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Abstract

This work provides an overview of Bayesian reasoning in court. We give a general framework for reasoning
with uncertainty in court. We address different probabilistic fallacies that people commit when reasoning with
uncertainty. We also discuss different heuristics people use when assessing subjective probabilities, and the biases
that these heuristic might cause. We discuss different design choices that can be made when creating a Bayesian
model, and different ways of interpreting Bayesian reasoning. Finally, we discuss a proposal to use Bayesian Networks
to visualise abstract mathematical models in court, in order to help the jury avoid fallacies as described in this
work. We find that the benefits of this approach are possibly limited, although we do acknowledge that it might
help to make a jury more aware of how Bayesian reasoning works.

1 Introduction

What is the most blatant example of the unjust con-
viction of an innocent person in recent history that you
can call to mind? What was the evidence against this
person? What cracks appeared in this evidence that fi-
nally brought to light the person’s innocence? Chances
are some of the evidence against this person was based
on statistics. Wrong statistics.

In the Netherlands, a striking example is that of Lu-
cia de Berk, a nurse who was sentenced life-time impris-
onment in 2003, being held responsible for four murders
and three attempted murders. Part of the evidence that
got her convicted, consisted of the notion that a surpris-
ingly large number of people died during Lucia’s shifts
at the hospital, and that their deaths could not be ex-
plained by the doctors. Chances of this happening were
estimated by forensic psychologist Henk Elffers to be one
in 342 million. Professor of Statistics Richard Gill reck-
ons that this number is what decided Lucia’s faith [6].
Judges, journalists, members of the public all had this
number in the back of their minds, probably stopping to
question her guilt.

Later, after philosopher Ton Derksen, doctor Metta
de Noo, and professors of Statistiscs Philip Dawid,
Richard Gill and Piet Groeneboom had worked [2, 7, 12]
to draw the public’s attention to the ways in which wrong
statistics were (mis)used in the conviction of Lucia, the
case was reopened. In 2011, Lucia de Berk was acquit-
ted, the court judging that all people she was said to
have murdered, actually died natural deaths.

In this work, we address several questions related to
incidents like this. What is the role of statistics and prob-
ability in court cases? Why do we need to reason with
uncertainty in court? Who is responsible for computing
and estimating probabilities? What mistakes can occur
while computing or estimating probabilities? How should
probabilistic pieces of evidence be combined to yield a
judgement about somebody’s guilt? How does the way
that probabilistic evidence is presented to court influence
justice?

This work is organised as follows. We present a frame-
work for reasoning with uncertainty in court in Section 2,
and use that in the rest of the work to explain cer-

tain difficulties with reasoning with uncertainty. We ad-
dress common biases that are found when both laypeo-
ple and experts make subjective probabilistic estimates
in Section 4. We discuss common probabilistic fallacies
made when reasoning with uncertainty in Section 3. Sec-
tion 5 highlights some of the different ways of looking at
Bayesian reasoning, and of constructing Bayesian mod-
els. In Section 6, we highlight different approaches to
presenting reasoning with uncertainty (and Bayesian rea-
soning in particular) in courts. Finally, we conclude this
work in Section 7.

2 The basics

In this section we provide a theoretical framework for
this work. We describe the basics of reasoning with un-
certainty in court.

2.1 A simple problem

Consider the simplest form of reasoning with uncertainty
that one might come across during a court case. A piece
of evidence is presentented, and the judge or jury has
to decide if this piece of evidence serves to increase, de-
crease or not alter their belief in the defendant’s guilt.
Suppose, for example, that a sample of DNA was found
at the crime scene. This fact can be seen in the context
of the causal chain of events presented in Figure 1.

G S M R

Figure 1: A typical causal chain of events that might be
considered in a court case. If the defendant is guilty of
committing a crime (G), he or she may be the source (S)
some evidence that was left at or near the crime scene,
and that can be directly linked to him or her. If a sample
is taken from the defendant, it might match the afore-
mentioned evidence (M). Finally, when investigating the
match, a lab may report that the sample from the defen-
dant does indeed match the evidence found at the crime
scene (R).

Here, suppose that a person is guilty of committing a
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certain crime. Suppose that a piece of evidence is found
at the crime scene, for example some saliva containing
DNA, or CCTV footage showing a car at the crime scene
at the moment that the crime took place. This evidence
can to some extent be linked to the defendant. DNA
or fingerprints can be very directly linked to a specific
person, but it might also be that the defendant owns
a car of the same make, model and colour as shown in
the CCTV footage. Now, there is a possibility that the
evidence found at the crime scene does indeed match a
sample taken from the defendant. For example, the DNA
in the saliva does belong to the defendant, or it is his/her
car that is on the CCTV footage. Finally, a test may re-
port that a match is found between the sample from the
defendant and the sample from the crime scene. For ex-
ample, a DNA match is found, or the make, model and
colour of the defendant’s car can be recognised from the
CCTV.

