
Editorial

Bayesian networks in biomedicine and health-care$

1. Introduction

Physiological mechanisms in human biology, the progress of disease in individual

patients, hospital work-flow management: these are just a few of the many complicated

processes studied by researchers in biomedicine and health-care. For controlling the ever

increasing complexity of these fields, a proper understanding of their processes is

important as is the ability to reason about them. The characteristics of the processes vary

widely; however, typically only part of all the factors by which they are governed can be

observed in practice. The processes, moreover, include the effects of individual as well as

random variation. Essentially they are uncertain; the uncertainties involved render an

overall understanding hard to achieve and reasoning a daunting task. Models capturing

these processes and methods for using these models are thus called for to support decision-

making in real-life practice.

Bayesian networks with their associated methods are especially suited for capturing and

reasoning with uncertainty [33]. They have been around in biomedicine and health-care for

more than a decade now and have become increasingly popular for handling the uncertain

knowledge involved in establishing diagnoses of disease, in selecting optimal treatment

alternatives, and predicting treatment outcome in various different areas. Bayesian net-

works are also increasingly developed in areas of health-care that are not directly related to

the management of disease in individual patients. Examples include the use of Bayesian

networks in clinical epidemiology for the construction of disease models and within

bioinformatics for the interpretation of microarray gene expression data.

This special issue aims to convey an impression of the current state-of-the-art of the use

of Bayesian networks in biomedicine and health-care. By devoting attention to new

application areas, it complements what is known about the use of Bayesian networks in

building decision-support systems for individual patient care. In this editorial, the various

contributions are introduced. In addition, the scientific context of the contributions is

sketched, to indicate their role and place in the broad field of Bayesian networks. In Section

2, the formalism of Bayesian networks is introduced and methods for their construction are

reviewed. Section 3 introduces the biomedical problems involving uncertainty for which

Bayesian networks are typically employed. The editorial concludes in Section 4 by

introducing the five contributions to the issue.
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2. Bayesian networks

In this section, the formalism of Bayesian networks and the basic methods for their

development are reviewed. For a more thorough treatment of the topic, the reader is

referred to Refs. [8,33].

2.1. The formalism

A Bayesian network, or probabilistic network, B ¼ ðPr;GÞ is a model of a joint, or

multivariate, probability distribution over a set of random variables; it consists of a

graphical structure G and an associated distribution Pr. The graphical structure takes

the form of a directed acyclic graph, or DAG, G ¼ ðVðGÞ;AðGÞÞ with nodes

VðGÞ ¼ fV1; . . . ;Vng, n � 1, and arcs AðGÞ � VðGÞ � VðGÞ. Each node Vi in G repre-

sents a random variable that takes one of a finite set of values. The arcs in the digraph model

the probabilistic influences between the variables. Informally speaking, an arc Vi ! Vj

between two nodes Vi and Vj indicates that there is an influence between the associated

variables Vi and Vj; absence of an arc between Vi and Vj means that the corresponding

variables do not influence each other directly. More formally, a variable Vi is taken to be

dependent of its parents and children in the digraph, but is conditionally independent of any

of its non-descendants given its parents; this property is commonly known as the Markov

condition [8,19].

Associated with the graphical structure of a Bayesian network is a joint probability

distribution Pr that is represented in a factorised form. For each variable Vi in the digraph is

specified a set of conditional probability distributions PrðVijpðViÞÞ; each of these dis-

tributions describes the joint effect of a specific combination of values for the parents pðViÞ
of Vi, on the probability distribution over the values of Vi. These sets of conditional

probability distributions with each other define a unique joint probability distribution that

factorises over the digraph’s topology through

PrðV1; . . . ;VnÞ ¼
Yn

i¼1

PrðVijpðViÞÞ

Fig. 1 shows an example Bayesian network; the notations vi and :vi are used to indicate

Vi ¼ true and Vi ¼ false, respectively. The digraph of the network models cancer to be

independent of heart disease given a value for their common parent smoking. The

Smoking

Heart
disease Cancer

Survival

Pr(cancer smoking) Pr(cancer king)

Pr( cancer smoking) Pr( cancer king)¬ ¬ ¬smo

¬smo| |

| |

. . .

