

Note that the definition of explanative classification can be simplified because of the
following fact:

Lemma 8.3.2.2 Each class c satisfying DT ∪ Obs ` c is a member of SW .

Proof A class c can only be logically entailed from DT ∪ Obs if obsc ⊆ Obs. As Obs is
assumed to be consistent it follows that c is a member of SW . 2

As the set obsc can not be obtained through logical inference from the domain theory
DT , the observations Obs, the class c, or any combination of them, any definition con-
taining obsc can not be formalized using propositional logic and some entailment relation.
Therefore, only explanative classification can be used as a candidate for approximation
when using the approximate entailment relation of Cadoli and Schaerf.

8.3.3 Classes defined by necessary- and sufficient conditions
A third representation uses a combination of necessary and sufficient conditions. In this
case classes can be defined to be equivalent to a set of observations:

c↔ (a1 ∨ . . . ∨ an) ∧ . . . ∧ (b1 ∨ . . . ∨ bm).

This representation will not be described in any more detail.
iiNote that we use the same names (SW , SS , and SE) for the logical formalizations of the classification

criteria as with class descriptions with necessary conditions. In the forthcoming sections it will be clear from the
context which formalization we use.

8.4 Approximate classification 103

8.4 Approximate classification
The classification criteria defined in Section 8.2.3.2 impose constraints on all attributes that
occur in a class description and in the observations. It is possible to relax these constraints.
Either by relaxing the presence of an attribute or by allowing inconsistencies. In Section
8.1 we motivated that situations occur in which a relaxation of a classification criterion is
wanted. Classical classification may be to rigid to deal with incorrect/incomplete observa-
tions and/or domain knowledge. In the following sections we discuss into more detail how
to formalize classification with missing attributes (Section 8.4.1), inconsistent attributes
(Section 8.4.2), and a combination of missing and inconsistent attributes (Section 8.4.3).

Approximating classification by allowing missing or inconsistent attributes has also
been discussed in [Jansen, 2003]. However, [Jansen, 2003] formulates approximate classi-
fication in terms of the concepts introduced in Section 8.2. Those concepts were given in
a set-theoretic framework whereas we will use propositional logic and logical entailment
for our formalization. Not only are we interested in formalizing approximate classification,
we are also interested in analyzing the effects of the application of the approximate entail-
ment operators of Cadoli and Schaerf to classification. We therefore formalize approximate
classification that allows for missing or inconsistent attributes in the logical representations
discussed in Section 8.3. This will allow us to compare the approximations we formalize
in this section in which we use standard propositional logic and the classical entailment op-
erator to the formalizations we obtain in Chapter 9 in which we use standard propositional
logic and the approximate entailment operator of Cadoli and Schaerf.

Besides the choice of a different representation there is another distinction we make
when considering missing or inconsistent attributes when compared to the work of
[Jansen, 2003]. The formalizations given in this chapter make a clear distinction from
which description (i.e., either class, object, or both descriptions) an attribute is allowed
to be missing. In [Jansen, 2003] only attributes from the object description are allowed
to be missing when strong classification is used, whereas only attributes from the class
description are allowed to be missing when explanative classification is used.

8.4.1 Dealing with missing attributes
Missing observations may for example occur when obtaining the value for the attribute
would be too costly (e.g., medical information from a patient).

Let us first discuss what we mean with classification where some of the attributes are
allowed to be missing. We use strong classification as an example. In strong classification
each attribute that has obtained a value should be explained by some AV-pair in the class
description (i.e., there is a matching for every AV-pair in the observations Obs with some
AV-pair in the class). In case we allow missing attributes, a class c is a strong solution if
for each attribute, the corresponding AV-pair in Obs matches with an AV-pair in c, or the
attribute does not occur in the object description, the class description, or both, and is also
allowed to be missing from the description.

One way to model missing attribute values is by assigning the value ‘unknown’ to the

104 Classification

attribute [Stefik, 1993]. In this case we need to include all attributes in the class definitions
and the object description (i.e., AObs = Ac).

Each class can now be represented by ordering the attributes and listing first those
attributes that have a known value followed by those that have an unknown value. This
is shown in Figure 8.2. If we use the same attribute ordering used for the representation
of the class to represent the observations we can immediately check if the class satisfies
some classification criterion. This is illustrated in Figure 8.2 for strong- and explanative
classification.

known unknown

unknownknownClass

Obs

known unknown

unknownknown

Class

Obs

Figure 8.2: Illustration of a strong solution (left) and an explanative solution (right), which
allows for missing attributes. The attributes of the observations and some class are ab-
stractly represented as two rectangles. The dark rectangle contains the attributes with
known values, the white rectangle contains the attributes with value unknown.

For example for strong classification the left subfigure in Figure 8.2 should hold, i.e.,
(1) for each attribute with value unknown in Obs the attribute either has value unknown in
the class description, or it is allowed to be missing in the object description; (2) for each
attribute with a value different from unknown in Obs the attribute either has the same value
in the class, or has the value unknown in the class description and is allowed to be missing
in the class description.

Note that with this formalization we are able to state explicitly which attributes are
allowed to be missing. This is not possible for the classical classification criteria. For
example, in strong classification it is impossible to allow missing attributes in the class
description, whereas missing attributes in the object description are always accepted.

Further note that this formalization allows attributes missing in the class description
and attributes missing in the object description to be treated separately. This separate treat-
ment is different from the work of [Jansen, 2003]. In the case of strong classification,
[Jansen, 2003] only explicitly states the attributes allowed to be missing in the object de-
scription. In the case of explanative classification, [Jansen, 2003] only explicitly states the
attributes allowed to be missing in the class description.

In the following we denote with Aunknown the set of attributes that are allowed to have
the value unknown. Furthermore, we denote with Ounknown the set {〈a, unknown〉 | a ∈
Aunknown}. We will use the shorthand au to denote the AV-pair 〈a, unknown〉. Strong
classification that allows for missing attributes can now be formalized as follows:

Definition 8.4.1.1 (Strong classification with missing attributes) Let DT be a domain
theory containing class descriptions by necessary conditions in which disjunctions are
not allowed. Then the solution set Sunknown

S (i.e., strong classification in which certain

8.4 Approximate classification 105

attributes are allowed to be missing in either the class description or object description)
can be modeled as follows:

Missing attributes in the object description:

{c | ∀av ∈ Obs : DT ∪ {c} ` av or av ∈ Ounknown} ∩ SW =

{c | DT ∪ {c} ` Obs \Ounknown} ∩ SW .

Missing attributes in the class description:

{c | ∀av ∈ Obs : DT ∪ {c} ` av or (au ∈ Ounknown and DT ∪ {c} ` au)} ∩ SW .

Missing attributes in the class- or object description:

{c | ∀av ∈ Obs : DT ∪ {c} ` av or av ∈ Ounknown or

(au ∈ Ounknown and DT ∪ {c} ` au)} ∩ SW .

The first formula formalizes strong classification in which certain attributes in the object
description are allowed to be missing. This is similar to classical strong classification,
but instead of allowing all attributes to be missing, now only those attributes explicitly
mentioned in Aunknown are allowed to be missing. In case we have Aunknown = A,
i.e., Aunknown contains all attributes, then classical strong classification is the same as the
solution set stated in the first formula. More precisely, the formula states that for every
AV-pair av in Obs the attribute a should either (1) match with the value occurring in the
class description, or (2) the attribute has an unknown value and is allowed to be missing.
Note that in the above definition we make use of the fact that an AV-pair av is a member
of a class c iff DT ∪ {c} ` av. Hence, (1) holds whenever DT ∪ {c} ` av holds. (There
is also a matching when the attribute has an unknown value in both the class description
and object description.) When their is no match part (2) should hold. Note that av ∈ Obs
and av ∈ Ounknown formalizes that attribute a is allowed to be missing in the object
description and implies that av = au, i.e., that the attribute a has an unknown value in the
object description.

The second formula formalizes strong classification in which certain attributes in the
class description are allowed to be missing. The formula states that for every AV-pair av in
Obs the attribute a should either (1) match with the value occurring in the class description,
or (2) the attribute has an unknown value in the class description and is allowed to be
missing. Part (1) is exactly the same as in the formalization of strong classification with
missing attributes in the object description. When their is no match part (2) should hold.
This is formalized as au ∈ Ounknown ∧ DT ∪ {c} ` au. The first conjunct states that
attribute a is allowed to be missing (note the use of au instead of av), whereas the second
conjunct states that the attribute a has the value unknown in the class description.

The third formula formalizes strong classification in which certain attributes are al-
lowed to be missing in both the class description and object description. It combines the
other two formalizations through a disjunction.

106 Classification

Analogously to the case of strong classification we can consider missing attributes for
explanative classification. The formalization is as follows:

Definition 8.4.1.2 (Explanative classification with missing attributes) Let DT be a
domain theory containing class descriptions by necessary conditions in which disjunctions
are not allowed. Then the solution set Sunknown

E (i.e., explanative classification in which
certain attributes are allowed to be missing in either the class description or object
description) can be modeled as follows:

Missing attributes in the object description:

{c | ∀av ∈ {av |DT ∪ {c} ` av} : av ∈ Obs or (au ∈ Obs ∩ Ounknown)} ∩ SW .

Missing attributes in the class description:

{c | ∀av ∈ {av | DT ∪ {c} ` av} \Ounknown : av ∈ Obs} ∩ SW =

{c | {o | DT ∪ {c} ` o} \Ounknown ⊆ Obs} ∩ SW .

Missing attributes in the class- or object description:

{c | ∀av ∈ {av |DT∪{c} ` av}\Ounknown : av ∈ Obs or (au ∈ Obs∩Ounknown)}∩SW .

The first formula formalizes explanative classification in which certain attributes in the
object description are allowed to be missing. The formula states that for every AV-pair av

in the class description the attribute a should either (1) match with the value occurring in
the object description, or (2) the attribute has an unknown value in the object description
and is allowed to be missing. Part (1) holds whenever DT ∪ {c} ` av holds. (There is
also a matching when the attribute has an unknown value in both the class description and
object description.) When their is no match part (2) should hold. This is formalized as
au ∈ Obs and au ∈ Ounknown. The first part states the attribute a has an unknown value
in Obs (note the use of au instead of av), and au ∈ Ounknown states that the attribute is
allowed to be missing.

The second formula formalizes explanative classification in which certain attributes in
the class description are allowed to be missing. The formula states that for every AV-pair av

in the class description, which is not allowed to be missing, there should be a match with
the corresponding attribute in Obs, i.e., av should be a member of Obs. No restrictions
are imposed on any attribute a that has the value unknown in the class description and is
also allowed to be missing. This is formalized by taking the set difference of all AV-pairs
occurring in the class c, i.e., {o |DT ∪ {c} ` o}, with Ounknown.

The third formula formalizes explanative classification in which certain attributes are
allowed to be missing in both the class description and object description by combining the
other two formalizations.

8.4 Approximate classification 107

8.4.2 Dealing with inconsistent attributes
Besides allowing missing attributes it is also possible to allow certain attributes to be incon-
sistent (i.e., having a different value). It is not realistic to assume that every value obtained
by observing our environment is equal to the value actually present in our environment.
For example, this may happen because the measuring device used is too imprecise. Be-
cause of these incorrect observations, the object may not be classified in some classes in
which it should be classified when all observations were correct. Dealing with this problem
can be done by weakening the classification conditions used in the classification criteria by
allowing inconsistencies for some attributes.

We use the same representation used in the previous section, i.e., every attribute is
included in the class descriptions and the object description and some of these attributes
may have the value unknown. Intuitively, every attribute which is allowed to be inconsistent
should also be allowed to be missing. Furthermore, we allow inconsistencies in both the
class description and the object description. In the case of an inconsistency, we only know
that the two values compared are different. Therefore, we will not be able to distinguish
if the inconsistency occurred because of errors in the class description or in the object
description.

In the following we denote with Aincorrect the set of attributes that are allowed to
have an inconsistent value. Furthermore, we denote with Oincorrect the set {〈a, v〉 | a ∈
Aincorrect}. The various classification criteria that allow inconsistent attributes can now
be formalized as follows:

Definition 8.4.2.1 Let DT be a domain theory containing class descriptions by necessary
conditions in which disjunctions are not allowed. Then the various classification criteria
can be weakened by allowing inconsistencies for observations in the set Oincorrect as
follows:

Weak classification with inconsistent attributes:

Sincorrect
W = {c | DT ∪ {c} ∪ (Obs \Oincorrect) 6` ⊥}.

Strong classification with inconsistent attributes:

Sincorrect
S = {c | DT ∪ {c} ` (Obs \Oincorrect)} ∩ Sincorrect

W .

Explanative classification with inconsistent attributes:

Sincorrect
E = {c | {o | DT ∪ {c} ` o} \Oincorrect ⊆ Obs} ∩ Sincorrect

W .

The first formula formalizes weak classification in which the attributes occurring in
Oincorrect are allowed to be inconsistent. As weak classification only means checking the
consistency of the observations with a class, this can be done by removing the attributes
that are allowed to be inconsistent from the set Obs. Note that the formula can also be used
in case class definitions are given that may contain disjunctions.

108 Classification

The second formula formalizes strong classification in which the attributes occurring
in Oincorrect are allowed to be inconsistent. If Ounknown ⊆ Oincorrect it follows immedi-
ately that the set Sincorrect

S formalized in Definition 8.4.2.1 includes the set Sunknown
S for-

malized in Definition 8.4.1.1 of strong classification in which certain attributes are allowed
to be missing in the object description (first formula). Obviously allowing an attribute to
have a different value in the object description when compared to the attribute in the class
description is equivalent to allowing an attribute to have a different value in the class de-
scription when compared to the attribute in the object description. Hence, the set S incorrect

S

formalized in Definition 8.4.2.1 should also extend the second (and third) formulas in Defi-
nition 8.4.1.1 which formalizes strong classification in which certain attributes are allowed
to be missing in the class description (or both object and class descriptions). The proof that
strong classification with inconsistent attributes includes strong classification with missing
attributes will be deferred to the next section.

The third formula formalizes explanative classification in which the attributes occurring
in Oincorrect are allowed to be inconsistent. Analogously to strong classification, from the
fact that Ounknown ⊆ Oincorrect it immediately follows that the set Sincorrect

E formal-
ized in Definition 8.4.1.1 includes the set Sunknown

E formalized in Definition 8.4.1.2 of
explanative classification in which certain attributes are allowed to be missing in the class
description (second formula). The proof that explanative classification with inconsistent
attributes also includes the other sets formalized in Definition 8.4.1.2 will be deferred to
the next section.

8.4.3 Dealing with incorrect and missing attributes
Besides allowing only missing or only incorrect attributes it is also possible to allow some
combination of missing and incorrect attributes. When Aincorrect and Aunknown are two
disjoint sets one can easily take some disjunction or conjunction of the sets previously
defined. However, when they are not disjoint the situation is different as an attribute cannot
be missing and inconsistent at the same time.

Intuitively, if a class satisfies the observations according to some classification criterion
in which an attribute is allowed to be missing, then this class should also be a solution
according to the same classification criterion in which the same attribute is allowed to be
inconsistent. Hence, solution sets with allowable missing attributes are included in solution
sets with allowable inconsistent attributes (in both solution sets we take the same set of
attributes that are allowed to be missing or inconsistent). This observation is mentioned in
[Jansen, 2003] and confirmed by the following two lemma’s for strong classification and
explanative classification respectively:

Lemma 8.4.3.1 If Aunknown = Aincorrect then Sunknown
S ⊆ Sincorrect

S .

Proof We will prove this for Sunknown
S = {c | ∀av ∈ Obs : DT ∪ {c} ` av ∨ av ∈

Ounknown ∨ (au ∈ Ounknown ∧ DT ∪ {c} ` au)} as this set includes the other two
solution sets defined in Definition 8.4.1.1. Suppose c 6∈ S incorrect

S . Then there exists

8.5 Conclusion 109

av ∈ Obs such that DT ∪ {c} 6` av and av 6∈ Oincorrect. The latter implies that the
attribute a does not occur in Aincorrect. Therefore, a does not occur in Aunknown and av

and au do not occur in Ounknown and it follows that c is not a member of Sunknown
S . 2

Lemma 8.4.3.2 If Aunknown = Aincorrect then Sunknown
E ⊆ Sincorrect

E .