This only concerns one piece of evidence. In a real
court case, a judge or jury may be confronted with differ-
ent pieces of evidence, all being of different types (DNA,
footprint, fingerprint, CCTV footage, audio, etcetera),
and all of them may or may not be dependent of one
another.

Even correctly interpreting and using the very basic
causal chain of events described above, represents a true
challenge for anyone confronted with it in court. Firstly,
there are several probabilities that have to be estimated,
which in some cases can only be done so subjectively. This
means that the person making these estimation does not
only have to be an expert in the relevant field, but has
to also beware of being biased towards certain values.
Secondly, although the chain is simple, it is easy to con-
fuse certain probabilities with others, and thus to commit
probabilistic fallacies, especially when being questioned
by an attorney.

2.2 Likelihood ratio and posterior
odds

The simple chain of reasoning described above is not suf-
ficient for making decision in court. Typically, pieces of
evidence should be presented in the context of a Like-
lyhood Ratio (LR) that describes the ratio between the
probabilities of getting a result under two different hy-
potheses. For example, suppose that a footprint is found
at the crime scene, and a forensic expert is comparing
this footprint with the shoe of the defendant. The ex-
pert will consider two hypotheses:

H1: the shoe of the defendant is the source of the foot-
print at the crime scene;

H2: another shoe with a similar profile and size is the
source of the footprint at the crime scene.

Note that these hypotheses are mutually exclusive and
exhaustive. The similarities and differences between the
footprint and the defendant’s shoe represent the result
of the expert’s investigation. If they fit H1 better than
they fit H2, this forms evidence for H1. This might hap-
pen if there is, for example, a little stone caught in the
profile of the defendant’s shoe, and the footprint shows a
little mark of the same size at exactly the same spot. On
the other hand, when there are no striking features that
the expert can find, the evidence for H1 becomes weaker,
and both hypotheses might be about equally likely. Simi-
larly, the defendant’s shoe might show saliencies that are

not present in the footprint, which might make H2 more
likely.

These findings are summarised in the LR, which is
defined as

LR =
P (results | H1)

P (results | H2)
. (1)

A different way of using probability in court is by us-
ing the ratio of the posterior odds of H1 being true and
H2 being true. These odds are computed as follows:

P (H1 | results)

P (H2 | results)
=

P (results | H1)

P (results | H2)
× P (H1)

P (H2)
, (2)

where the first term on the right hand side represents the
LR, and the second term represents the prior odds, or
the ratio of probabilities of H1 being true and H2 being
true before any evidence is taken into consideration. The
posterior odds represent the ratio between these proba-
bilities if the results of the investigation of the piece of
evidence are taken into account. Note that this expres-
sion follows directly from Bayes’ rule, and eliminates the
need to assess prior probability P (results).

3 Fallacies in reasoning with
uncertainty

In this section, we discuss a range of different fallacies
that may be committed by people working with proba-
bilities. We discuss two main types: fallacies caused by a
lack of understanding of conditional probability in deal-
ing with single pieces of evidence, and fallacies caused
by a lack of understanding on how to combine different
pieces of evidence.

3.1 Probabilistic fallacies

Consider the simple causal chain as presented in Fig-
ure 1. In this section, we explain a number of common
fallacies, referring to the aforementioned chain. We indi-
cate the statement that the defendant is guilty of com-
mitting the crime with g, and its negation with g. Sim-
ilarly, the statement that the defendant is the source of
the evidence found, is indicated with s, and its nega-
tion with s, etcetera. This section is based on the work
presented in [10, 5]

Let us start at the end of our example chain of rea-
soning, with the probability P (r). It is noted in [10]
that DNA analysts tend to overestimate the reliability
of DNA analysis. They tend to claim that the method
is failsafe, and thus yields no false positives. Thus, they
assume that P (r | m) = 1, or even P (m | s) = 1 or
P (s | g) = 1! This is known as the Impossibility of False
Positives fallacy. Koehler also notes in [10] that his anal-
ysis of a report on by the Collaborative Testing Services
yields an estimate of false positive errors occurring in
one to four percent of match reports provided by labs in
open proficiency tests. Having no data on false positive
rates in closed proficiency tests, staged to mimic realistic
crime scene conditions, it is probably not unreasonable
to assume a false positive rate in these conditions to be
of the same order of magnitude.

The Interrogator’s Fallacy occurs when the evidence
consists of a confession of guilt from the defendant (that
is not corroborated). Here, P (r | g) is used to in-
fer P (g | r) without taking into account the probabil-
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ity of the defendant confessing, despite being innocent:
P (r | g).

Similarly, the Defendant Fallacy occurs when the ev-
idence m is considered to be unimportant, when a very
high prior for P (g) (due to a large number of potential
suspects), still yields a large P (s | m).