Fig. 1. An example Bayesian network.
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conditional probability distributions associated with the variable cancer in the figure

further demonstrate that the Markov condition provides for a localised representation of the

joint probability distribution. The condition in fact serves to significantly reduce the

amount of probabilistic information that has to be explicitly specified to uniquely describe

the joint distribution. The condition also allows for the design of efficient algorithms for

computing any probability of interest over a network’s variables [28,33].

The digraph of a Bayesian network, apart from being acyclic, can have an arbitrarily

complex topology to capture the intricacies of its application domain. For classification

problems, however, a specific class of networks of limited topology have become popular

[5,11,12]. In these networks, a distinction is made between a single class variable C and

one or more feature variables; the latter variables serve to describe the characteristics of the

instances to be classified. The class variable does not have any incoming arcs, but has arcs

pointing to every feature variable. Between the feature variables, arcs are allowed under

strict topological constraints. In a naive Bayesian network, for example, no arcs are

allowed between the feature variables. In a tree-augmented Bayesian network (TAN), on

the other hand, arcs are allowed between the feature variables as long as these constitute a

tree. In a forest-augmented network (FAN), to conclude, the arcs should constitute a forest

of trees [30]. The general structures of a naive Bayesian network and of a TAN network are

shown in Fig. 2.

Although the variables in a Bayesian network are often assumed to be discrete, taking a

value from a finite set of values, a network may also include continuous variables that adopt

a value from a range of real values [27]. Generally Gaussian, or normal, distributions are

assumed for the conditional probability distributions for such continuous variables. These

distributions then are specified in terms of a limited number of parameters, such as their

means and variance. Most Bayesian network tools nowadays allow for a mixture of discrete

and continuous variables to be included in a network under some topological constraints.

2.2. Manual construction

Many of the Bayesian networks developed to date for real-life applications in biome-

dicine and health-care have been constructed by hand [2,3,17,21,22,31,32]. Manual

construction of a network involves various development stages. For each of these stages,

knowledge is acquired from experts in the domain of application, the relevant medical

literature is studied, and available patient data are analysed. The following development

stages are generally distinguished:

C
F1

. . . . . .
F2

Fm

(a)

C

F1

F2

Fm

(b)

Fig. 2. (a) A naive Bayesian network and (b) a tree-augmented Bayesian network; the nodes Fj indicate the

feature variables and C is the class variable.
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(1) Selection of relevant variables: As a Bayesian network in essence is a graphical

model of a joint probability distribution over a set of random variables, the first stage

in its construction is the identification of the important variables to be captured, along

with the values they may adopt. The selection of the relevant variables is generally

based on interviews with experts, descriptions of the domain, and an extensive

analysis of the purpose of the network under construction. Often, knowledge about

the (patho)physiological processes concerned is used to guide the identification of the

relevant variables [24,29].

(2) Identification of the relationships among the variables: Once the variables to be

included in the network have been decided upon, the dependence and independence

relationships between them have to be analysed and expressed in a graphical

structure. For this purpose, generally the notion of causality is employed as a guiding

principle: typical questions asked during the interviews with the domain experts are

‘‘What could cause this effect?’’ and ‘‘What manifestations could this cause have?’’

The elicited relationships are then expressed in graphical terms by taking the

direction of causality for directing the arcs between the variables. The notion of

causality often appears to match the experts’ way of thinking about the

(patho)physiological processes in their domain [14].

(3) Identification of qualitative probabilistic and logical constraints: Knowledge of

qualitative probabilistic constraints and of logical constraints among the variables

involved can help in the assessment and verification of the probabilities required for the

network under construction. Qualitative probabilistic constraints are derived, for

example, from properties of stochastic dominance of distributions. These constraints

can be expressed as qualitative signs that can be used to study the reasoning behaviour

of the projected network prior to its quantification [36]. Logical constraints are derived

from functional relationships between the variables and can be used to significantly

reduce the number of probabilities that have to be assessed for the network.