Proof We will prove this for Sunknown
E = {c | ∀av ∈ {av |DT ∪ {c} ` av} \Ounknown :

av ∈ Obs ∨ (au ∈ Obs ∩ Ounknown)} as this set includes the other two solution sets
defined in Definition 8.4.1.2. Suppose c 6∈ Sincorrect

E . Then there exists av such that
DT ∪ {c} ` av, av 6∈ Oincorrect, and av 6∈ Obs. As a does not occur in Aincorrect it also
does not occur in Aunknown. Therefore, av and au do not occur in Aunknown. Hence,
av ∈ {av |DT∪{c} ` av}\Ounknown and it follows that c is not a member of Sunknown

E .2

We have just proven that solution sets with allowable missing attributes are included in
solution sets with allowable inconsistent attributes. The converse inclusion however, does
not hold. Allowing an attribute to be missing does not mean that we allow the attribute to be
inconsistent. When an attribute is allowed to be missing it does not mean that it actually is
missing. The value of the attribute is allowed to be unknown, but when the value is known,
the class is ruled out to be a solution whenever this value is inconsistent. The following
example illustrates this.

Example 8.4.3.3 (Inconsistent attributes are not included in missing attributes) Let
A = {a, b}, C = {c}, O = {a1, au, b1, b2, bu}. Let the domain theory DT consist of
the class description c → a1 ∧ b1 together with all rules forcing each attribute to have
exactly one value. Furthermore, let Obs = {a1, b2} and Aunknown = Aincorrect = {b}.
Then Ounknown = {bu} and Oincorrect = {b1, b2, bu}. It can be verified with Definitions
8.4.1.1 and 8.4.2.1 that c is a member of S incorrect

S but not of Sunknown
S .

This example confirming [Jansen, 2003] as it illustrates that classification in which
missing attributes are allowed is different from classification in which inconsistent at-
tributes are allowed.

8.5 Conclusion
In this chapter we have described classification, which will be used in the next chapter as a
candidate task for approximation with the method developed in [Schaerf and Cadoli, 1995].
The study was performed because classification is a task that may benefit by being more
robust for incorrect and incomplete class and object descriptions.

In this chapter we have described classification using the systematic approach of
[Jansen, 2003]. The various ways in which classes and observations can be compared on
the attribute level led to the formalization of several classification criteria giving several
ways to classify an object into a class.

Thereafter, we showed how the conceptualization of [Jansen, 2003] in a set theoretic
framework could be formalized into propositional logic. These encodings depended on the

110 Classification

formalization of the class descriptions, which could either be formalized with necessary
conditions, with sufficient conditions, or with a combination of both.

The last part of this chapter dealt with approximate forms of classification. We looked
at classification that allowed for missing attributes and inconsistent attributes, which we
consider to be useful approximations of classification. Missing and inconsistent attributes
are also considered in [Jansen, 2003], but differs somewhat from the approach taken in this
chapter. First, the approximations are formalized using propositional logic and the classical
entailment operator instead of a set theoretic formalization. The propositional formaliza-
tion allows us to compare the approximations in this chapter to the approximations that
will be obtained in the next chapter using the method of Cadoli and Schaerf. Second, the
formalizations in this chapter allows missing attributes in the object description and class
descriptions to be treated separately, which is not considered by [Jansen, 2003].

This chapter should not be considered as an exhaustive description of the task. We
have only presented those concepts needed in the next chapter where we will analyse the
approximations obtained by applying the method of [Schaerf and Cadoli, 1995] to the for-
malizations in this chapter.

Chapter 9

Approximating classification

9.1 Introduction

In the previous chapter we have described what is meant by classification and gave several
ways to formalize this task. As we motivated, classification, when used in its classic form,
may be to rigid to deal with incorrect and/or incomplete class descriptions and object de-
scriptions. In the previous chapter we already discussed in some detail various forms of
approximate classification by explicitly stating which attributes are allowed to be missing
or to be inconsistent. In this chapter we will also look at approximations of classification,
but these approximations will be constructed by making use of a general approximation
method.

The approximation method we will analyse in this chapter is the approximate entail-
ment operator developed in [Schaerf and Cadoli, 1995]. By using this approximate entail-
ment operator instead of the classical entailment operator in the formalizations given in the
previous chapter, we will end up with an approximation of the various classification criteria.
Although the method of Cadoli and Schaerf has some properties desirable for any general
approximation method its unclear how useful these properties are in practice. For example,
the method allows us to approximate a set S of solutions from below (and above) and the
accuracy of the approximation can be improved in a stepwise fashion until we obtain S. If
the method results in the sequence ∅, ∅, . . . , ∅, S then we are obviously no better of than
computing S directly. In this chapter we will therefore analyse the effect of applying the
method developed in [Schaerf and Cadoli, 1995] to classification, which we formalized in
Chapter 8.

The rest of this chapter is structured as follows. First, in Section 9.2, we will give a sum-
mary of the approximate entailment operator developed by Cadoli and Schaerf. Thereafter,
we will use this approximate entailment operator in the formalizations given in Chapter 8
and analyse the properties of the obtained approximations. We will start by analyzing the
various classification criteria for class descriptions represented by necessary conditions.
This will be done for weak classification in Section 9.3, for explanative classification in
Section 9.4, and for strong classification in Section 9.5. The results obtained will be sum-
marized in Section 9.6 and conclusions are given in Section 9.7.

112 Approximating classification

9.2 Approximate entailment
This section gives a short overview of the approximate entailment by Cadoli and Schaerf
[Schaerf and Cadoli, 1995] that allows for a weaker/stronger inference relation. Through-
out this section we assume that there is an underlying finite language L used for building all
the sentences. Symbols t and f are used for denoting special propositional letters, which
are always mapped into 1 and 0, respectively. In the following we denote with S a subset
of L.

Definition 9.2.0.4 (S-3-interpretation) An S-3-interpretation of L is a truth assignment
which maps every letter l of S and its negation ¬l into opposite values. Moreover, it does
not map both a letter l of L \ S and its negation ¬l into 0.

Definition 9.2.0.5 (S-1-interpretation) An S-1-interpretation of L is a truth assignment
which maps every letter l of S and its negation ¬l into opposite values. Moreover, it maps
every letter l of L \ S and its negation ¬l into 0.

The names given to the interpretations defined above can be explained as follows. For
an S-1-interpretation there is one possible assignment for letters outside S, namely false
for both x and ¬x. For an S-3-interpretation there are three possible assignments for let-
ters outside S, namely the two classical assignments, plus true for both x and ¬x. (As a
classical interpretation allows two possible assignments for letters, such an interpretation
is sometimes referred to as a 2-interpretation.)

Satisfaction of a formula by an S-1- or S-3-interpretation is defined as follows. The
formula is satisfied by an interpretation σ if σ evaluates the formula written in Negated
Normal Form (NNF) into true using the standard rules for the connectives.

The notions of S-1- and S-3-entailment are now defined in the same way as classical
entailment: A theory T S-1-entails a formula φ, denoted by T |=S

1 φ, iff every S-1-
interpretation that satisfies T also satisfies φ. S-3-entailment is defined analogously and
denoted by T |=S

3 φ.
Let S, S′ ⊆ L, T a generic propositional CNF formula, and φ a generic proposi-

tional clause not containing both a letter l and its negation ¬l. We use the shorthand
|=S

i ⇒|=
S′

i denote T |=S
i φ ⇒ T |=S′

i φ. These definitions then lead to the following
result [Schaerf and Cadoli, 1995]:

Theorem 9.2.0.6 (Approximate Entailment) Let S, S ′ ⊆ L, such that S ⊆ S ′, then

|=∅

3⇒|=
S
3⇒|=

S′

3 ⇒|=2⇒|=
S′

1 ⇒|=
S
1⇒|=

∅

1 .

This theorem tells us that |=S
3 is a sound but incomplete approximation of the clas-

sical entailment |=2, whereas 6|=S
1 is a sound but incomplete approximation of 6|=2 (i.e.,

6|=S
1⇒6|=

S′

1 ⇒6|=2). Furthermore, the theorem states that the accuracy of the approximations
can be improved by increasing the parameter S until the approximations coincide with the
classical entailment.

9.2 Approximate entailment 113

Theorem 9.2.0.6 holds even if T is a NNF formula and φ is a generic formula in CNF.
This aspect has been analyzed in [Cadoli and Schaerf, 1995], which analyzes other normal
forms for which the result holds.

We will give some other properties that hold for S-1- and S-3-entailment, which will
be useful in the upcoming sections. The first lemma shows that a familiar property of |=
also holds for all approximations:

Lemma 9.2.0.7 (Monotonicity of |=S

i
)

If T |=S
i φ then T ∧ x |=S

i φ.

We will continue with some results, which show that S-i-entailment can be reduced to
S-i-satisfiability. Before doing so we introduce the following definition:

Definition 9.2.0.8 We denote with letters(γ) the set {l ∈ L | l occurs in γ} ∪ {l ∈
L | ¬l occurs in γ}.

The next two theorems show that S-1- and S-3-entailment can be reduced to S-1- and
S-3-satisfiability, respectively.

Theorem 9.2.0.9 (Reducing S-1-entailment to S-1-satisfiability) Let γ be γS ∪ γS ,
where both letters(γS) ⊆ S and letters(γS) ∩S = ∅ hold. T |=S

1 γ holds iff T ∪ {¬γS} is
not S-1-satisfiable.

Theorem 9.2.0.10 (Reducing S-3-entailment to S-3-satisfiability) Let letters(γ) ⊆ S
hold. T |=S

3 γ holds iff T ∪ {¬γ} is not S-3-satisfiable.

Note that the condition letters(γ) ⊆ S in Theorem 9.2.0.10 is not a restriction since
[Schaerf and Cadoli, 1995] also prove that T |=S

3 γ iff T |=
S∪letters(γ)
3 γ.

These results extend the well-known relation existing between classical entailment and
satisfiability, namely T |= γ iff T ∧ ¬γ is unsatisfiable. The importance of such a result is
that S-3-satisfiability can be tested in the following way:

1. replace by t all occurrences (both positive and negative) in T of letters which belong
to L \ S, thus obtaining the formula [T]S3 .

2. test standard (2-valued) satisfiability of [T]S3 .

In a similar way S-1-satisfiability can be tested in the following way:

1. replace by f all occurrences (both positive and negative) in T of letters which belong
to L \ S, thus obtaining the formula [T]S1 .

2. test standard (2-valued) satisfiability of [T]S1 .

114 Approximating classification

Hence, considering the above tests we can clarify S-1- and S-3-satisfiability by the
following syntactic operations. For a theory T in clausal form, T is S-1-satisfiable iff T
is classically satisfiable after removing from every clause any literals with a letter outside
S. When this results in an empty clause, the theory becomes the inconsistent theory ⊥.
Similarly, T is S-3-satisfiable iff T is classically satisfiable after removing every clause
from the theory that contains a literal with a letter outside S. This may result in the empty
theory >. Because of the close correspondence between S-1-, S-3-satisfiability and these
syntactic operations, we prefer to write `S

i instead of |=S
i in the following sections.

So far, we have given some definitions, shown how these definitions approximate the
classical entailment operator, and how the approximate entailment operators can be re-
duced to some form of satisfiability checking. We conclude this section by looking at the
computational costs of the method.

Cadoli and Schaerf present an algorithm that can be used to compute the S-1-
satisfiability and S-3-unsatisfiability of a generic formula. This algorithm runs in time
exponential in |S| and uses polynomial space. Furthermore, the algorithm can benefit from
previous computations. More precisely, when S ′ ⊃ S, computing satisfiability with respect
to S′ can be done by using information gained in a previous step when the satisfiability was
computed with respect to S. Hence, the method can be used to approximate the classicial
entailment operator from two directions (by using 6`S

1 and `S
3 instead of the ` operator)

in a stepwise fashion and is not harder (and usually easier) to compute than the original
problem.

9.3 Approximating weak classification
In this section we will investigate the influence of the approximate entailment relations
of Cadoli and Schaerf on weak classification where the class descriptions are given by
necessary conditions (Section 8.3.1). The approximations are obtained by selecting either
`S

1 or `S
3 instead of the usual entailment and additionally choosing an appropriate set of

propositional letters S. More precisely, we define

SS
W1 = {c | DT ∪ {c} ∪Obs 6`S

1 ⊥},

SS
W3 = {c | DT ∪ {c} ∪Obs 6`S

3 ⊥},

for some set S of propositional letters. The following result shows that these definitions
can be used to approximate weak classification from two directions:

Lemma 9.3.0.11 Let S, S ′ ⊆ L, such that S ⊆ S ′. Then

∅ = S∅

W1 ⊆ SS
W1 ⊆ SS′

W1 ⊆ SW ⊆ SS′

W3 ⊆ SS
W3 ⊆ S∅

W3 = C.

Proof This follows immediately from Theorem 9.2.0.6. 2

9.3 Approximating weak classification 115

We give some examples illustrating this lemma showing that SS
W1 and SS

W3 result in
sub- and supersets of SW . (Remember that for observations o1 and o2 of the same type we
need to include rules in the domain theory of the form o1 → ¬o2 to enforce the assumption
that each attribute can only have one value at a time (Section 8.3.1).)

Example 9.3.0.12 (SS

W1
(SW) Let DT = {c→ o1∨o2,¬o1 → o2} and Obs = {¬o1}

then c ∈ SW , but c 6∈ S
{o1,c}
W1 .

Example 9.3.0.13 (SW (S
S

W3
) Let DT = {c → o1,¬o1 → o2} and Obs = {o2} then

c 6∈ SW , but c ∈ S
{o2,c}
W3 .

The rest of this section is structured as follows. In Section 9.3.1 we start by deriving
some results that restrict the choice of the parameter S. Thereafter, in Section 9.3.2, we
will derive results on how the approximations can be interpreted.

9.3.1 Restrictions on choosing S

Not every choice for the parameter S will lead to an useful approximation of weak classi-
fication. For example, taking the empty set for S will always result in SS

W1 being empty
and SS

W3 being the set of all possible classes. In this section we will derive some relations
between the parameter set S and the solution sets SS

W1 and SS
W3.

9.3.1.1 Restrictions for S with respect to S
S

W1

In this section we will look at relations between the parameter S and the set of solutions
SS

W1. The first result on choosing S is given in the following lemma. It states that for a
class c to be a solution it has to be included in the parameter S:

Lemma 9.3.1.1 If c ∈ SS
W1 then c ∈ S.

Proof If a class c 6∈ S then DT ∪ {c} ∪ Obs will always evaluate into false with an
S-1-assignment. Hence DT ∪ {c} ∪ Obs `S

1 ⊥ and c 6∈ SS
W1. 2

Equivalently this result also tells us that we can restrict the set of candidate solutions
by choosing the parameter S to be small. Any class c left out of S will not be part of the
candidate solutions.

The following result relates the parameter S with the observations Obs:

Lemma 9.3.1.2 If SS
W1 6= ∅ then Obs ⊆ S.

Proof Suppose there exists an observation o ∈ Obs \ S. Any S-1-assignment will map o
into false. Therefore, DT∪{c}∪Obs will be mapped into false, and DT∪{c}∪Obs `S

1 ⊥.
Hence, for every class c, c will not be a solution according to SS

W1. 2

116 Approximating classification

The result above gives us a lower bound on the parameter S for obtaining non-trivial
subsets of weak classification. Whereas the above two results restricted S in relation to
either Obs or C, the following result restricts S in relation to the domain theory DT :

Lemma 9.3.1.3 If c ∈ SS
W1 and c→ a1 ∨ · · · ∨an is an element of the domain theory DT

then one of the ai will be in S.

Proof By definition of SS
W1 we have DT ∪ {c} ∪ Obs 6`S

1 ⊥. Hence, there exists an S-
1-assignment φ that maps DT ∪ {c} ∪ Obs into true. Therefore, DT , and in particular
c→ a1 ∨ · · ·∨an, is mapped into true by φ. As c ∈ S (Lemma 9.3.1.1), φ maps c into true
and ¬c into false. Therefore, one of the elements a1, . . . , an has to be mapped into true
and this element belongs to S, because all letters outside S are mapped to false. 2

9.3.1.2 Restrictions for S with respect to S
S

W3

In this section we will look at relations between the parameter S and the set of solutions
SS

W3. We start by giving a lower bound on the parameter S:

Lemma 9.3.1.4 If c 6∈ S then c ∈ SS
W3.