(4) Assessment of probabilities: In the next development stage, the local conditional

probability distributions PrðVijpðViÞÞ for each variable Vi are filled in. The required

probabilities can be obtained from domain experts. Although the elicitation of

judgmental probabilities is generally considered a daunting task, elicitation methods

are available that are tailored to obtaining the large number of probabilities required

in reasonable time [16,17,35]. Alternatively, the probabilities can be obtained from

data. For a network with discrete variables, the conditional probability distributions

are often computed as the weighted average of a probability estimate based on the

available data and a prior Dirichlet distribution, that is, a multinomial distribution

whose parameters can be interpreted as counts on a data set:

PrðVijpðViÞ;DÞ ¼ n

n þ n0

bPrDðVijpðViÞÞ þ
n0

n þ n0

YðVijpðViÞÞ

where bPrD is the probability distribution estimated from a given data set D, and Y is

the Dirichlet prior over the possible values of Vi; Y is often taken to be uniform. The

parameter n is the size of the data set D and n0 is equal to an imaginary or real number

of past cases on which the contribution of Y is based. The resulting probability

distribution Pr is again a Dirichlet distribution.
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(5) Sensitivity analysis and evaluation: With the previous development stage, a fully

specified Bayesian network is obtained. Before the network can be used in real-life

practice, its quality and clinical value have to be established. One of the techniques

for assessing a network’s quality is to perform a sensitivity analysis with patient data.

Such an analysis serves to provide insight in the robustness of the output of the

network to possible inaccuracies in the underlying probability distribution [7,15].

Evaluation of a Bayesian network can be done in various different ways. Examples

include measuring classification performance on a given set of real patient data and

measuring similarity of structure or probability distribution to a gold-standard

network or other probabilistic model.

As developing a Bayesian network is a creative process, the various stages are iterated

in a cyclic fashion where each stage may, on each iteration, induce further refinement

of the network under construction. An ontology may be developed to support the process

[23].

2.3. Learning

In many fields of biomedicine and health-care, data have been collected and maintained,

sometimes over numerous years. Such a data collection usually contains highly valuable

information about the relationships between the variables discerned, be it implicitly. If a

comprehensive data set is available, a Bayesian network can be learnt from the data, that is,

it can be developed without explicit access to knowledge of human experts.

To be suitable for learning purposes, a data set has to satisfy various properties. First of

all, the data comprised in the data set must have been collected very carefully. Biases that

are introduced in the data set as a result of the data collection strategies used will have

impact on the resulting Bayesian network, yet may not be desirable for the purpose for

which the network is being developed. Also, the variables and associated values that occur

in the data set should match the variables and values that are to be modelled in the network,

or should at least admit easy translation. Moreover, the data set should comprise enough

data to allow for reliable identification of probabilistic relationships among the variables

discerned. In addition to these general prerequisites, a data set should satisfy several

properties that are implicitly assumed by most learning algorithms. One of these is the

assumption that each case in the data set specifies a value for every variable discerned, that

is, there are no missing values. Unfortunately, for most real-life data sets this property does

not hold. To use a data set with missing values for learning purposes, the missing values

have to be filled in, or imputated, for example, based upon (roughly) estimated prob-

abilities for these values or with the help of domain experts. Most learning algorithms

further assume that the cases in the data set have been generated independently, that is, the

values specified for the variables in a case are assumed not to be influenced in any way by

the values in previously generated cases. Also, it is assumed that the process of data

generation is not time-dependent.

Learning a Bayesian network from data involves the tasks of structure learning, that is,

identifying the graphical structure of the network, and parameter learning, that is,

estimating the conditional probability distributions to be associated with the network’s
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digraph. In many learning algorithms, the two tasks are performed simultaneously and, as a

consequence, are not easily distinguished.

One of the early algorithms for learning a Bayesian network from data is the K2

algorithm [6]. Given a data set D, this algorithm searches, in a greedy heuristic way, for an

acyclic digraph that, supplemented with maximum likelihood estimates for its probabil-

ities, best explains the data at hand. More formally, it searches for a digraph G that

maximises the joint probability PrðG;DÞ over all possible digraphs G. Given a topological

ordering on the random variables concerned, the algorithm constructs, for every subse-

quent variable Vi, an optimal set of parents. To this end, it starts by assuming the parental

set to be empty and then adds, iteratively, the parent whose addition most increases the

probability of the resulting structure and the data set; it stops adding variables to a parental

set as soon as the addition of a single parent cannot increase the probability PrðG;DÞ. The

K2 algorithm is an example of a search and scoring method. These methods search the

space of all possible acyclic digraphs by generating various different graphs in a heuristic

way and comparing these to their ability to explain the data at hand. Other search and

scoring methods build, for example, upon the use of the minimum description length

(MDL) principle [25] use a genetic algorithm for the search involved [26].