Proof Suppose c 6∈ S, then the mapping that maps both c and ¬c into true can eas-
ily be extended to an S-3-assignment that maps DT ∪ {c} ∪ Obs into true. Hence,
DT ∪ {c} ∪ Obs 6`S

3 ⊥ and c ∈ SS
W3. 2

This result tells us that it is not useful to exclude any class c from the parameter set S
as otherwise it will always be a solution. The only choices for S we need to consider are
therefore those sets that includes the set of all classes C.

The following result restricts S with respect to the observations Obs (under reasonable
assumptions):

Lemma 9.3.1.5 If DT ∪ {c} 6` ⊥ and Obs ∩ S = ∅ then c ∈ SS
W3.

Proof an S-3-assignment amounts to removing all clauses with letters outside S. There-
fore, DT ∪ {c} ∪ Obs 6`S

3 ⊥ iff DT ∪ {c} 6`S
3 ⊥. The latter follows immediately from

Theorem 9.2.0.6 and DT ∪ {c} 6` ⊥. 2

This result tells us that we have to include some aspect of the object description in the
parameter S, because else we will end up with all classes in the set of solutions (note that
we assume DT ∪ {c} 6` ⊥ for every c ∈ C).

The following lemma restricts S with respect to the domain theory DT :

Lemma 9.3.1.6 If c 6∈ SS
W3 then there exists a clause c → a1 ∨ · · · ∨ an in DT with

{a1, . . . , an} ⊆ S.

9.3 Approximating weak classification 117

Proof Given some class c, suppose that for every clause of the form c → a1 ∨ · · · ∨ an

in DT there exists ai such that ai 6∈ S. Then every S-3-assignment amounts to removing
every clause containing c from the domain theory DT . As we assume DT ∪ Obs to be
consistent it follows that DT ∪ {c} ∪Obs 6`S

3 ⊥. Hence, c ∈ SS
W3. 2

This lemma gives us a necessary condition for a class c not to be a member of SS
W3. If

one wants to determine if c 6∈ SW it is sufficient to find a parameter S such that c 6∈ SS
W3

(Lemma 9.3.0.11). Any set S that does not contain a set {a1, . . . , an}with c→ a1∨. . .∨an

in DT can be ruled out for this purpose.
We finish this section by giving an example to illustrate the results obtained in this

section.

Example 9.3.1.7 Let A = {a, b} and each attribute can have two values. Let the domain
theory DT be the set {c→ (a1 ∨ a2) ∧ b1, a1 → ¬a2, b1 → ¬b2}. Suppose Obs = {b2}.
As {c, c → b1, b1 → ¬b2, b2} is inconsistent, c is classically not a weak solution. Now
let us consider various choices for S and the effect this has on SS

W3. By Lemma 9.3.1.4 if
c 6∈ S then c ∈ SS

W3 and by Lemma 9.3.1.5 if b2 6∈ S then c ∈ SS
W3. For the other options

let us therefore assume that {c, b2} ⊆ S. By Lemma 9.3.1.6 either {a1, a2} or {b1} should
be included in S or else c will always be included in SS

W3. It can be checked that when
S = {c, b2, a1, a2} we have c ∈ SS

W3 and that when S = {c, b2, b1} we have c 6∈ SS
W3.

Note that in the first case the literal b1 is excluded from S, whereas in the second case b1

is included in S. The literal b1 was the reason for rejecting c as a classic weak solution as
this contradicted the observation b2. This observation will be made more precise in Section
9.3.2.2.

9.3.2 Interpreting S
S

W1
and S

S

W3

In Section 9.3.1 we gave some results that related the parameter S to the solution sets SS
W1

and SS
W3. In this section we continue this analysis, by analyzing the solution sets SS

W1

and SS
W3 in more detail. Where possible, we will give an interpretation of the solution

sets in terms of the approximate classifications constructed in Chapter 8 where we modeled
classification that allowed for missing and inconsistent attributes.

9.3.2.1 Interpreting S
S

W1

Lemma 9.3.1.1 showed us that a class c can be removed from the solution set of SS
W1 by

removing c from the parameter S.

Lemma 9.3.2.1 Let D ⊆ C. Then SD∪O
W1 ⊆ SW ∩D.

Proof Let c ∈ SD∪O
W1 . Then by definition DT ∪ {c} ∪ Obs 6`D∪O

1 ⊥ and therefore by
Theorem 9.2.0.6 DT ∪ {c} ∪ Obs 6` ⊥. Hence, c ∈ SW . From Lemma 9.3.1.1 follows
that c ∈ D ∪ O. Hence, c ∈ D. 2

The reverse inclusion does not hold in general as the following example shows:

118 Approximating classification

Example 9.3.2.2 (SD∪O

W1
(SW ∩ D) Let DT = {c1 → o1, c2 → ¬o1}, Obs = {¬o1},

and D = {c2}. As an S-1-assignment amounts to removing all literals from clauses that
do not occur in S, DT ∪ {c2} ∪ Obs 6`

{c2}∪O
1 ⊥ iff {o1, c2 → ¬o1, c2,¬o1} 6` ⊥. As

this does not hold we have c2 6∈ SD∪O
W1 . However, DT ∪ {c2} ∪ {¬o1} is consistent (i.e.,

mapping o2 and c1 into false, and mapping c2 into true results in a model) and therefore
c2 ∈ SW ∩D.

This example shows that c2 is not a member of SD∪O
W1 because the inconsistent class c1

is left out of the parameter S. This leads us to the following result:

Lemma 9.3.2.3 If c 6∈ SW then S
(C\{c})∪O
W1 = ∅.

Proof Suppose there exists a class d ∈ S
(C\{c})∪O
W1 . Then d 6= c by Lemma 9.3.1.1. Fur-

thermore, DT ∪{d}∪Obs 6`
(C\{c})∪O
1 ⊥. This holds iff [DT ∪ {d}∪Obs]

(C\{c})∪O
1 6` ⊥

iff DTc∪DTd∪{c}∪{d}∪Obs 6` ⊥ where DTc = {c→ a1∨· · ·∨an ∈ DT}. However,
this does not hold as we assumed c 6∈ SW from which follows DTc ∪ {c} ∪ Obs ` ⊥ and
therefore by monotonicity DTc ∪DTd ∪ {c} ∪ {d} ∪ Obs ` ⊥. 2

Note that for any two subsets A and B such that A ⊆ B we have SA
W1 ⊆ SB

W1. The
previous result therefore tells us that we only have to consider those sets for the parameter
S that include all inconsistent classes.

Let us now consider the effect of leaving out observations from the parameter S. As-
sume that C ⊆ S and Obs ⊆ S (the latter is necessary for S to be non empty by Lemma
9.3.1.2). Now c 6∈ SS

W1 holds by definition when DT ∪ {c} ∪ Obs `S
1 ⊥. The latter holds

iff [DT ∪ {c} ∪Obs]S1 ` ⊥, which by assumption holds iff [DT]S1 ∪ {c} ∪Obs ` ⊥. This
last formula holds for example when there exists a clause c → a1 ∨ . . . ∨ an in DT such
that for some m between 1 and n it holds that a1, . . . , am ∈ S, ¬a1, . . . ,¬am ∈ Obs, and
am+1, . . . , an 6∈ S as an S-1-entailment amounts to removing all literals with letters not in
S.

The previous results show that applying S-1-entailment to weak classification leads to
some complex form of approximate classificiation that is not easily characterized, either in
terms of classification that allows for missing or inconsistent attributes or any other form.
In the rest of our analysis we therefore restrict ourselves to the application of 3-entailment
to the various classification criteria. We will show that applying S-3-entailment to the
various classification criteria will lead to approximations that can be characterized in terms
of the formalizations discussed in Chapter 8.

9.3.2.2 Interpreting S
S

W3

In xample 9.3.1.7 we noted that a class c, which is not a weak solution classically, may be
an approximate weak solution according to SS

W3 when the inconsistent literals are not in S.

9.3 Approximating weak classification 119

We will make this more precise in this section. This will be done by relating SS
W3 to the ap-

proximation Sincorrect
W constructed in Section 8.4.2, which formalizes weak classification

in which the AV-pairs occurring in Oincorrect are allowed to be inconsistent.
As we showed in Lemma 9.3.1.4, any reasonable choice for S should include the set of

all classes C. We therefore analyse only the effect of including certain observations in S.
The following result shows that for S = C ∪ (O \ Oincorrect) we always obtain an upper
bound of Sincorrect

W .

Lemma 9.3.2.4 Sincorrect
W ⊆ S

C∪(O\Oincorrect)
W3 .

Proof Let c ∈ Sincorrect
W . Then DT ∪ {c} ∪ (Obs \ Oincorrect) 6` ⊥ and therefore by

Theorem 9.2.0.6 DT ∪{c}∪ (Obs\Oincorrect) 6`
C∪O\Oincorrect

3 ⊥. As Obs∩C = ∅, this
is equivalent to saying DT ∪ {c} ∪ (Obs ∩ (C ∪ (O \ Oincorrect))) 6`

C∪(O\Oincorrect)
3 ⊥.

Since, an S-3-assignment amounts to removing all clauses with letters outside S, the lat-
ter formula holds iff DT ∪{c}∪Obs 6`

C∪(O\Oincorrect)
3 ⊥. Hence, c ∈ S

C∪(O\Oincorrect)
W3 .2

Note that by Lemma 9.3.0.11, for any set S that is included in C ∪ (O \ Oincorrect),
SS

W3 will also be an upper bound of Sincorrect
W (i.e., if S ⊆ C ∪ (O \ Oincorrect) then

Sincorrect
W ⊆ S

C∪(O\Oincorrect)
W3 ⊆ SS

W .). In fact, we will prove that S
C∪(O\Oincorrect)
W3 is

equal to Sincorrect
W making S

C∪(O\Oincorrect)
W3 trivially the closest upper bound one can find

of Sincorrect
W . The converse inclusion is proven in the following lemma:

Lemma 9.3.2.5 S
C∪(O\Oincorrect)
W3 ⊆ Sincorrect

W .

Proof Suppose that c 6∈ Sincorrect
W . Then DT ∪ {c} ∪ (Obs \ Oincorrect) is inconsis-

tent by definition. By assumption DT ∪ {c} is consistent and in each clause of DT
only observations of the same type (or a class) occur. Therefore there is some attribute
a and a subset DTa = {c → a1 ∨ . . . ∨ an | ai contains attribute a} ∪ {a1 →
¬a2 ∧ . . . ∧ ¬an | ai contains attribute a} of DT such that

DTa ∪ {c} ∪ (Obs \Oincorrect) ` ⊥.

As DTa∪{c} is consistent by monotonicity, the attribute a has to occur in Obs\Oincorrect.
Hence, attribute a occurs in S = C ∪ (O \ Oincorrect) ⊇ (Obs \ Oincorrect). More
precisely, because of the way S was constructed, every AV-pair containing attribute a is
a member of S. As an S-3-entailment only removes clauses with a letter outside S it
follows that DTa ∪ {c} ∪ (Obs \ Oincorrect) is a subset of [DT ∪ {c} ∪ Obs]S3 . Hence
DT ∪ {c} ∪ Obs ` ⊥, and c 6∈ S

C∪(O\Oincorrect)
W3 . 2

As we showed that C should always be included in S and the results above characterize
the effect of excluding observations from S, we obtain the main result of this section: an
interpretation of SS

W3.

120 Approximating classification

Theorem 9.3.2.6 S
C∪(O\Oincorrect)
W3 = Sincorrect

W .

Proof This follows from Lemma 9.3.2.4 and Lemma 9.3.2.5. 2

This result gives us an interpretation of SS
W3 and also gives us a method for computing

Sincorrect
W . The complexity of computing SS

W3 depends on the size of the parameter S (i.e.,
the algorithm given by Cadoli and Schaerf runs in time exponential in |S|). We noted before
that the upper bound we found was the closest upper bound one could find of S incorrect

W ,
because they were in fact the same sets. Hence, the complexity of computing S incorrect

W is
at most exponential in |S|. However, C ∪ (O \ Oincorrect) is not necessarily the smallest
parameter choice one could use to compute S incorrect

W . For example, suppose one has a
domain theory DT and observations Obs such that SW = C, i.e., all classes are solutions
for the standard weak classification criterion. From SW ⊆ Sincorrect

W and SW ⊆ SS
W3 it

follows that we also have Sincorrect
W = SS

W3 = C for any choice of the parameter S. In
particular this will hold for S = ∅. Hence, the complexity of computing SS

W3 is at most
exponential in the size of C ∪ (O \Oincorrect) but may be less.

We finish this section by illustrating with an example that the assumption that in any
clause of DT only observations of the same type occur, is necessary for proving the main
result of this section, i.e., S

C∪(O\Oincorrect)
W3 = Sincorrect

W .

Example 9.3.2.7 LetA = {a, b} and each attribute can have two values. Furthermore, let
C = {c} and O = {a1, a2, b1, b2}. Suppose that DT = {c → a1, c → ¬a1 ∨ ¬b1, a1 →
¬a2, b1 → ¬b2}, Obs = {b1}, and Aincorrect = {a}. Then Oincorrect = {a1, a2}. Note
that DT ∪ {c} is consistent satisfying our assumptions. However DT ∪ {c} ∪ Obs is
inconsistent and therefore c 6∈ SW . As Obs \ Oincorrect = Obs it follows that DT ∪
{c} ∪ Obs \ Oincorrect is also inconsistent and therefore c 6∈ Sincorrect

W . Let us now
consider SS

W3 for the parameter choice S = C ∪ (O \ Oincorrect) = {c, b1, b2}. As
an S-3-entailment amounts to removing every clause with letters outside S it follows that
for S = {c, b1, b2} this amounts to removing every clause that contains either a1 or a2.
Hence, every rule containing c will be removed from DT as every such rule contains a1

(c → a1 or c → ¬a1 ∨ b1). Hence, [DT ∪ {c} ∪ Obs]S3 is consistent and therefore
c ∈ S

C∪(O\Oincorrect)
W3 . This illustrates that when the domain theory DT does not satisfy

the assumption that in every clause of DT only observations of the same type (or a class)
occur, the equality Sincorrect

W = S
C∪(O\Oincorrect)
W3 will not hold in general.

9.4 Approximating explanative classification
In this section we will investigate the influence of the approximate entailment relation of
Cadoli and Schaerf on explanative classification where the class descriptions are given
by necessary conditions (Section 8.3.1). The approximations are obtained by selecting
either `S

1 or `S
3 instead of the usual entailment and additionally choosing an appropriate

set of propositional letters S. As the entailment is also used in the definition of weak

9.4 Approximating explanative classification 121

classification SW , the entailment is used twice in the definition of explanative classification.
More precisely, we get the following approximations

SS
E1 = {c | {o | DT ∪ {c} `S

1 o} ⊆ Obs} ∩ SS
W1,

SS
E3 = {c | {o | DT ∪ {c} `S

3 o} ⊆ Obs} ∩ SS
W3,

for some set S of propositional letters. The following result shows that these definitions
can be used to approximate explanative classification from two directions:

Lemma 9.4.0.8 Let S, S ′ ⊆ L, such that S ⊆ S ′. Then

∅ = S∅

E1 ⊆ SS
E1 ⊆ SS′

E1 ⊆ SE ⊆ SS′

E3 ⊆ SS
E3 ⊆ S∅

E3 = C.

Proof (We prove SS
E1 ⊆ SE ⊆ SS

E3. The rest is proved analogously or follows from the
definitions of an S-1- or S-3-assignment.) Whenever DT ∪ {c} ` o holds, also DT ∪
{c} `S

1 o

The rest of this section is as follows: we start by deriving some results that restrict the
choice of the parameter S; thereafter we will derive results on how the approximations can
be interpreted.

9.4.1 Restrictions on choosing S

Not every choice for the parameter S will lead to an useful approximation of explanative
classification. For example, taking the empty set for S will always result in SS

E1 being
empty and SS

E3 being the set of all possible classes. In this section we will derive some
relations between the parameter set S and the solution set SS

E3.
Before deriving any restrictions on S we will need the following result:

Lemma 9.4.1.1 If c 6∈ S then {o | DT ∪ {c} `S
3 o} = ∅.