Another approach to learning a Bayesian network from data is to build upon the use of a

dependence analysis [4]. A Bayesian network in essence models a collection of conditional

dependence and independence statements, through its Markov condition. By studying the

available data set, the dependences and independences between the various variables can

be extracted, for example, by means of statistical tests, and subsequently captured in a

graphical structure. The information-theoretical algorithm of Cheng et al. is an example of

an algorithm taking this approach [4]. The algorithm has three subsequent phases termed

drafting, thickening and thinning. In the drafting phase, the algorithm establishes, from the

data, the mutual information for each pair of variables and constructs a draft digraph from

this information. In the thickening phase, the algorithm adds arcs between pairs of nodes if

the corresponding variables are not conditionally independent given a certain conditioning

set of variables. In the thinning phase, to conclude, each arc of the graph obtained so far is

examined using conditional independence tests, and is removed if the two variables

connected by the arc prove to be conditionally independent.

Based upon the observation that independence tests quickly become unreliable for larger

conditioning sets and the search space of all possible digraphs is infeasibly large, learning

algorithms have been proposed that take a hybrid approach [10,38]. These algorithms are

composed of two phases. In the first phase, a graph is constructed from the data, generally

using lower-order dependence tests only. This graph is subsequently used to explicitly

restrict the search space of graphical structures for the second phase in which a search

algorithm is employed to find a digraph that best explains the data.

To conclude, there is also a great deal of interest in estimating probability distributions

from data using maximum likelihood estimation [20]. The expectation maximisation

(EM) algorithm is a two-step algorithm used by many researchers for this purpose [9]. It

consists of a step of computing the expected value of the relevant parameter and a

maximisation step, which are carried out in an interleaved fashion until convergence. In

contrast with the learning algorithms reviewed above, the EM algorithm is able to deal with

missing values.
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2.4. Manual construction versus learning

Manual construction of a Bayesian network requires access to knowledge of human

experts and, in practice, turns out to be quite time consuming. With the increasing

availability of clinical and biological data, learning evidently is the more feasible

alternative for developing a Bayesian network. Learning, as a consequence, is attracting

considerable interest, both from developers and within the research community. Whether

or not building a Bayesian network by hand would result in a network of higher quality

when compared to learning it from data, is yet an open question. One would expect that,

in many areas of biomedicine, human knowledge of the underlying (patho)physiological

processes is more robust than the knowledge embedded in a data set of limited size. To

date there is little evidence, however, to corroborate this expectation. It is an equally

open question whether learning a Bayesian network of more complex topology pays off

when compared to learning a simple Bayesian classifier. One would expect that the more

faithful the digraph of a Bayesian network is in reflecting the dependences and

independences embedded in the data, the better its performance. Research by Domingos

and Pazzani has shown, however, that, when used for classification problems, naive

Bayesian networks tend to outperform more sophisticated networks [11]. This finding

has led to the suggestion that more complex network structures do not pay off. Friedman

et al. [12], and Cheng and Greiner [5], on the other hand, have shown that tree-

augmented networks, which in comparison to naive Bayesian networks, incorporate

extra dependences among their feature variables, often outperform these naive Bayesian

networks. Allowing for even more complex relationships between the feature variables,

as in a forest-augmented network, moreover, has been shown to yield still better

performance [30].

3. Problem solving in biomedicine and health-care

Bayesian networks are increasingly used in biomedicine and health-care to support

different types of problem solving, four of which are briefly reviewed here.

3.1. Diagnostic reasoning

Establishing a diagnosis for an individual patient in essence amounts to constructing a

hypothesis about the disease the patient is suffering from, based upon a set of indirect

observations from diagnostic tests. Diagnostic tests, however, generally do not serve to

unambiguously reveal the condition of a patient: the tests typically have true-positive

rates and true-negative rates unequal to 100%. To avoid misdiagnosis, the uncertainty in

the test results obtained for a patient should be taken into consideration upon

constructing a diagnostic hypothesis. Bayesian networks offer a natural basis for this

type of reasoning with uncertainty. A significant number of network-based systems for

medical diagnosis have in fact been developed in the past and are currently being

developed. Well-known early examples are the Pathfinder [21,22] and MUNIN [3]

systems.
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Formally, a diagnosis may be defined as a value assignment D to a subset of the random

variables concerned, such that

D ¼ argmax
D

PrðDjEÞ

where E is the observed evidence, composed of symptoms, signs and test results. A

diagnosis thus is a maximum a posteriori assignment (MPA) to a given subset of

variables. Establishing a maximum a posteriori assignment from a Bayesian network,

however, is extremely hard from a computational point of view. Since in addition

combinations of disease do not occur very often, diagnostic reasoning is generally

focused on single diseases. One approach is to assume that all diseases are mutually

exclusive. The different possible diseases then are taken as the values of a single

disease variable. Another approach is to capture each possible disease by a separate

variable. Reasoning then amounts to computing the probability distribution for each

such variable separately. The combination of the most likely values for these separate

disease variables, however, need not be a maximum a posteriori assignment to these

variables.

To assist physicians in the complex task of diagnostic reasoning, a Bayesian network

is often equipped with a test-selection method that serves to indicate which tests had

best been ordered to decrease the uncertainty about the disease present in a specific

patient [1]. A test-selection method typically employs an information-theoretic measure

for assessing diagnostic uncertainty. Such a measure is defined on a probability

distribution over a disease variable and expresses the expected amount of information

required to establish the value of this variable with certainty. An example measure often

used for this purpose is the Shannon entropy. The measure can be extended to include

information about the costs involved in performing a specific test and about the side

effects it can have. Since it is computationally hard to look beyond the immediate next

diagnostic test, test selection is generally carried out non-myopically, that is, in a

sequential manner. The method then suggests a test to be performed and awaits the

user’s input; after taking the test’s result into account, the method suggests a subsequent

test, and so on.

3.2. Prognostic reasoning

Prognostic reasoning in biomedicine and health-care amounts to making a prediction

about what will happen in the future. As knowledge of the future is inherently uncertain, in

prognostic reasoning uncertainty is even more predominant than in diagnostic reasoning.

Another prominent feature of prognostic reasoning when compared to diagnostic reasoning

is the exploitation of knowledge about the evolution of processes over time. Even if

temporal knowledge is not represented explicitly, prognostic Bayesian networks still have a

clear general temporal structure, which is depicted schematically in Fig. 3. The outcome

predicted for a specific patient is generally influenced by the particular sequence of

treatment actions to be performed, which in turn may depend on the information that is

available about the patient before the treatment is started. The outcome is often also

influenced by progress of the underlying disease itself.
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Formally, a prognosis may be defined as a probability distribution

PrðoutcomejE;TÞ
where E again is the available patient data, including symptoms, signs and test results, and

T denotes a selected sequence of treatment actions. The outcome of interest may be

expressed by a single variable, e.g. modelling life expectancy. The outcome of interest,

however, may be more complex, modelling not just length of life but also various aspects

pertaining to quality of life. A subset of variables may then be used to express the outcome.

Prognostic Bayesian networks are a rather new development in medicine. Only recently

have researchers started to develop such networks, for example, in the areas of oncology

[18,31] and infectious disease [2,32]. There is little experience as yet with integrating ideas

from, for example, traditional survival analysis into Bayesian networks. Given the

importance of prognostication in health-care, it is to be expected, however, that more

prognostic networks will be developed in the near future.

3.3. Treatment selection

The formalism of Bayesian networks provides only for capturing a set of random

variables and a joint probability distribution over them. A Bayesian network therefore

allows only for probabilistic reasoning, as in establishing a diagnosis for a specific patient

and in making a prediction of the effects of treatment. For making decisions, as in deciding

upon the most appropriate treatment alternative for a specific patient, the network

formalism does not provide. Reasoning about treatment alternatives, however, involves

reasoning about the effects to be expected from the different alternatives. It thus involves

diagnostic reasoning and, even more prominently, prognostic reasoning. To provide for

selecting an optimal treatment, a Bayesian network and its associated reasoning algorithms

are therefore often embedded in a decision-support system that offers the necessary

constructs from decision theory to select an optimal treatment given the predictions [2,31].

Alternatively, the Bayesian network formalism can be extended to include knowledge

about decisions and preferences. An example of such an extended formalism is the

influence diagram formalism [37]. Like a Bayesian network, an influence diagram includes

an acyclic directed graph. In this graph, the set of nodes is partitioned into a set of

probabilistic nodes modelling random variables, a set of decision nodes modelling the

various different treatment alternatives, and a value node modelling the preferences

involved. Influence diagrams for treatment selection once again have a clear general

structure, which is depicted schematically in Fig. 4.