Proof DT ∪ {c} `S
3 o holds iff DT ∪ {c,¬o} `

S∪{o}
3 ⊥ holds. Let φ be the

(S ∪ {o})-3-assignment that maps both c and ¬c into true, ¬d into true for every
d ∈ C \ {c}, and {¬o} into true. Then DT ∪ {c,¬o} is mapped into true by φ. Therefore,
{o |DT ∪ {c} `S

3 o} = ∅. 2

The set {o |DT ∪ {c} `S
3 o} is part of a condition used in the definition of explanative

classification. Lemma 9.4.1.1 states that whenever c is not a member of the parameter S
the set {o | DT ∪ {c} `S

3 o} will be empty irrespective of any other variable in or not
in S. Under this condition (i.e., c 6∈ S), we can simplify the definition of explanative
classification which leads us to the following result:

Lemma 9.4.1.2 If c 6∈ S then c ∈ SS
E3.

122 Approximating classification

Proof By Lemma 9.4.1.1 we have {o | DT ∪ {c} `S
3 o} = ∅ ⊆ Obs. Hence,

c ∈ {c | {o | DT ∪ {c} `S
3 o} ⊆ Obs}. In Lemma 9.3.1.4 we proved c ∈ SS

W3, hence
c ∈ SS

E3. 2

This result gives us a lower bound on reasonable choices for the parameter S. Lemma
9.4.1.2 states that it is not useful to exclude any class c from the parameter S as otherwise
it will always be a solution. The only choices we need to consider are therefore those sets
that include the set of all classes C.

9.4.2 Interpreting S
S

E3

In this section we give a characterization of SS
E3. In fact, we will prove that changing the

entailment relation in explanative classification to S-3-entailment will not change the set of
solutions when the parameter S includes the set of all classes C. As we showed in Lemma
9.4.1.2 that it is not useful to exclude any class c from the parameter S, because this will
add c to the solution set, this will characterize SS

E3 completely.
Before we are able to derive the characterization of SS

E3 we will need the following
result, which states that the condition {o | DT ∪ {c} ` o} used in the definition of expla-
native classification does not change when the entailment operator is approximated by the
S-3-entailment operator of Cadoli and Schaerf.

Lemma 9.4.2.1 If the domain theory DT contains class descriptions without disjunctions
and C ⊆ S, then

{o | DT ∪ {c} `S
3 o} = {o | DT ∪ {c} ` o}.

Proof The set inclusion {o |DT ∪ {c} `S
3 o} ⊆ {o |DT ∪ {c} ` o} follows directly from

Theorem 9.2.0.6. We will prove the set inclusion {o |DT ∪{c} ` o} ⊆ {o |DT ∪{c} `S
3

o}. Suppose a ∈ {o |DT ∪{c} ` o}. Then there exists c→ a in DT. Now DT ∪{c} `S
3 a

iff DT ∪ {c} ∪ {¬a} `S∪a
3 ⊥ iff [DT]S∪a

3 ∪ {c} ∪ {¬a} ` ⊥. As c→ a is an element of
[DT]S∪a

3 this holds and therefore a ∈ {o | DT ∪ {c} `S
3 o}. 2

This lemma shows us that when C ⊆ S, the parameter S has no effect on the condition
{o | DT ∪ {c} `S

3 o} used in explanative classification. As classically any explanative
solution is also a weak solution (Lemma 8.3.1.3), any solution which is not a weak solution
cannot be an explanative solution. This holds in particular for any c ∈ SS

W3 \ SW . Hence,
such a class c is not an element of {c | {o | DT ∪ {c} ` o} ⊆ Obs} and therefore by
Lemma 9.4.2.1 not an element of {c | {o | DT ∪ {c} `S

3 o} ⊆ Obs}. This leads us to the
following characterization of SS

E3:

Theorem 9.4.2.2 Let D ⊆ C, and O ⊆ O. If the domain theory DT has only class de-
scriptions without disjunctions then

S
(C\D)∪O

E3 = SE ∪D.

9.5 Approximating strong classification 123

Proof This follows from Lemmas 9.4.2.1 and 8.3.1.3. 2

This theorem states that the usefulness of approximating explanative classification by
using S-3-entailment is limited. There is no interpretation of SS

E3 possible in terms of
explanative classification in which missing or inconsistent attributes are allowed as there is
a one to one correspondence between classes not in S and classes in SS

E3. More precisely,
any sequence of sets S1 ⊆ S2 ⊆ · · · ⊆ Sn used as parameter in SS

E3 to approximate
explanative classification with increasing accuracy as Si increases, leads to the sequence of
solution sets SE ∪D1 ⊇ SE ∪D2 ⊇ · · · ⊇ SE ∪Dn, where Di = C \ Si, approximating
SE in an obvious but uninformative way.

9.5 Approximating strong classification

In this section we will investigate the influence of the approximate entailment relation of
Cadoli and Schaerf on strong classification where the class descriptions are given by neces-
sary conditions (Section 8.3.1). The approximations are obtained by selecting either `S

1 or
`S

3 instead of the usual entailment and additionally choosing an appropriate set of proposi-
tional letters S. As the entailment is also used in the definition of weak classification SW ,
the entailment is used twice in the definition of strong classification. More precisely, we
get the following approximations

SS
S1 = {c | DT ∪ {c} `S

1 Obs} ∩ SS
W1,

SS
S3 = {c | DT ∪ {c} `S

3 Obs} ∩ SS
W3,

for some set S of propositional letters.
Whenever DT ∪ {c} `S

3 Obs then also DT ∪ {c} ` Obs by Theorem 9.2.0.6. Thus
{c | DT ∪ {c} `S

3 Obs} ⊆ {c | DT ∪ {c} ` Obs}. However, in Lemma 9.3.0.11 we
proved SW ⊆ SS

W3. Hence, following this reasoning, SS
S3 is in general neither a lower-

or upper bound of strong classification. Analogously, it can be shown that SS
S1 is also in

general neither a lower- or upper bound of strong classification.
Although it cannot be determined at this point if the approximations of strong classifi-

cation are a lower- or upper bound of strong classification, its unclear how they should be
used to approximate strong classification. Nevertheless, we will analyse their properties.
(Actually, SS

S3 is an upper bound of strong classification, but the reasoning is more com-
plex and will therefore be deferred. The fact that SS

S3 is an upper bound will become clear
after we characterize SS

S3 for every possible choice for the parameter S in Section 9.5.2.)
The rest of this section is as follows: we start by deriving some results that restrict the

choice of the parameter S; thereafter we will derive results on how the approximations can
be interpreted.

124 Approximating classification

9.5.1 Restrictions on choosing S

Not every choice for the parameter S will lead to an useful approximation of strong clas-
sification. For example, taking the empty set for S will always result in SS

S1 being empty
and SS

S3 being the set of all possible classes. In this section we will derive some relations
between the parameter set S and the solution set SS

S3.

Lemma 9.5.1.1 If c 6∈ S then c 6∈ SS
S3.

Proof This follows directly from {o | DT ∪ {c}∪ `S
3 o} = ∅ (Lemma 9.4.1.1) and the

assumption that Obs 6= ∅ as this implies c 6∈ {c | Obs ⊆ {o | DT ∪ {c}∪ `S
3 o}} or

equivalently c 6∈ {c | DT ∪ {c}∪ `S
3 Obs}. Hence, c 6∈ SS

S3. 2

This result tells us that we can restrict the set of candidate solutions by choosing the
parameter S to be small. Any class c left out of S will not be part of the candidate solutions.

9.5.2 Interpreting S
S

S3

We start this section by analyzing the effect of leaving out classes from the parameter S.
Thereafter, we will analyse the effect of leaving out observations from the parameter S,
which will lead to a characterization of SS

S3.
In Lemma 9.5.1.1 we already proved that leaving out a class c of the parameter S will

result in c not being a member of the solution set SS
S3. We will prove that this is precisely

the resulting effect when classes are left out of the parameter S. More precisely, leaving
out classes from the parameter S is exactly SS

S3 (with all classes in S) restricted to a subset
of the class hierarchy. The proof of this result will be divided into two parts. First we prove
that the strong classification SS

S3 restricted to some part of the class hierarchy D (i.e.,
SC∪O

S3 ∩D) is an upper bound of the strong classification SD∪O
S3 (i.e., strong classification

in which certain classes are removed from the parameter S.).

Lemma 9.5.2.1 Let D ⊆ C, and O ⊆ O. Then SD∪O
S3 ⊆ SC∪O

S3 ∩D.

Proof Assume c ∈ SD∪O
S3 . Then c ∈ {c | DT ∪ {c}∪ `D∪O

3 Obs} which is a
subset of {c | DT ∪ {c}∪ `C∪O

3 Obs} by Theorem 9.2.0.6. Furthermore, c ∈ D
by Lemma 9.5.1.1. Therefore, the lemma is proven when we prove c ∈ SC∪O

W3 . This
holds iff DT ∪ {c} ∪ Obs 6`C∪O

3 ⊥ iff [DT]C∪O
3 ∪ {c} ∪ (Obs ∩ O) 6` ⊥ as an

S-3-interpretation amounts to removing all clauses with letters outside the parameter S.
In fact, this formula holds as c ∈ SD∪O

W3 , i.e., DT ∪ {c} ∪ Obs 6`D∪O
3 ⊥, which holds

iff [DT]D∪O
3 ∪ {c} ∪ (Obs ∩ O) 6` ⊥. As clauses that do not contain c can be added to

[DT]D∪O
3 without introducing an inconsistency, the result follows. 2

We continue by proving the converse of the previous lemma that strong classification
SS

S3 restricted to some part of the class hierarchy D (i.e., SC∪O
S3 ∩D) is a lower bound of the

strong classification SD∪O
S3 (i.e., strong classification in which certain classes are removed

from the parameter S.).

9.5 Approximating strong classification 125

Lemma 9.5.2.2 Let D ⊆ C, and O ⊆ O. Then SC∪O
S3 ∩D ⊆ SD∪O

S3 .

Proof Assume c 6∈ SD∪O
S3 . Then either c 6∈ SD∪O

W3 or DT ∪ {c}∪ 6`D∪O
3 Obs. If

c 6∈ SD∪O
W3 , then DT ∪ {c} ∪ Obs `D∪O

3 ⊥, which implies DT ∪ {c} ∪ Obs `C∪O
3 ⊥

(Theorem 9.2.0.6). Hence, c 6∈ SC∪O
W3 and therefore c 6∈ SC∪O

S3 ∩ D. Now assume
the second case holds, i.e., DT ∪ {c}∪ 6`D∪O

3 Obs and assume without loss c ∈ D.
The formula holds iff [DT]D∪O∪Obs

3 ∪ {c} ∪ ¬Obs∪ 6` ⊥. As clauses that do not
contain c can be added to [DT]D∪O

3 without introducing an inconsistency it follows
that [DT]C∪O∪Obs

3 ∪ {c} ∪ ¬Obs∪ 6` ⊥. However, the latter formula holds iff
DT ∪ {c}∪ 6`C∪O

3 Obs. Hence, c 6∈ {c | DT ∪ {c}∪ `C∪O
3 Obs} and therefore

c 6∈ SC∪O
S3 ∩D. 2

Summarizing the inclusions proven in Lemmas 9.5.2.1 and 9.5.2.1 leads us to the fol-
lowing characterization of the effect of leaving out classes from the parameter S:

Theorem 9.5.2.3 Let D ⊆ C, and O ⊆ O. Then SD∪O
S3 = SC∪O

S3 ∩D.

Proof This follows from Lemma 9.5.2.1 and 9.5.2.2. 2

Theorem 9.5.2.3 states that the effect of leaving out classes from the parameter S results
in a strong classification (using 3-entailment) restricted to those classes that are included
in S. Furthermore, leaving out a class from S has no effect on the classes that are still
included in S.

So far, we have only looked at the effect of leaving out classes from the parameter
S. We continue this section by looking at the effect of leaving out observations from the
parameter S. We will show that leaving out observations of S has no effect whatsoever
on the solution set SS

S3. Before doing so, we look at the effect of leaving out observations
from S under the condition that S contains the set C of all classes. We prove that under this
condition we obtain classical strong classification.

Lemma 9.5.2.4 Let C ⊆ S. Then SS
S3 = SS .

Proof SS
S3 = {c |DT ∪ {c} `S

3 Obs}∩SS
W3 = {c | Obs ⊆ {o |DT ∪ {c} `S

3 o}}∩ SS
W3

which by Lemma 9.4.2.1 is equal to {c | Obs ⊆ {o | DT ∪ {c} ` o}} ∩ SS
W3 =

{c | DT ∪ {c} ` Obs} ∩ SS
W3. As every element in SS

W3 \ SW is not an element of
{c | DT ∪ {c} ` Obs} (Lemma 8.3.1.2) this is equal to {c | DT ∪ {c} ` Obs} ∩ SW

which is the definition of SS . 2

Note that all ingredients are now proven to characterize SS
S3. Suppose we have some

parameter S = D ∪ O for some set D ⊆ C and O ⊆ O. In Theorem 9.5.2.3 we proved
that leaving out classes of the parameter S is the same as taking the intersection of the
solution set SC∪O

S3 with D. This solution set can be rewritten according to Lemma 9.5.2.4
to classical strong solution restricted to D. This characterization is stated in the following
theorem.

126 Approximating classification

Theorem 9.5.2.5 Let D ⊆ C and O ⊆ O. Then

SD∪O
S3 = SS ∩D.

Proof By Lemma 9.5.2.4 and Theorem 9.5.2.3 we have SD∪O
S3 = SC∪O

S3 ∩D = SS ∩D. 2

Note that this theorem states that the usefulness of approximating strong classification
by using S-3-entailment is limited. There is no interpretation of SS

S3 possible in terms of
strong classification in which missing or inconsistent attributes are allowed as there is a one
to one correspondence between classes not in S and classes not in SS

S3. Strong classification
with S-3-entailment can only be used to restrict strong classification to a subset of the class
hierarchy.

9.6 Summary
In Section 9.3, 9.4, and 9.5 we analysed the effect of the approximate entailment operators
of Cadoli and Schaerf on the formalizations of classification we obtained in Chapter 8 with
classes represented by necessary conditions. In this section we give an overview of the
main results we obtained.

We started by analyzing the effect of both S-1- and S-3-entailment applied to weak
classification. The use of S-1-entailment led to a complex classification method that we
could not easily characterize. As strong- and explanative classification both used weak
classification in their definitions, we therefore restricted the remainder of the analysis to
the application of S-3-entailment to the various classification criteria,

For weak classification we proved first that it was unreasonable to leave out classes
from the parameter S, because any class not in S would be part of the solution set SS

W3.
Second, under the assumption that C ⊆ S, we proved that SS

W3 is exactly the same as weak
classification that allows for certain attributes to have an inconsistent value. This follows
from the formula we obtained in Theorem 9.3.2.6:

S
C∪(O\Oincorrect)
W3 = Sincorrect

W .

For explanative classification we proved that the approximation obtained by using
S-3-entailment is not useful as the approximation obtained led to an uninformative se-
quence of approximating sets of the solution set SS

E3. This follows from the following
formula we obtained in Theorem 9.4.2.2

S
(C\D)∪O
E3 = SE ∪D,

for some set D ⊆ C and some set O ⊆ O.
For strong classification we proved that the approximation obtained by using S-3-

entailment is exactly the same as classical strong classification restricted to a part of the
class hierarchy. This follows from the following formula we obtained in Theorem 9.5.2.5

9.7 Conclusions 127

SD∪O
S3 = SS ∩D,

for some set D ⊆ C and some set O ⊆ O.

9.7 Conclusions

This study began with the premise that methods are needed that are robust enough to deal
with incorrect and incomple data. In particular many AI tasks would benefit from such
a robustness property as the knowledge and data used by such tasks are often inherently
incorrect and incomplete for some part. Furthermore, general approximation methods are
preferred as new research areas will create new tasks which could benefit by being more
robust in dealing with incorrect and incomplete information.

A general technique for approximating logical inference problems one can use is replac-
ing the standard entailment operator by the approximate entailment operators developed in
[Schaerf and Cadoli, 1995]. Although this technique is general and has some desirable
properties, little is known about the method when applied to specific problems. This chap-
ter analysed the applicability of the method of Cadoli and Schaerf to classification.