Pretreatment
observations Treatments

Outcome

Fig. 3. General structure of a prognostic Bayesian network; each box denotes a part of the network.
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3.4. Discovering functional interactions

So far we have focused on the use of once constructed Bayesian networks for problem

solving in biomedicine and health-care. However, the insight obtained by the construc-

tion process itself, in particular when done automatically by using one of the learning

methods described above, may also be exploited to solve problems. As the topology of a

Bayesian network can be interpreted as a representation of the uncertain interactions

among variables, there is a growing interest in bioinformatics to use Bayesian network

for the unravelling of molecular mechanisms at the cellular level. For example, finding

interactions between genes based on experimentally obtained expression data in

microarrays is currently a significant research topic [13]. Biological data are often

collected over time; the analysis of the temporal patterns may reveal how the variables

interact as a function of time. This is a typical task undertaken in molecular biology.

Bayesian networks are now also being used for the analysis of such biological time series

data [34].

4. Contents of the special issue

In the previous sections, we have sketched some of the developments in Bayesian

networks research in biomedicine and health-care. We now introduce the papers that follow

this editorial.

The paper by Silvia Acid and Luis de Campos, which is titled ‘‘A comparison of learning

algorithms for Bayesian networks: a case study based on data of emergency medical

services’’, is unusual as the area it focuses on is the management of health services instead

of individual patient management. In the paper a number of structure-learning algorithms

are explored and compared to one another using various different performance measures.

The difficulties that must be overcome when using Bayesian networks in this domain are

also described.

The next paper by Lise Getoor, Jeanne Rhee, Daphne Koller and Peter Small, which is

titled ‘‘Understanding tuberculosis epidemiology using structured statistical models’’,

addresses one of the limitations of the standard Bayesian network formalism as

discussed in the previous sections. In the standard formalism, only fixed relationships

Pretreatment
observations Treatments

Outcome U

Fig. 4. General structure of an influence diagram, including a prognostic Bayesian network and a utility node U;

each ellipse and box denotes a part of the diagram.
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in a domain can be represented; general principles about similar objects, such as those

expressed in object-oriented languages, cannot be represented explicitly. Statistical

relational models are proposed as a means to increase the expressive power of Bayesian

networks, and learning the structure and parameters of such models for the exploratory

analysis of epidemiological data of patients with tuberculosis is investigated. The

difference between learning statistical relational models and ordinary Bayesian net-

works is that in the former it is assumed that data are organised as a collection of tables

(relations), so that learning takes place by inspecting tables in a relational data set that

are explicitly linked to each other.

In the paper titled ‘‘Using literature and data to learn Bayesian networks as clinical

models of ovarian tumors’’, Peter Antal, Geert Fannes, Dirk Timmerman, Yves Moreau

and Bart De Moor explore the potential of the huge collection of information available on

the World Wide Web as prior information for learning Bayesian networks. One of the

problems that are often encountered upon learning Bayesian networks for clinical

problems is that the available clinical data sets are too small to be exploited. As a

consequence, it is usually necessary to extract information from various complementary

sources. In this paper, techniques developed in the area of information retrieval are used as

a basis for finding relationships among variables from the Web. The applicability of these

techniques are studied with the construction of Bayesian networks for the classification of

ovarian tumours in patients.

The discovery of latent, or hidden, variables in data for inclusion in Bayesian networks is

the topic of the paper by Nevin Zhang, Thomas Nielsen and Finn Jensen, which is titled

‘‘Latent variable discovery in classification models’’. Much of the research in medicine is

driven by the wish to extend what is known, and hence the question addressed in the paper,

whether algorithms for latent variable discovery are able to find new phenomena, is a

challenging one. The Bayesian networks studied in the paper are hierarchical naive Bayes

models. These models have a central class variable as do naive Bayesian networks, but this

class variable acts as the root of a tree in which latent variables are included as internal

nodes and feature variables as leaves. Experimental evidence of the usefulness of this

method is also provided in the paper.

The final paper included in this special issue is by Boaz Lerner, titled ‘‘Bayesian

fluorescence in situ hybridisation signal classification’’. In this paper the usefulness of a

variety of probability distribution estimation methods for naive Bayesian networks are

discussed, and applied to the problem of classification of image features obtained by

digital microscopy of in situ hybridisation. Previous research by the author has shown

that a hierarchical neural network yields good performance in this task. The aim of the

research presented in the paper was to see whether naive Bayesian networks were able to

do a better job. Taking the naive Bayesian network as a base framework, three different

estimation methods, single Gaussian estimation, kernel density estimation and a

Gaussian mixture model, were developed and studied. It appears that none of these

estimation methods is able to improve on the neural network, which is explained by the

authors in terms of the restriction imposed by the assumption of conditional indepen-

dence in the underlying naive Bayesian network. Note that this contradicts results

obtained by naive Bayesian networks, TANs and FANs by other researchers, which may

be attributed to the nature of the problem.
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Kohane, P. Larrañaga, A. Lawson, L. Leibovici, T.Y. Leong, S. Monti, L. Ohno-Machado,

K.G. Olesen, M. Paul, M. Ramoni, A. Riva, P. Sebastiani, G. Tusch, J. Wyatt, and B. Zupan.

We are thankful to all of them for their devotion to achieving success for both the workshop

and this special issue.

References

[1] Andreassen S. Planning of therapy and tests in causal probabilistic networks. Artif Intell Med 1992;4:

227–41.

[2] Andreassen S, Riekehr C, Kristensen B, Schønheyder HC, Leibovici L. Using probabilistic and decision-

theoretic methods in treatment and prognosis modeling. Artif Intell Med 1999;15:121–34.

[3] Andreassen S, Woldbye M, Falck B, Andersen SK. MUNIN—a causal probabilistic network for

interpretation of electromyographic findings. In: McDermott J, editor. Proceedings of the 10th International

Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan Kaufmann, 1987. p. 366–72.

[4] Cheng J, Bell D, Liu W. Learning Bayesian networks from data: an efficient approach based on

information theory. In: Proceeding of the Sixth ACM International Conference on Information and

Knowledge Management, 1997. p. 325–31.

[5] Cheng J, Greiner R. Comparing Bayesian network classifiers. In: Proceedings of the UAI’99. San

Francisco, CA: Morgan Kaufmann, 1999. p. 101–7.

[6] Cooper GF, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Mach

Learn 1992;9:309–47.
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Proceedings of the First European Workshop on Graphical Models (PGM’02). Cuenca, Spain, 2002.

p. 117–26.

[31] Lucas PJF, Boot H, Taal BG. Computer-based decision-support in the management of primary gastric non-

Hodgkin lymphoma. Meth Inform Med 1998;37:206–19.

[32] Lucas PJF, De Bruijn NC, Schurink K, Hoepelman IM. A probabilistic and decision-theoretic approach to

the management of infectious disease at the ICU. Artif Intell Med 2000;19(3):251–79.

[33] Pearl J. Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan Kaufman, 1988.

[34] Ramoni M, Sebastiani P, Cohen P. Bayesian clustering by dynamics. Mach Learn 2002;47:91–121.

[35] Renooij S. Probability elicitation for belief networks: issues to consider. Knowl Eng Rev 2001;16(3):

255–69.

[36] Renooij S, van der Gaag LC. From qualitative to quantitative probabilistic networks. In: Darwiche A,

Friedman N, editors. Proceedings of the 18th International Conference on Uncertainty in Artificial

Intelligence. San Francisco, CA: Morgan Kaufmann, 2002. p. 422–9.

[37] Shachter RD. Evaluating influence diagrams. Oper Res 1986;34(6):871–82.

[38] Wong ML, Lee SY, Leung KS. A hybrid data mining approach to discover Bayesian networks using

evolutionary programming. In: Langdon WB, et al., editors. Proceedings of the Genetic and Evolutionary

Computation Conference. San Francisco, CA: Morgan Kaufmann, 2002. p. 214–22.

Peter J.F. Lucas*

Institute for Computing and Information Sciences, University of Nijmegen

Toernooiveld 1, ED-6525 Nijmegen

The Netherlands

Tel.: þ31-24-365-2611/3456; fax: þ31-24-365-3366

E-mail address: peterl@cs.kun.nl, lucas@cs.uu.nl (P.J.F. Lucas)

Editorial / Artificial Intelligence in Medicine 30 (2004) 201–214 213



Linda C. van der Gaag

Institute of Information and Computing Sciences, Utrecht University

Utrecht

The Netherlands

E-mail address: @cs.uu.nl (L.C. van der Gaag)

Ameen Abu-Hanna

Department of Medical Informatics, Academic Medical Center (AMC)

University of Amsterdam, Amsterdam

The Netherlands

E-mail address: a.abu-hanna@amc.uva.nl (A. Abu-Hanna)

214 Editorial / Artificial Intelligence in Medicine 30 (2004) 201–214