The main results of this chapter are the formulas obtained that describe the effect of
replacing the entailment operator by the S-3-entailment operator for three of the classifi-
cation forms. It was proven that, using S-3-entailment, approximate weak classification
behaves identical to weak classification that allows for certain inconsistencies. Further-
more, approximate strong classification behaves identical to strong classification restricted
to a subset of all classes. The solutions to approximate explanative classification are iden-
tical to classical explanative classificaton to which a set of classes is added.

Although approximations constructed using S-1- and S-3-entailment satisfy a number
of properties desirable for any approximation method (Section 1.3.1), the usefulness of the
method for practical applications remains questionable.

First, the theoretical analysis done so far, shows that the usefulness of the approxi-
mate entailment operators is limited when applied to the task of classification. Only S-3-
entailment applied to weak classification leads to an approximation that can be interpreted
in terms of missing or inconsistent attributes. S-3-entailment applied to strong- and expla-
native classification leads to obvious and uninformative approximations that can be written
as a union or intersection of sets.

Second, obtaining a clear theoretical analysis of the effect of applying S-1- or S-3-
entailment to some task may be hard if not impossible. Even for a task as classification
with an easy and limited structure we were not able to obtain a clear description of the
effect of S-1-entailment applied to the three classification forms.

Third, the method of S-1- and S-3-entailment uses a parameter S containing proposi-
tional letters. The accuracy of the approximation can be increased by adding more letters
to S. The method of Cadoli and Schaerf does not provide any information about how to
choose the letters that should be added to S and the order in which this should be done.

128 Approximating classification

The parameter S should be chosen in such a way that the obtained approximation behaves
like an anytime algorithm (Section 1.3.1).

The last point shows that a theoretical anlysis is not always sufficient to obtain all
the information needed for a method (like S-1- and S-3-entailment) to be applicable for
practical problem solving . The following chapter looks at empirical analyses for obtaining
such information for S-1- and S-3-entailment.

Chapter 10

Empirical analysis

10.1 Introduction

Chapter 9 analyzed the approximations by using the definitions of the method of Cadoli
and Schaerf [Schaerf and Cadoli, 1995] together with some of its properties, and the rules
of propositional logic. The benefit of this approach is that a formula obtained using this
kind of analysis can give a very precise description of the effect of replacing the entail-
ment operator by either S-1- or S-3-entailment. However, this approach also has some
drawbacks.

First, it may not be possible to find a formula describing the effect of replacing the
entailment operator by either S-1- or S-3-entailment. Such a formula may not exist, or
it may be too difficult to obtain. For example, the analysis of Chapter 9 does not provide
any formula for any approximation that contains SS

W1, i.e., approximate weak classification
using S-1-entailment.

Second, even if a description in the form of a formula is obtained, it may not contain
all necessary information. For the method of Cadoli and Schaerf to be applicable one also
needs to know how to choose the parameter S, i.e., how to determine which letters should
be added to S and in which order. Furthermore, information is needed about the quality of
the approximation and how fast the approximation improves over time.

The analysis performed in Chapter 9 should therefore be done together with an empir-
ical analysis of the various approximations. Such an empirical analysis may result in new
insights for approximations that could not be clearly described using an theoretical analy-
sis. Furthermore, an empirical analysis may provide guidelines for choosing the parameter
S and give quantitative information about the approximation methods (e.g., the growth rate
of the set of solutions when S increases).

The rest of this chapter is structured as follows. Section 10.2 discusses some ques-
tions that should be answered before any empirical analysis can be started. Thereafter,
results of two empirical analyses are presented. Section 10.3 gives results of approximate
strong classification using S-3-entailment on a constructed theory with various orderings
of S. The goal of this section is to provide empirical results that corroborate the results of
Chapter 9. Section 10.4 also gives results about approximate strong classification using S-

130 Empirical analysis

3-entailment, but validates an ordering of S that is based on certain properties of a theory.
The chapter ends by giving conclusions in Section 10.5 and future work in Section 10.6.

10.2 Preliminary questions
To quantitatively analyze the approximations obtained by using S-1- or S-3-entailment, a
number of questions should be addressed before any experiment can be started.

The goal. For what reason do we perform the quantitative analysis? Several reasons can be
given for performing a quantitative analysis. For example, to corroborate a formula
obtained by analysing the logical formulas, collect data from which a formula may
be constructed (as a hypothesis), or to obtain quantitative information not present in
any formula obtained yet.

The domain. Which parameters of a domain may influence the results of an empirical
analysis? As different domain theories may result in different quantitative properties
for the approximations one needs to identify those parameters of a theory that may
influence the outcome of an empirical analysis. For example, when a domain theory
contains clauses of the form c→ a1∨ . . .∨an then n is a parameter as this has effect
on the length of a clause.

The parameter S. Which letters should be added to the parameter S and in which order?
To run experiments with a parameter S, which increases by adding new letters, one
needs to specify in which order letters are added to S and how many letters are added
to S at each iteration.

Presentation. How do we present the results of the empirical analysis? The method that
has been approximated using S-1- or S-3-entailment returns an approximate result.
The question rises how to present for some or each parameter choice of S the corre-
sponding approximate results. One should keep in mind that the empirical analysis
may result in a large set of data. This data should be presented in such a way that it
is clear if the goal of the analysis is obtained.

10.3 Experiment 1
Consider the case of strong classification as this form of approximate classification (to-
gether with explanative classification) imposes the most constraints on a domain theory
DT . (In particular, this section looks at approximate classification constructed by using
S-3-entailment.) A theory DT that can be used for strong classification consists of the
following two types of clauses:

c→ ai,

a1 → ¬a2 ∧ . . . ∧ ¬an.

10.3 Experiment 1 131

The first clause is part of a class description. The second clause ensures that each attribute
can only have one value at a time. Note that DT ∪ {c} is assumed to be consistent, which
means that DT cannot include c → ai and c → aj for i 6= j (i.e., a class c cannot have
two different values for the same attribute). Before continuing with an empirical analysis
we will consider the questions posed in the previous paragraph.

In the case of strong classification approximated by using the S-3-entailment operator,
a formula can be given that clearly describes the effect of replacing the entailment operator
by S-3-entailment (Theorem 9.5.2.5). It states that adding observations to S will leave the
approximation unchanged. Adding a class to S either adds the class to the set of approxi-
mate solutions or leaves the set of approximate solutions unchanged (depending on whether
the class is a solution for classical strong classification). Based on these observations, the
goal of the empirical analysis of this section is to collect data that corroborates Theorem
9.5.2.5.

Considering the question about the structure of the domain one can identify parameters
such as:

1. The number of values for an attribute as this directly influences the length of the
clauses for ensuring the exclusion of multiple values for an attribute.

2. The number of attributes for a class (e.g., c → ai and c → bj with a 6= b) as this
influences the number of clauses for each class.

3. The number of classes for an attribute (e.g., c → ai and d → aj with c 6= d) as
any operation on an attribute (e.g., removal) will influence the classes occurring in a
clause with that attribute.

However, the empirical analysis of this section is used to corroborate Theorem 9.5.2.5.
No quantitative information like for example the growth rate of SS

S3 for increasing S is
obtained. These parameters are therefore not important for the empirical analysis of this
section.

Considering Theorem 9.5.2.5 and the question about the parameter S, it follows that
any ordering of the classes can be used. Various orderings on the classes should give the
same results. Adding a class c to S results either in SS

S3 remaining the same or c being
added to SS

S3. Theorem 9.5.2.5 also states that adding observations to S does not change
the solution set SS

S3. This can be tested by taking an ordering of the classes and experiment
by placing the observations either at the end or at the beginning.

For the presentation a table can be used for presenting the results. As these experiments
are used to corroborate Theorem 9.5.2.5, it should be clear from this table and its context
which classes are added to S, which classes are returned by the approximation, and which
of those classes belong to the solution set SS of classical strong classification. The size of
a table can be reduced by only presenting the parameters that results in an actual change of
a solution set.

132 Empirical analysis

10.3.1 The experiment

To run the experiment a theory (i.e., a domain of classes and attributes) is needed. As
noted in the previous section, for this experiment it does not matter which parameters are
used for the construction of a theory as these cannot influence the corroboration of a qual-
itative result. However, the theory should at least ensure a reasonable number of classical
strong solutions in a domain not too large. For some parameters a reasonable choice should
therefore be made beforehand while the remaining parameters can be chosen at random.

In Chapter 8 it was observed that for a class c to be a strong solution for some set Obs
of observations it must hold that AObs ⊆ Ac (just below Definition 8.2.3.5). It follows that
a class is more likely to be a strong solution when AObs is small and Ac is large. Hence,
a class description should have many AV-pairs and the object description should have few
AV-pairs. Furthermore, for a class to be a strong solution there must be a match between
values of similar attributes in the object description and in the class description. This match
is more likely if attributes are not allowed too many values.

In our experiment the parameters ‘number of classes and attributes’, ‘minimum and
maximum attributes for each class’, ‘and minimum and maximum number of values for
each attribute’ were chosen beforehand while the rest of the theory was created at random.
This resulted in a theory with 20 classes, 5 attributes (one attribute with 2 values and the
rest with one value), and 1 observation for the object description.

The implemented algorithm of approximate strong classification uses an external call
to a SAT solver which accepts files in the DIMACS cnf format.i Therefore, all classes
and AV-pairs are represented by numbers in the implementation. Numbers 1 through 20
represent classes and numbers 21 through 26 represent AV-pairs with 21 the AV-pair used
in the object description. For a clearer reading we will write in the remainder of this chapter
ci for some i that represents a class, and oi for some i that represents an AV-pair. In the
following the shorthand 3–7 is used to denote the sequence of numbers 3,4,5,6, and 7.
Running a classic weak- and strong classification algorithm on the theory plus a single
observation results in the following solution sets:

SW = c1−3, c5−10, c13−17, c19,
SS = c1, c3, c5, c8−10, c13−16, c19.

Note that SS ⊆ SW holds.
Now all ingredients, except for the parameter S and an ordering on S, are present to

investigate the approximate version of strong classification with S-3-entailment with an
empirical analysis. As weak classification is part of the definition of strong classification,
attention is first given to this approximation before looking at approximate strong classifi-
cation.

iftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc

10.3 Experiment 1 133

10.3.1.1 Approximate weak classification

The approximate weak classification algorithm SS
W3 is first applied to the sequence

c1−20,o21−26, i.e., the algorithm starts with the parameter S = {c1} and adds the ele-
ments in the order of the sequence c1−20,o21−26 to S one at a time at the start of each
iteration of the algorithm. Hence, first the classes are added in the order c1−20, then the
object description o21 is added, and finally the other AV-pairs o22−26 are added. The re-
sults are shown in Figure 10.1. Note that at the end of the ordering, when S includes all
letters of the alphabet, SS

W3 should be equal to classical weak classification SW . In figures
that present results of the empirical analysis this is always shown in the bottom line of the
figure.

S SS
W3

c1 c1−20

c1−20,o21 c1−3, c5−10, c13−17, c19

Figure 10.1: SS
W3 with order c1−20,o21−26.

Note that only those choices for the parameter S are shown that change the approxima-
tion SS

W3 when compared to the previous iteration. Hence, Figure 10.1 should be read as
follows. The first iteration of SS

W3 is with S = {c1}. As nothing has been computed be-
fore, this line is shown in Figure 10.1 and it states that the algorithm returns all 20 classes.
Then for a number of iterations of the algorithm nothing happens until o21 is added to S.
As Figure 10.1 shows, the output of SS

W3 changes from ‘c1−20’ to ‘c1−3, c5−10, c13−17,
c19’, which is equal to SW .

A number of observations can be made about Figure 10.1, which also hold when tested
with other orderings for S. First, adding the AV-pairs o22−26 does not result in any changes.
Theorem 9.3.2.6 states that SS

W3 is the same as weak classification that allows inconsisten-
cies for those AV-pairs that are not in S. As there is no consistency check for AV-pairs that
do not belong to the object description, it does not matter if these AV-pairs are included or
excluded from S.

Second, Figure 10.1 indicates that the AV-pair o21 may be important as adding this
value results in a change of the solution set SS

W3. This observation is in fact already stated
in Lemma 9.3.1.5. When S ∩ Obs = ∅ (i.e., in this case o21 6∈ S) then SS

W3 includes all
classes. As not much can be observed from one run of the approximate weak classification
algorithm, it should also be run using other orderings. For example, running the algorithm
on the ordering c1−20,o22−26,o21 shows behaviour similar to Figure 10.1. When o26 is
added to S, SS

W3 still contains all classes, but when o21 is added, SS
W3 becomes equal to

SW .
Putting o21 in front of the ordering, (e.g., as in the ordering o21−26,c1−20), results in

SS
W3 undergoing more changes (Figure 10.2). Note that these results illustrate Lemma

9.3.1.4. Any class not in S is included in SS
W3, but as soon as this class is added to S and

found to be inconsistent it is removed from SS
W3. For example class c11 is added to S in

134 Empirical analysis

S SS
W3

o21 c1−20

o21−26,c1−4 c1−3, c5−20

o21−26,c1−11 c1−3, c5−10, c12−20

o21−26,c1−12 c1−3, c5−10, c13−20

o21−26,c1−18 c1−3, c5−10, c13−17, c19−20

o21−26,c1−20 c1−3, c5−10, c13−17, c19

Figure 10.2: SS
W3 with order o21−26,c1−20.

line three and is also removed from SS
W3 in line three. Note that the observations o21−26 are

first added, and therefore no inconsistencies are allowed for any class (Theorem 9.3.2.6).
Note that from an anytime perspective Figure 10.2 should be preferred over Figure

10.1. The change of the solution set SS
W3 is more gradual in Figure 10.2 than in Figure

10.1. Hence, from the previous observations one can conclude that an ordering that puts
the AV-pairs of the object description in front is preferred (from an anytime perspective)
when used in the computation of SS

W3.
Sofar, only SS

W3 has been discussed. The rest of this section looks at SS
S3.

10.3.1.2 Approximate strong classification

The same empirical analysis, i.e., using the same theory and same choices for the parameter
S, were also performed for SS

S3. The results of this analysis are shown in Figure 10.3.

S SS
S3

c1 c1

c1−3 c1, c3

c1−5 c1, c3, c5

c1−8 c1, c3, c5, c8

c1−9 c1, c3, c5, c8−9

c1−10 c1, c3, c5, c8−10

c1−13 c1, c3, c5, c8−10, c13

c1−14 c1, c3, c5, c8−10, c13−14

c1−15 c1, c3, c5, c8−10, c13−15

c1−16 c1, c3, c5, c8−10, c13−16

c1−19 c1, c3, c5, c8−10, c13−16, c19

Figure 10.3: SS
S3 with order c1−20,o21−26.

Figure 10.3 shows the same results as stated by Theorem 9.5.2.5. A class is only given
as output when this class is included in the parameter S and is a solution according to

10.4 Experiment 2 135

classical strong classification. Using other orderings for the algorithm on the same theory
(data not shown here) results in similar behaviour.

Further note that in Figure 10.3 adding AV-pairs to S has no effect on the solution set
SS

S3. Using other orderings for the algorithm on the same theory (data not shown here)
results in similar behaviour.

10.4 Experiment 2
The method of Cadoli and Schaerf uses a paramter S resulting in a whole spectrum
of approximations that range from zero to optimal precision. The practical useful-
ness of the method therefore depends on the choice for S, making this choice a cru-
cial part of the method. Currently, the method has not been evaluated beyond diagnosis
in [tenTeije and vanHarmelen, 1996, tenTeije and vanHarmelen, 1997] and belief revision
[Chopra et al., 2001] by means of a quantitative and qualitative analysis. In this section
heuristics are presented for the parameter S for strong and explanative classification and
validated against random orders of S.

Section 10.4.1 presents the experimental analysis of strong classification. Section
10.4.2 presents the experimental analysis of explanative classification. Note that in Chap-
ter 9 a number of restrictions for reasonable choises for S were obtained. Hence, the
theoretical analysis of Chapter 9 can be used to set boundaries for choices for S. One such
boundary is leaving out observations from S. In Chapter 9 it was shown that adding obser-
vations to S does not influence the approximations for strong classification and explanative
classification. Hence, in the following experiments we can restrict the order of S to an
order of the classes.

10.4.1 Approximate strong classification

With approximate strong classification the set of solutions is approximated from below
(sound but incomplete), i.e., by adding more classes to S more strong solutions are ob-
tained. A reasonable choice for S therefore seems to be to prefer a class c over a class d
when class c is more likely to be a strong solution. As for strong classification AObs ⊆ Ac

must hold (i.e., all attributes in Obs must also occur in c and their values must match), this
seems to be the case when (1) the number of attributes in the class description of c is higher
than the number of attributes in the class description of d, and/or (2) the number of possible
values that can be assigned to attributes of c is less than the number of possible values that
can be assigned to attributes of d. (More precisely, the second heuristic is computed by
taking the product of the number of possible values per attribute.)

These two heuristics lead to four possible orders. S1: apply only the first heuristic, S2:
apply only the second heuristic, S3: apply the first followed by the second heuristic (in
case two classes have the same number of attributes), and S4: apply the second heuristic
followed by the first heuristic (in case two classes have the same product of the possible
values per attribute).

136 Empirical analysis

10.4.1.1 The experiment

For the experiment of strong classification a larger theory was created than the one used
in the first empirical analysis. To obtain a reasonable number of classical strong solutions
some conditions were set for the theory while the rest of the theory was created randomly.
The theory consisted of 100 classes and 10 attributes. The maximum allowed number of
values for an attribute was set at 5 and the class descriptions contained between 5 and 10

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100

nr
 o

f s
ol

ut
io

ns

Size of S

Heuristic vs. random orderings

heuristic

(a)

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100
nr

 o
f s

ol
ut

io
ns

Size of S

Heuristic vs. random orderings

heuristic

(b)

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

nr
 o

f s
ol

ut
io

ns

Size of S

Heuristic vs. random orderings

heuristic

(c)

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

nr
 o

f s
ol

ut
io

ns

Size of S

Heuristic vs. random orderings

heuristic

(d)

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

nr
 o

f s
ol

ut
io

ns

Size of S

Heuristic vs. random orderings

heuristic

(e)

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

nr
 o

f s
ol

ut
io

ns

Size of S

Heuristic vs. random orderings

heuristic

(f)

Figure 10.4: Results of heuristic order S3 against 5 random orders.

10.4 Experiment 2 137

attributes. Furthermore, 30 random object descriptions were created containing one, two,
or three observations.

The goal of the experiment is to validate the heuristic orders S1, . . . , S4 against each
other and against random orders. An order o1 is preferred over an order o2 if the approxi-
mating behaviour of the approximation SS

S3 has a better anytime performance profile using
order o1 then when using order o2 for the parameter S.

Some results of the order S3 against 5 random orders are shown in Figure 10.4. The
results of the experiment are presented as follows. Each subfigure shows the results of
the orders on one specific object description. On the x-axis the size of the parameter S
is given (i.e., the number of classes) and on the y-axis the number of solutions is given
(i.e., the number of classes included in the solution set SS

S3. Note that for different object
descriptions the total number of classical strong solutions is usually different. The scale
of the y-axis will depend on the maximal number of classical strong solutions and will
therefore be different for the various subfigures.

Comparing the heuristic order S3 against the random orders, one can identify three
different kind of comparisons. The heuristic order performs better on Figures 10.4(a),
10.4(b), and 10.4(c). The heuristic order performs nor better nor worse on Figure 10.4(d).
In the first part of the graph, the random orders perform better, but in the last part of the
graph the heuristic order performs better. The heuristic order performs worse on Figures
10.4(e) and 10.4(f).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
um

be
r o

f a
pp

ro
xi

m
at

e
st

ro
ng

 s
ol

ut
io

ns

Size of parameter S

PSfrag
replacem

ents

S1
S2
S3
S4

random

Figure 10.5: Results of orders S1, . . . , S4 and three ran-
dom orders in approximate strong classification.

Note that from an any-
time perspective Figure 10.4(a)
shows the preferred behaviour
of an anytime algorithm. The
solution set grows monoton-
ically, which ofcourse also
holds for the other figures, but
the graph also shows a dimin-
ishing return (i.e., most of the
solutions are generated at the
beginning).

Sofar only the approxi-
mating behaviour is obtained
for specific object descriptions.
More interesting is to compute
the average approximating be-
haviour of the various orders
on a set of observations. As the
number of strong solutions will
be different for different object
descriptions, each result on one
specific object description needs to be normalized before the average can be computed. In
the following the quality of the approximate strong classification algorithm will be mapped

138 Empirical analysis

on the interval [0,1] by dividing the obtained value through the maximum value that can be
obtained, i.e., the number of classical solutions.

Figure 10.5 shows the results of the orders S1, . . . , S4 as well as three random orders.
More random orders were tested in practise, which resulted in similar behaviour as shown
in Figure 10.5, but they are left out for readability.

The results show that the order that selects classes with the highest number of attributes,
i.e., S1, performs much better than a random order for S. Figure 10.5 also shows that S1

can be further improved by also considering the number of possible values, i.e., S3. The
orders that first select the classes with the lowest number of possible values, i.e., S2 and
S4 perform much worse than a random order of S. This may seem surprising at first, but
not when considering the results of order S1. Classes with the lowest number of possible
values are often classes with less attributes (as one less attribute means one less number in
the product used to compute the second heuristic), hence orders S2 and S4 tend to take the
opposite order of S than S1.

10.4.2 Approximate explanative classification

With approximate explanative classification the set of solutions is approximated from above
(complete but unsound), i.e., by adding more classes to S more incorrect solutions are
discarded. A reasonable choice for S therefore seems to be to prefer a class c over a class
d when class c is less likely to be an explanative solution. As for explanative classification
Ac ⊆ AObs must hold, this seems to be the case when (1) the number of attributes in the
class description of c is higher than the number of attributes in the class description of d,
and/or (2) the number of possible values that can be assigned to attributes of c is higher
than the number of possible values that can be assigned to attributes of d.

These two heuristics lead to four possible orders. E1: apply only the first heuristic, E2:
apply only the second heuristic, E3: apply the first followed by the second heuristic (in
case two classes have the same number of attributes), and E4: apply the second heuristic
followed by the first heuristic.

The goal of the experiment is to compute the average approximating behaviour of the
various orders. As the set of classic solutions is approximated from above (incorrect solu-
tions are discarded when S increases) normalization of the result of each object description
is more complicated than the case of strong classification. To obtain an increasing quality
function on the interval [0, 1] as in Figure 10.5 we apply for a theory with n classes the
normalization (n−v(i, o, s))/(n−v(n, o, s)) where v(i, o, s) is the size of the solution set
at iteration i for some object description o and some chosen order s. Note that v(n, o, s) is
equal to the number of classical explanative solutions.

The theory used for the experiment consisted of 100 classes and 10 attributes. The
maximum number of allowed values per attribute was set at 7 and the class descriptions
contained between 1 and 3 attributes. Furthermore, 30 random object descriptions were
created consisting of eight, nine, and ten attributes. The results of the experiment are
shown in Figure 10.6.

10.5 Conclusion 139

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
um

be
r o

f a
pp

ro
xi

m
at

e
ex

pl
an

at
iv

e
so

lu
tio

ns

Size of parameter S

PSfrag
replacem

ents

E1
E2
E3
E4

random

Figure 10.6: Results of orders S1, . . . , S4 and three ran-
dom orders in approximate explanative classification.

In this experiment, all
heuristic orders produce a bet-
ter approximating behaviour
when compared with the ran-
dom orders. However there
is little to choose between the
various heuristic orders. Order
E1, which only considers the
number of attributes, performs
worst, but it can be improved
by also considering the num-
ber of values (E3). The best
orders are E2 and E4. Note
that classes with many possi-
ble values for its attributes are
often also classes with many
attributes. Hence, the sec-
ond heuristic tends to prefer
classes also preferred by the
first heuristic. Therefore, all
orders based on the two heuristics result in very similar approximating behaviour.

Note that similar experiments on a different theory resulted in similar behaviour as in
Figure 10.6. However, the difference between the various orders E1, . . . , E4 was even less,
probably caused by a lower number of explanative solutions.

10.5 Conclusion
Using a theoretical analysis does not allways provide all the necessary information about a
method. In particular, the analysis of Chapter 9 does not provide guidelines for choosing
which letters should be added to the paramter S and in which order. This chapter fills in
some of the gaps of Chapter 9 by using empirical analyses of the approximate classification
forms constructed by using S-1- and S-3-entailment.

This chapter first discussed the kind of questions one needs to answer before any ex-
periments can be started. Thereafter it presented two empirical analyses, one for providing
corroboratory results for the theoretical results of Chapter 9 and one for validating a partic-
ular choice of S for a given theory.

Although an empirical analysis is useful to accompany a theoretical analysis, some
drawbacks of this approach were found. Although some of these may be obvious, one
should be aware of these drawbacks.

First, results of an empirical analysis may depend on the particular instance used for
analysing a method. For example, in this chapter, empirical results may depend on the
theory used for classification. Determining the structure of such a theory and representing

140 Empirical analysis

it as a set of parameters may be hard if not impossible.
Note that the experiments performed in this chapter did not depend on any parameter

of the domain. This problem therefore did not need to be addressed. In Section 10.3 we
mentioned some parameters that may be important when performing an empirical analysis
of approximate classification. However, there is no indication if the given list of parame-
ters is complete and fully characterizes the domain or identifies all possible influences on
experimental results.

Second, even if a domain can be characterized as a set of parameters, there may be too
many parameters to explore using an empirical analysis.

Third, if not all instances of a problem can be used in an empirical analysis, then the
results of this analysis cannot be used as facts. An empirical analysis can be used to cor-
roborate a statement or theory and provide insight in a problem. However, an empirical
analysis cannot be used to prove a property of a method unless all instances are explored.

10.6 Future work
A theoretical analysis as well as an empirical analysis have been presented for the approx-
imate entailment operators of [Schaerf and Cadoli, 1995]. Both of these analyses allow
room for further research.

The theoretical analysis of Chapter 9 gives a detailed analysis of S-3-entailment used
in classification. However, the analysis can be expanded in two ways. First, the analysis of
Chapter 9 is restricted to classes defined by necessary conditions. The other representations
mentioned in Section 8.3 should be included in future research. Second, all obtained results
are for S-3-entailment. No results are obtained for S-1-entailment. This form of approxi-
mation led to a complex formula when used in weak classification that could not easily be
described. Nevertheless, it should be considered for future work. Another approach might
be to accompany the theoretical analysis of S-1-entailment used in classification with an
empirical analysis.

The empirical analysis of this chapter presented two analyses, which can be expanded
in a number of ways. The second analysis (Section 10.4) validated a particular choice of
ordering on S against random orderings on a given theory. One could try to construct other
kind of orderings and validate these against the proposed ordering. Note that the theory
used in the experiment was random. Other orderings might be preferable when more is
known about a theory. For example, when an object description may only contain positive
observations.

Another interesting path to explore is the use of another logic. This part of the disser-
tation focussed mainly on formalizations of classification in propositional logic. However,
the method can also be used for formalizations in first-order logic.

Last but not least, other tasks should be considered, which can be formulated in logic,
that may be useful when approximated by using the approximate entailment operators. The
more so, as the usefulness of the approximate entailment operators applied to classification
is limited. The analyses presented in this chapter, i.e., the combination of theoretical and

10.6 Future work 141

empirical analyses, can be used as a guide to perform similar studies of the approximate
entailment operators applied to other domains.

142 Empirical analysis

Part IV

Contributions and Discussion

Chapter 11

Contributions and discussion

11.1 Contributions
This dissertation addresses the following research goal:

“A theoretical and empirical analysis of the effect of approximation on sym-
bolic problem solving.”

The approach to this research goal was to analyse three specific areas in which ap-
proximation is present or could be used in a promising way in symbolic problem solving.
These areas were: I. Knowledge-Based Systems, II. Knowledge Compilation, and III. Ap-
proximate Entailment. More specifically, in these three areas respectively, this dissertation
looked at the following research goals:

1. Quantifying the robust behaviour of KBSs in the presence of incorrect and incom-
plete knowledge or data.

2. Analyse the applicability of knowledge compilation techniques to planning prob-
lems.

3. Analyse the applicability of the approximate entailment operator to classification
problems.

The contributions of this dissertation that followed from these research goals were al-
ready mentioned in Section 1.4. This section describes those contributions in more detail.

Part I: Methodology for measuring the robustness of KBSs. (Chapter 2) After argu-
ing the need for quantitative analysis of KBSs, Chapter 2 describes a methodology
for measuring the robustness of KBSs with respect to some input quality (e.g., cor-
rectness of knowledge or data input). The methodology is based on the notion of
degradation studies: analyse how the quality of the output changes as a function of
degrading input (e.g., knowledge base, data input). For measuring the output quality,
the methodology uses the measures recall and precision, which are well known mea-
sures from the field Information Retrieval. The generality of these measures makes
them applicable to a wide range of KBSs. The measurement of the input quality

146 Contributions and discussion

is deliberately left open because it depends on the system under study. However,
two aspects (correctness and completeness) are proposed for consideration. The in-
terpretation of the results of the robustness analysis are also left open because the
interpretation depends on the goal of the robustness analysis and the system under
study. Chapter 2 proposes a number of competing definitions for comparing the ro-
bustness results of different systems (or different variations of a system) on the same
degrading.

Part I: Application of the proposed methodology to a particular KBS. (Chapter 3) Be-
sides claiming to have a methodology for measuring the robustness of KBSs with
respect some input quality, a case study is performed in which the methodology is
applied to a realistic KBS for classifying commonly occurring vegetation in South-
ern Germany. In this case study the robustness is measured with respect to incom-
plete data input as well as an incomplete and incorrect knowledge base. This case
study shows that the methodology is attainable when applied in practice and that the
methodology can lead to a better insight of the system under study.

Part II: Empirical analysis of the use of knowledge compilation for planning prob-
lems. (Chapter 7) As it is still unclear what can and cannot be achieved through
knowledge compilation, empirical analyses are needed to show the applicability of
knowledge compilation to practical problems. Chapter 7 reports the results of exper-
imentation with knowledge compilation. First, the three main parameters in this kind
of empirical research are identified. The main parameters are the problem domain,
the encoding of the problem domain, and the knowledge compilation method used.
The specific choices that are made for the empirical analysis of Chapter 7 are to look
at the domain of planning problems, which are translated from PDDL into proposi-
tional logic using the Medic planner. The knowledge compilation methods that are
used are Zres and Directional Resolution. Various parameters are investigated in the
empirical analysis (e.g., encoding, adding domain specific knowledge, different plan-
ning problems) and although there is some difference in results for various parameter
choices, no substantial gain is obtained through knowledge compilation. More pre-
cisely, all the results that are obtained in the empirical analysis are negative. At the
very least this shows that making knowledge compilation practical is non-trivial.

Part III: A formal analysis of classification, including forms of approximate classifi-
cation. (Chapter 8) Using the systematic set-theoretic description of classification
given in [Jansen, 2003] we formalize classification in propositional logic. By vary-
ing the comparisons between attributes in the object description and attributes in the
class descriptions various forms of classification are obtained. These classification
forms are formalized in propositional logic under various representations for the class
descriptions. The chapter concludes with two intuitive forms of approximate clas-
sifications, namely classification that allows missing or incorrect attributes. These
approximations are also considered in [Jansen, 2003], but in this dissertation we give
a formalization in propositional logic and make a clear distinction between missing

11.2 Discussion 147

or incorrect attributes occurring in either the object description, class description, or
both.

Part III: A formal analysis of the use of approximate deduction for classification rea-
soning. (Chapter 9) Classification is approximated by using the approximate entail-
ment operator of Cadoli and Schaerf in the logical definitions given in Chapter 8.
These approximations are analysed using propositional reasoning and properties of
the approximate entailment operator. This results in three formulas, which clearly
describe the effect of the approximate entailment operator. In particular the approxi-
mation of weak classification using S-3-entailment is shown to be equivalent to weak
classification that allows for inconsistent attributes. The approximation of strong
classification using S-3-entailment is shown to be equivalent to strong classification
restricted to a part of the class hierarchy. The approximation of explanative classi-
fication using S-3-entailment is shown to be equivalent to explanative classification
with a union of some classes.

Part III: Empirical analysis of approximate classification through approximate de-
duction. (Chapter 10) This chapter argues the need for an empirical analysis of the
method of Cadoli and Schaerf. Certain information like which letters and in which
order those letters should be added to the parameter S cannot be obtained through a
theoretical analysis. After discussing the kind of questions one need to answer for an
empirical analysis of the method of Cadoli and Schaerf two empirical analyses are
presented. The first analysis is done for obtaining information that corroborates the
theoretical results obtained in Chapter 9. The second analysis is done for validating a
particular ordering of the parameter S on a given theory, i.e., the kind of information
that could not be obtained through the theoretical analysis used in Chapter 9.

11.2 Discussion
Although there has already been done much research on the topic of approximation in
general, there are still many question left to be answered. This also holds when we restrict
our attention to symbolic problem solving. The lack of a numeric measure in a logical
problem that tells us how much an approximate solution differs from the correct solution
means that all research on numeric problem approximation cannot directly be applied when
tackling symbolic problem solving through approximation.

The quality of an approximation of a logical problem is usually stated in terms of sound-
ness and completeness. Such a quality measure is qualitative. Considering some algorithm
for an inference problem, it may state for example that all solutions given as output are cor-
rect, but may be some correct solutions are not given as output. Quantitative information
can often not be given using such measures, e.g., how many correct solutions are not given
as output.

Therefore, theoretical analysis should be accompanied by empirical analysis. There is
often a lack of attention to this kind of research. New methods and techniques are developed

148 Contributions and discussion

one after another and are shown to outperform its predecessors either on some small set of
examples or by means of a worst-case complexity analysis. Although such analysis is
useful it does not make those techniques applicable for practical problem solving.

One can identify a number of problems in current research that hinder the applicability
of techniques in a practical setting. First, methods are often tested on problems that are
either too small or too artificial. Hence, it will be unclear if the method can be applied
to larger problems (i.e., is the method scalable) or if the method can be applied to other,
realistic domains.

Second, empirical analysis is done on a limited scale and is sometimes even lacking
for certain methods and techniques. In the latter case the reason for the lack of empir-
ical analysis may be because either no one has ever bothered to perform an empirical
analysis, or someone did perform an empirical analysis, but did not (or could not) com-
municate the results to other researchers. Note that the lack of communication especially
holds when the results of an empirical analysis are negative. This believe corresponds with
[McDermott, 1981], as one of the statements made in this article is:

“AI as a field is starving for a few carefully documented failures.”

A reason why it is difficult to make a ‘failure’ sound scientifically interesting is the
need for generality. Very often the result is “our system failed to carry out task X”. But
what can one conclude from this, other than that this particular implementation is in some
way not up to the task X? In conventional physical science, there is a well-defined notion
of an experiment being based on (exemplifying, testing, etc.) a theory. And theories are
(should be) clearly stated in terms which are both well-defined and (ultimately) grounded
in empirical data. What theories are there in AI or in a subfield like symbolic problem
solving? What does it mean for a program to embody a theory, and not to embody other
complicating factors (i.e., to be a controlled experiment)?

Third, even if an extensive formal analysis has been done it may not be the right kind
of analysis for practical purposes. For example, a worst-case analysis does not give in-
formation about the average behaviour of an algorithm. Some algorithms may be useful
in practise even if their worst-case behaviour is unsatisfactory, because they exhibit good
behaviour on average and the worst-case scenario is rarely encountered.

Note that we do not claim that these problems are easy to overcome. The nature of
empirical analysis is that there are often loose ends. This holds especially when obtained
results are negative. Were these negative results because of the wrong method used, the
wrong representation used, or some other parameter? Often there are a lot of parameters
making it difficult if not impossible to explore all options. This also makes it hard to publish
and communicate results between researchers. Clearly, empirical analysis would benefit
from guidelines and sets of benchmarks for particular techniques and problem domains.

Notation

C The set containing all classes
D A set containing classes, i.e., D ⊆ C
c, d A class, i.e., c, d ∈ C
A The set containing all attributes
A A set containing attributes, i.e., A ⊆ A
a, b An attribute, i.e., a, b ∈ A
〈a, v〉 An attribute-value pair (AV-pair), also referred to as an observation
a1 Shorthand for the AV-pair 〈a, 1〉
au Shorthand for the AV-pair 〈a, unknown〉
Ac Given some class c, Ac = {a | 〈a, v〉 ∈ c}, i.e., the set of all attributes occuring

in c
Ao Given some set of observation o, Ao = {a | 〈a, v〉 ∈ o}, i.e., the set of all

attributes occuring in o
O The set containing all observations
O A set containing observations, i.e., O ⊆ O
Obs The set of observations corresponding to the object which needs to be classified
obsc The set of observations corresponding to the class c
a, b, o An observation, usually with some indice indicating its value
L A finite language for building sentences
S A subset of L used as parameter
t Denoting the propositional letter which is always mapped into 1
f Denoting the propositional letter which is always mapped into 0
[T]S1 The formula T in which all occurrences (both positive and negative) of letters

belonging to L \ S are replaced by f .
[T]S3 The formula T in which all occurrences (both positive and negative) of letters

belonging to L \ S are replaced by t.

150 Notation

T `S
1 φ Holds iff every S-1-interpretation (Definition 9.2.0.5) that satisfies T also sat-

isfies φ.
T `S

3 φ Holds iff every S-3-interpretation (Definition 9.2.0.4) that satisfies T also sat-
isfies φ.

SW The solution set of classes that satisfy the weak classification criterion
SS The solution set of classes that satisfy the strong classification criterion
SE The solution set of classes that satisfy the explanative classification criterion
SS

W1 The solution set of classes that satisfy the weak classification criterion in which
every ` is replaced by `S

1

SS
W3 The solution set of classes that satisfy the weak classification criterion in which

every ` is replaced by `S
3

SS
S1 The solution set of classes that satisfy the strong classification criterion in

which every ` is replaced by `S
1

SS
S3 The solution set of classes that satisfy the strong classification criterion in

which every ` is replaced by `S
3

SS
E1 The solution set of classes that satisfy the explanative classification criterion in

which every ` is replaced by `S
1

SS
E3 The solution set of classes that satisfy the explanative classification criterion in

which every ` is replaced by `S
3

Bibliography

[Boddy and Dean, 1989] M. Boddy and T. Dean. Solving time-dependent planning prob-
lems. In Proceedings IJCAI–89, Detroit, Michigan USA, August 1989.

[Cadoli, 1993] Marco Cadoli. A survey of complexity results for planning. In A. Cesta and
S. Gaglio, editors, Italian Planning Workshop, pages 131–145, Rome, Italy, 1993.

[Cadoli, 1996] M. Cadoli. Panel on “Knowledge Compilation and Approximation”: Ter-
minology, Questions, and References. Fourth International Symposium on Artificial
Intelligence and Mathematics (AI/MATH-96), pages 183–186, 1996.

[Cadoli and Donini, 1997] Marco Cadoli and Francesco M. Donini. A survey on knowl-
edge compilation. AI Communications-The European Journal for Artificial Intelli-
gence, 10:137–150, 1997. Printed in 1998.

[Cadoli and Schaerf, 1995] Marco Cadoli and Marco Schaerf. Approximate inference in
default reasoning and circumscription. Fundamenta Informaticae, 23:123–143, 1995.

[Cadoli et al., 1994] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is in-
tractability of non-monotonic reasoning a real drawback? In National Conference
on Artificial Intelligence, pages 946–951, 1994.

[Chandra and Markowsky, 1978] A. K. Chandra and G. Markowsky. On the number of
prime implicants. Discrete Mathematics, 24:7–11, 1978.

[Chopra et al., 2001] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate
belief revision. Logic Journal of the IGPL, 9(6):755–768, 2001.

[Cohen, 1995] P. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.

[Cook, 1971] S. A. Cook. The complexity of theorem proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on the Theory of Computation, pages 151–158,
1971.

152 Bibliography

[Dalal, 1992] Mukesh Dalal. Efficient propositional constraint propagation. In Proceed-
ings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages
409–414, San Jose, California, 1992. American Association for Artificial Intelligence.

[Dalal, 1996a] M. Dalal. Semantics of an anytime family of reasoners. In W. Wahlster,
editor, Proceedings of ECAI-96, pages 360–364, Budapest, Hungary, August 1996.
John Wiley & Sons LTD.

[Dalal, 1996b] Mukesh Dalal. Anytime families of tractable propositional reasoners. In In-
ternational Symposium on Artifical Intelligence and Mathematics AI/MATH-96, pages
42–45, 1996. Extended version submitted to Annals of Mathematics and Artifical In-
telligence.

[Darwiche and Marquis, 2001] Adnan Darwiche and Pierre Marquis. A perspective on
knowledge compilation. In Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI’01), Seattle, Washington, USA, August 4th-
10th 2001.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Journal of the Association for Computing Machinery, 7:201–215,
1960.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis of time-dependent planning.
In Proceedings of the seventh National conference on artificial intelligence AAAI–88,
pages 49–54, Saint Paul, Minnesota, 1988.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Directional Resolution: The Davis-
Putnam procedure, revisited. In Proceedings of the Fourth International Confer-
ence on Knowledge Representation and Reasoning (KR-94), pages 134–145. Morgan
Kaufmann, 1994.

[deKleer, 1990] J. de Kleer. Exploiting locality in a tms. In Proceedings of the Eight
National Conference on Artificial Intelligence (AAAI-90), pages 264–271, 1990.

[deKleer, 1992] J. de Kleer. An improved algorithm for generating prime implicates. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
pages 780–785, 1992.

[delVal, 1994] A. del Val. Tractable databases: How to make propositional unit resolution
complete through compilation. In Proceedings of the Fourth International Conference
on the Principles of Knowledge Representation and Reasoning (KR-94), pages 551–
561, 1994.

[delVal, 1995] A. del Val. An Analysis of Approximate Knowledge Compilation. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 830–836, 1995.

153

[delVal, 1999] A. del Val. A new method for consequence finding and compilation in
restricted languages. In Proceedings of the sixteenth National Conference on Artificial
Intelligence (AAAI-99), pages 259–264, 1999.

[Dowling and Gallier, 1984] W. P. Dowling and J. H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional Horn formulae. Journal of Logic Program-
ming, 1:267–284, 1984.

[Ernst et al., 1997] M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic SAT-
Compilation of Planning Problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 1169–1176, 1997.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidabil-
ity and undecidability results for domain-independent planning. In Artificial Intelli-
gence, volume 76, pages 75–88, 1995. (detailed proofs are given in the University
of Maryland Technical Report CS-TR-2797 (also listed as UMIACSTR-91-154 and
SRC-91-96)).

[Fensel et al., 2003] Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang
Wahlster, editors. Spinning the semantic web: bringing the World Wide Web to its
full potential. The MIT Press, February 2003.

[Fikes et al., 1971] R. E. Fikes, , and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2:189–
208, 1971.

[Ghallab et al., 1998] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. Pddl — the planning domain definition lan-
guage, 1998.

[Haas, 1987] Andrew Haas. The case for domain-specific frame axioms. In Frank M.
Brown, editor, The Frame Problem in Artificial Intelligence, Proceedings of the 1987
Workshop. Morgan Kaufmann, 1987.

[Hayes-Roth, 1984] F. Hayes-Roth. Knowledge-based expert systems — the state of the
art in the US. In J. Fox, editor, Expert Systems: state of the art report. Pergamon
Infotech, Oxford, 1984.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs and actions under computational re-
source constraints. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty
in Artificial Intelligence 3, pages 301–324. Elsevier, Amsterdam, The Netherlands,
1987.

[IEEE, 1990] IEEE. IEEE standard glossary of software engineering terminology, 1990.
IEEE Standard 610.12-1990, ISBN 1-55937-067-X.

154 Bibliography

[Jackson and Pais, 1990] P. Jackson and J. Pais. Computing prime implicants. In Pro-
ceedings of the Tenth International Conference on Automated Deduction (CADE-90),
pages 543–557, 1990.

[Jansen, 2003] M. G. Jansen. Formal explorations of knowledge intensive tasks. PhD
thesis, University of Amsteram, June 2003.

[Jansen et al., 2000] M. G. Jansen, A. Th. Schreiber, and B. J. Wielinga. Adapting tableaux
for classification. In Knowledge Engineering and Knowledge Management: 12th In-
ternational Conference (EKAW), volume 1937 of Lecture Notes in Artificial Intelli-
gence, pages 334–351, Juan-les-Pins, 2000. Berlin/Heidelberg, Springer Verlag.

[Kautz and Selman, 1991] H. Kautz and B. Selman. A general framework for knowledge
compilation. In Proceedings of the International Workshop on Processing Declarative
Knowledge (PDK), 1991.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In Proceed-
ings of the Tenth European Conference on Artificial Intelligence (ECAI-92), pages
359–363, 1992.

[Kautz and Selman, 1994] H. Kautz and B. Selman. An Empirical Evaluation of Knowl-
edge Compilation. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), pages 155–160, 1994.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-96), Portland, 1996.

[Kautz and Selman, 1998] H. Kautz and B. Selman. The Role of Domain-Specific Knowl-
edge in the Planning as Satisfiability Framework. In Proceedings of the Fourth In-
ternational Conference on Artificial Intelligence Planning Systems (AIPS-98), Pitts-
burgh, 1998.

[Levesque, 1984] H. J. Levesque. A logic of implicit and explicit belief. In Proceedings of
the Fourth National Conference on Artificial Intelligence (AAAI-84), pages 198–202,
1984.

[Levesque, 1988] H. J. Levesque. Logic and the complexity of reasoning. Journal of
Philosophical Logic, 17:355–389, 1988.

[Levesque, 1989] H. J. Levesque. A knowledge-level account of abduction. In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-
89), pages 1061–1067, 1989.

[Liberatore, 1998] Paolo Liberatore. On the compilability of diagnosis, planning, reason-
ing about actions, belief revision, etc. In Proceedings of the Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR-98), pages
144–155, 1998.

155

[Marquis, 1995] P. Marquis. Knowledge compilation using theory prime implicates. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence, pages 837–843, 1995.

[Marquis and Sadaoui, 1996] P. Marquis and S. Sadaoui. A new algorithm for comput-
ing theory prime implicates compilations. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 504–509, 1996.

[McAllester, 1990] David McAllester. Truth maintenance. In Proceedings
AAAI90, pages 1109–1116. Morgan Kaufmann Publishers, 1990. internet file
ftp.ai.mit.edu:/pub/dam/aaai90.ps.

[McCarthy, 1959] J. McCarthy. Programs with common sense. In Proceedings of the
Teddington Conference on the Mechanisation of Thought Processes, pages 75–91,
London, 1959. Her Majesty Stationary Office, London. Reprinted in Formalizing
common sense. V. Lifschitz, editor. Ablex Publishing Corporation.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In Machine Intelligence 4, pages 463–
502, Edinburgh, 1969. University Press.

[McDermott, 1981] D. McDermott. Artificial intelligence meets natural stupidity. In
J. Haugeland, editor, Mind Design: Philosophy, Psychology, Artificial Intelligence,
pages 143–160. MIT Press, Cambridge, MA, 1981.

[Menzies and vanHarmelen, 1999] Tim Menzies and Frank van Harmelen. Evaluating
Knowledge-Engineering Techniques. International Journal of Human-Computer
Studies, 51(4):715–727, October 1999.

[Minato, 1993] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of the 30th ACM/IEEE Design Aautomation Conference,
pages 472–277, 1993.

[Mitchell et al., 1992] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard
and easy distributions for SAT problems. In Paul Rosenbloom and Peter Szolovits,
editors, Proceedings of the Tenth National Conference on Artificial Intelligence, pages
459–465, Menlo Park, California, 1992. AAAI Press.

[Preece et al., 1997] A. D. Preece, S. Talbot, and L. Vignollet. Evaluation of verification
tools for knowledge-based systems. International Journal of Human-Computer Stud-
ies, 47:629–558, 1997.

[Puppe et al., 1994] F. Puppe, K. Poeck, U. Gappa, S. Bamberger, and K. Goos.
Wiederverwendbare Bausteine für eine konfigurierbare Diagnostik-shell. Künstliche
Intelligenz, 94(2):13–18, 1994.

156 Bibliography

[Puppe et al., 1996] F. Puppe, U. gappa, K. Poeck, and S. Bamberger. Wissensbasierte
Diagnose- und Informationssysteme. Springer-Verlag, Juli 1996.

[Quine, 1959] W. V. O. Quine. On cores and prime implicants of truth functions. American
Mathematical Monthly, 66, 1959.

[Reiter and deKleer, 1987] R. Reiter and J. de Kleer. Foundations of assumption-based
truth maintenance systems: Preliminary report. In Proceedings of the 6th National
Conference on Artificial Intelligence (AAAI-87), pages 183–188, 1987.

[Russell and Zilberstein, 1991] S. J. Russell and S. Zilberstein. Composing real-time sys-
tems. In Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence, pages 212–217, Sydney, Australia, 1991.

[Salton and McGill, 1983] G. Salton and M. J. McGill. Introduction to Modern Informa-
tion Retrieval. McGraw-Hill, New York, 1983.

[Schaerf and Cadoli, 1995] Marco Schaerf and Marco Cadoli. Tractable reasoning via ap-
proximation. Artificial Intelligence, 74:249–310, 1995.

[Schrag and Crawford, 1996a] R. Schrag and J. Crawford. Compilation for critically con-
strained knowledge bases. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 510–515, 1996.

[Schrag and Crawford, 1996b] Robert Schrag and James M. Crawford. Implicates and
prime implicates in random 3SAT. Artificial Intelligence, 81(1-2):199–222, 1996.

[Schumann and Fischer, 1997] J. Schumann and B. Fischer. NORA/HAMMR: Making
deduction-based software component retrieval practical. In Automated Software En-
gineering (ASE)’97, pages 246–254. IEEE, 1997.

[Selman and Kautz, 1991] B. Selman and H. A. Kautz. Knowledge compilation using
Horn approximations. In Proceedings of the Ninth National Conference on Artificial
Intelligence (AAAI-91), pages 904–909, 1991.

[Selman and Kautz, 1996] B. Selman and H. A. Kautz. Knowledge compilation and theory
approximation. Journal of the ACM, 43:193–224, 1996.

[Shadbolt et al., 1999] Nigel Shadbolt, Kieron O’Hara, and Louise Crow. The experimen-
tal evaluation of knowledge acquisition techniques and methods: history, problems
and new directions. International Journal of Human-Computer Studies, 51(4):729–
755, October 1999.

[Simon and delVal, 2001] L. Simon and A. del Val. Efficient consequence finding. In Pro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-01), 2001.

157

[Stefik, 1993] M. Stefik. Introduction to Knowledge Systems. Los Altos, California. Mor-
gan Kaufmann, 1993.

[tenTeije and vanHarmelen, 1996] A. ten Teije and F. van Harmelen. Computing approxi-
mate diagnoses by using approximate entailment. In G. Aiello and J. Doyle, editors,
Proceedings of the Fifth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-96), Boston, Massachusetts, November 1996. Morgan
Kaufman.

[tenTeije and vanHarmelen, 1997] A. ten Teije and F. van Harmelen. Exploiting domain
knowledge for approximate diagnosis. In M.E. Pollack, editor, Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence (IJCAI-97), volume 1,
pages 454–459, Nagoya, Japan, August 1997. Morgan Kaufmann.

[Tison, 1967] P. Tison. Generalized consensus theory and application to the minimization
of boolean circuits. IEEE Transactions on Computers, EC-16:446–456, 1967.

[vanGelder and Tsuji, 1996] A. van Gelder and Y. K. Tsuji. Satisfiability testing with more
reasoning and less guessing. In D. S. Johnson and M. Trick, editors, Cliques, Color-
ing, and Satisifibility: Second DIMACS Implementation challenge, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 1996.

[vanHarmelen and tenTeije, 1995] F. van Harmelen and A. ten Teije. Approximations in
diagnosis: motivations and techniques. In C. Bioch and Y.H. Tan, editors, Proceed-
ings of the Dutch Conference on AI (NAIC’95), Rotterdam, June 1995.

[vanHarmelen and tenTeije, 1998] F. van Harmelen and A. ten Teije. Characterising ap-
proximate problem-solving by partial pre- and postconditions. In Proceedings of
ECAI’98, pages 78–82, Brighton, August 1998.

[Wielinga et al., 1998] B. J. Wielinga, J. M. Akkermans, and A. Th. Schreiber. A compe-
tence theory approach to problem-solving method construction. International journal
of Human Computer Studies, 49:315–338, 1998.

[Zilberstein, 1993] S. Zilberstein. Operational rationality through compilation of any-
time algorithms. PhD thesis, Computer science division, university of California at
Berkley, 1993.

[Zilberstein, 1996] S. Zilberstein. Using anytime algorithms in intelligent systems. Artifi-
cial Intelligence Magazine, fall:73–83, 1996.

[Zilberstein and Russell, 1995] S. Zilberstein and S. J. Russell. Approximate Reasoning
Using Anytime Algorithms. In S. Natarajan, editor, Imprecise and Approximate Com-
putation. Kluwer Academic Publishers, 1995.

[Zilberstein and Russell, 1996] Shlomo Zilberstein and Stuart J. Russell. Optimal compo-
sition of real-time systems. Artificial Intelligence, 82(1-2):181–213, 1996.

Samenvatting

Dit proefschrift heeft de volgende doelstelling:

Een theoretische en empirische analyse van approximatie in symbolische pro-
bleemoplosmethoden.

Approximatie is een nuttige aanpak voor het oplossen van complexe problemen. In
plaats van een exacte oplossing voor een probleem gaan we op zoek naar een oplossing
die de exacte oplossing benadert. Er zijn verscheidene redenen te geven waarom een be-
naderende oplossing te prefereren valt voor een exacte oplossing. We bespreken twee van
deze redenen hier in meer detail.

Ten eerste, kan approximatie gebruikt worden om een afweging te maken tussen reken-
tijd en kwaliteit van de oplossing. Enerzijds, zijn sommige problemen zo complex dat ze
onmogelijk binnen een redelijke tijd opgelost kunnen worden. Anderzijds, moeten som-
mige problemen binnen een bepaalde deadline opgelost worden. Deze deadline hoeft niet
altijd van tevoren bekend te zijn.

Ten tweede, kan approximatie gebruikt worden om een probleemoplosmethode robuus-
ter te maken tegen incorrecte en incomplete data. Door de invoer van incorrecte en/of in-
complete data kan het zijn dat een probleem te weinig of teveel oplossingen heeft. Door
bijvoorbeeld de eisen van het probleem te verzwakken of te versterken, krijgen we een
nieuwe formalisering die wel een acceptabel aantal oplossingen heeft. Deze oplossingen
zijn dan benaderende oplossingen van het originele probleem.

In dit proefschrift beperken we ons tot symbolische probleemoplosmethoden. Karak-
teristiek voor deze methoden is het gebruik van een logica voor de representatie en lo-
gische deductie voor de inferentie. Aangezien dit geen numerieke problemen zijn, is er
geen duidelijke afstandsfunctie die aangeeft ‘hoe ver’ een benadering verwijderd is van de
optimale oplossing. Kortom, het gebruik van approximatie in symbolische probleemoplos-
methoden is niet vanzelfsprekend.

Bovenstaande licht de doelstelling van dit proefschrift toe, maar de formalisering van
de doelstelling is nog zeer algemeen. In dit proefschrift richten we ons daarom op drie
specifieke problemen die vallen binnen de gegeven doelstelling. Deze worden hieronder in
meer detail toegelicht.

159

I. Kwantitatieve maten voor Kennissystemen

Kennissystemen zijn systemen die de kennis bevatten van één of meerdere experts voor het
oplossen van een specifieke taak (dokter, monteur, etc.). Kennissystemen zijn vaak goed
in staat om incorrecte en/of incomplete data te verwerken. Uit verificaties van Kennissys-
temen is gebleken dat zelfs Kennissystemen die fouten bevatten op een acceptabel niveau
functioneren. De robuustheid van Kennissystemen t.o.v. incorrecte en incomplete data
wordt beschouwd als een belangrijk onderdeel in de validatie van Kennissystemen.

Huidig onderzoek naar de robuustheid van Kennissystemen is echter beperkt tot prak-
tijkervaringen en kwalitatieve analyses. In dit proefschrift laten we zien dat het zowel
mogelijk als nuttig is om ook kwantitatief onderzoek te verrichten naar de robuustheid van
Kennissystemen. Allereerst wordt er een methode voorgesteld om de robuustheid van Ken-
nissystemen te kwantificeren. Vervolgens wordt deze methode daadwerkelijk toegepast op
een Kennissysteem.

De methode om de robuustheid van Kennissystemen te kwantificeren is gebaseerd op
zogeheten ‘degradatie studies’. Dit betekent dat de kwaliteit van de invoer van het Kennis-
systeem systematisch wordt verminderd en dat daarbij gelet wordt op de veranderingen in
de kwaliteit van de uitvoer van het Kennissysteem. De kwaliteitsmaat voor de invoer hangt
af van het specifieke systeem dat bestudeerd wordt, maar vaak kan incompleetheid of in-
correctheid van de invoer vertaald worden naar een concrete kwaliteitsmaat. De kwaliteits-
maat voor de uitvoer wordt in de voorgestelde methode bepaald door de maten recall en
precision, die wel bekend zijn in het vakgebied Information Retrieval.

De methode om de robuustheid van Kennissystemen te kwantificeren wordt tevens
toegepast op een Kennissysteem. Dit Kennissysteem wordt gebruikt voor het classificeren
van veel voorkomende planten in het zuiden van Duitsland. Met deze experimentele ana-
lyse wordt aangetoond dat de voorgestelde methode daadwerkelijk uitgevoerd kan worden
en bovendien kan resulteren in, soms verrassende, inzichten in het geanalyseerde Kennis-
systeem.

II. Kenniscompilatie

Veel systemen maken gebruik van een logica voor de representatie. Het gebruik van logica
heeft een aantal voordelen, maar heeft echter ook een belangrijk nadeel: de computationele
complexiteit van inferentie. Veel technieken zijn in de loop der jaren aangedragen om dit
probleem op te lossen. Kenniscompilatie is zo’n techniek.

Het idee achter kenniscompilatie is dat veel problemen conceptueel te splitsen zijn in
twee delen, nl. een vast deel en een variabel deel. Het vaste deel blijft constant over
meerdere probleem instanties, terwijl het variabele deel varieert over meerdere probleem
instanties. Omdat het vaste deel constant blijft, kan deze vertaald worden, zodat de ver-
taling betere computationele eigenschappen heeft. Uiteraard is de vertaling zelf compu-
tationeel complex, maar deze hoeft slechts één keer uitgevoerd te worden, kan al gedaan
worden voordat er daadwerkelijk problemen opgelost gaan worden, en kan hergebruikt
worden voor het oplossen van meerdere probleem instanties.

160 Samenvatting

Hoewel kenniscompilatie interessant is vanuit een theoretisch perspectief, is er nog
weinig bekend over succesvolle toepassingen. In dit proefschrift richten we ons op plan-
ningsproblemen. Planning kan vertaald worden in propositie logica, is computationeel
complex, en is te schrijven als een vast deel (domein, acties) en een variabel deel (begin-
en eindtoestand). Planning is dus een kandidaat voor kenniscompilatie. We voeren een
experimentele analyse uit van kenniscompilatie toegepast op planning.

III. Benaderende Classificatie
Dit deel van het proefschrift geeft aan hoe een gestructureerde analyse uitgevoerd kan wor-
den van een benaderende consequentie relatie d.m.v. een combinatie van theoretisch en
experimenteel onderzoek. We maken hierbij gebruik van een algemene benaderingsmeth-
ode ontwikkeld door Cadoli en Schaerf en passen deze toe om benaderende classificatie
vormen te verkrijgen.

Als eerste geven we, door gebruik te maken van een verzameling theoretisch raamwerk
voor klassieke classificatie, een formalisatie van classificatie in propositie logica.

Vervolgens passen we de benaderende consequentie operator toe op de formalisatie in
propositie logica. Dit resulteert in een aantal benaderende classificatie vormen. D.m.v.
een theoretische analyse leiden we een aantal stellingen af die de benaderende classificatie
vormen karakteriseren.

Tenslotte voeren we een experimentele analyse uit om meer inzicht te krijgen in het
incrementele benaderingsgedrag van de benaderende classificatie vormen. In het bijzon-
der, geven we een aantal heuristieken voor een parameter van de benaderingsmethode van
Cadoli en Schaerf en analyseren we het bijbehorende benaderingsgedrag.

Index

S-1-interpretation .112
S-3-interpretation .112

anytime algorithm. .5

Classical frame axioms 61
clause . 51
compilable problem 50

domain theory . 57

exact knowledge compilation 51
explanative classification 98
Explanatory frame axioms 61

fluent . 59

implicant .51
implicate . 51

language restriction 53
Literal Entailment Problem 49
lower bound . 54

performance profile . 6
planning problem

Logistics problem 67
Monkey problem 69
Tower of Hanoi 68

prime implicant . 51
prime implicate . 51

STRIPS . 57
strong classification 98

theory approximation.53
theory prime implicate 52

unit resolution . 52
upper bound . 54

weak classification . 98

ZBDD . 72

SIKS Dissertatiereeks

1998
1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal
Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically
Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Anal-
ysis of Business Conversations within
the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoe-
meting

1999
1999-1 Mark Sloof (VU)

Physiology of Quality Change Mod-
elling; Automated modelling of Qual-
ity Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees
and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical
Objects

1999-5 Aldo de Moor (KUB) Empowering
Communities: A Method for the Le-
gitimate User-Driven Specification of
Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object
database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism
for Discrete Reallocation

2000
2000-1 Frank Niessink (VU)

Perspectives on Improving Software
Maintenance

2000-2 Koen Holtman (TUE) Prototyping
of CMS Storage Management

163

2000-3 Carolien M.T. Metselaar (UvA)
Sociaal-organisatorische gevol-
gen van kennistechnologie; een
procesbenadering en actorperspectie

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Compe-
tence Knowledge for User Interface
Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation
in Information Retrieval

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent
Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clini-
cal Patient Management

2000-8 Veerle Coupé (EUR)
Sensitivity Analyis of Decision-
Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Op-
timization

2000-10 Niels Nes (CWI)
Image Database Management System
Design Considerations, Algorithms
and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures
for Database Management

2001
2001-1 Silja Renooij (UU)

Qualitative Approaches to Quantify-
ing Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Pro-
gramming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version
Spaces with Instance-Based Bound-
ary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia:
A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on
Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure
for Multi-Agent Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of
Large Object-Oriented Models, Views
of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Prac-
tice BRAHMS: a multiagent model-
ing and simulation language for work
practice analysis and design

2001-11 Tom M. van Engers (VU)
Knowledge Management: The Role of
Mental Models in Business Systems
Design

164 SIKS Dissertatiereeks

2002
2002-01 Nico Lassing (VU)

Architecture-Level Modifiability
Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for
Information Retrieval

2002-04 Juan Roberto Castelo Valdueza
(UU)
The Discrete Acyclic Digraph Markov
Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling
Electronic Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building
a knowledge-based ontology of the le-
gal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS
Kernel For Query-Intensive Applica-
tions

2002-08 Jaap Gordijn (VU)
Value Based Requirements En-
gineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel
(KUB)
Integrating Modern Business Ap-
plications with Objectified Legacy
Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Appli-
cations

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive
Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Ap-
proaches to Modelling, Programming
and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML
Activity Diagrams for Workflow Mod-
elling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations,
Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Im-
proving Main-Memory Database Per-
formance

2003
2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing
in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning
About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and
Presence in Virtual Reality Exposure
Therapy

165

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Sup-
ported by Database Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence
and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of vir-
tual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge
Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided be-
haviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation:
Some experimental studies on the
interaction between medium, innova-
tion context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in
Natural Language Dialogue using
Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multime-
dia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Op-
ponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisa-
tion Processes across ICT-Supported
Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incre-
mental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Proba-
bility, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004
2004-01 Virginia Dignum (UU)

A Model for Organizational Interac-
tion: Based on Agents, Founded in
Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for
E-business

166 SIKS Dissertatiereeks