Moving a bit up the chain, we find the
P (Another Match) Error, which is committed when
one equates the the value of P (m | s) to the probability
that at least one innocent member of the reference pop-
ulation1 has matching evidence. Suppose that a certain
trait that characterises a sample of DNA is found in one
out of X members of the reference population, which has
size N . Then, the probability of a randomly selected per-
son from that population matching the evidence found
on the crime scene is 1/X. However, the probability that
there is at least one person, other than the defendant,
in the reference population that will match the evidence
found at the crime scene, is 1 − (1− 1/X)N .2 Clearly,
the size of the reference population is relevant for this
estimate, while, according to Koehler, there is little
awareness amongst experts, attorneys and judges about
this fact.

A similar fallacy is the Numerical Conversion Error,
where the value of P (m | s) is confused with the num-
ber of other people from the reference population that
would have to get tested to find someone who matches
the evidence.3

Another related fallacy is the Expected Values Imply-
ing Uniqueness fallacy, where it is assumed that if the
size of the reference population is of order 1/P (s | m), the
defendant must be the only match. However, it can be
shown [3] that the chance that there will be at least two
matches in a population of size 1/P (s | m) exceeds 25%.4

Another fallacy related to the reference population
is the Defendant’s Database Fallacy. Here, the value of
P (s | m) is based on a different population from that de-
termined by P (s) or P (g). This can occur if, for example,
the defendant is found because a DNA sample found at
the crime scene matches the DNA of the defendant found
in a database of persons with earlier convictions, and not
because there was other evidence that led to suspicion
towards the defendant. The the value of P (s | m) might
then be based on the probability of a random member
from the database matching the sample, while P (g) may
be based on all persons that were within five kilometers
of the crime scene during the day at which the crime
took place.

A very obvious, though common fallacy is that of

Base Rate Neglect, or failing to take into account prior
odds such as P (g) or P (s). In general, this might lead to
overestimations of an event occurring when the event is
more unusual than it seems, or underestimations if the
event is less unusual than it seems.

One particular class of probabilistic fallacies is known
as the Transposed Conditional Fallacies. Here, a proba-
bility of an event that is conditioned on certain evidence
is confused with the probability of that evidence, condi-
tioned on the event.

Equating P (m | s) with P (s | m) is known as the
Source Probability Error, because the probability of the
evidence matching the defendant if the defendant is not
the source, is confused with the probability of the defen-
dant not being the source, if a match is found for the
defendant and the evidence.5 This tends to exaggerate
the strength of the evidence. In particular, in order to
compute P (m | s), we need the prior for s, and we thus
need information about the size of the source population.
Alternatively, this fallacy is often known as the Prosecu-
tor’s Fallacy.

Another fallacy that sometimes goes by the name of
Prosecutor’s Fallacy is the Ultimate Issue Error, when it
is implicitly assumed that P (g) = P (s), on top of com-
mitting a source probability error. Thus, someone com-
mitting an ultimate issue error will incorrectly assume
that P (m | s) = P (g | m). Another type of ultimate issue
error is committed when P (m) is assumed to be equal to
P (g), and it is thus concluded that P (m | s) = P (g | r).
This would mean that the probability of the defendant
matching the evidence if the defendant is not the source
of the evidence, is equal to the probability of the defen-
dant not being guilty when the lab reports that a match
is found.

3.2 Fallacies in combining evidence

The fallacies described above all stem from a misunder-
standing of conditional probabilities in dealing with sin-
gle pieces of evidence. Another type of fallacy is com-
mitted when a person fails to combine multiple pieces of
evidence together correctly.

The first, and very obvious, fallacy is that of the De-
pendent Evidence, also known as Double Counting. This
fallacy is committed if someone treats two pieces of evi-
dence that are dependent of one another as if they were
independent. A famous example is that of Sally Clark.
Two of her babies died of sudden infant death syndrome
(SIDS), and those deaths were treated as independent.

1The reference population is used to determine the random match probability P (m | s), the probability that a person not involved in
the crime, coincidentally provides a sample that matches the evidence. Depending on the information available about the source of the
sample found at the crime scene, this reference population can consist of the general population, or can be a case-specific source population.
For example, if an eye witness has provided information about seeing a caucasian male, this could exclude many members of the general
population from the source population. Note that there is a subtle difference between the source population and the potential suspect
population. For example, when woman is murdered in her bed, only a week after her husband died, her husband is a member of the source
population, but not of the potential suspect population.

2Koehler provides an example in [10], with X = 705, 000, 000 and N = 1, 000, 000. In that case, P (m | s) = 1/705, 000, 000, but the
probability that at least one person other than the defendant can provide a sample that matches the evidence at the crime scene is roughly
1/714.

3In the previous example, we would not have to test 705,000,000 people to have a decent chance at finding a match, but rather a number
n such that (1− 1/705, 000, 000)n ≤ 0.5, which corresponds to testing roughly 489,000,000 people.

4We can use the Poisson distribution for computing the probability of seeing x matches, if the expected number of matches is
λ. This probability is given by P (x | λ) = λxe−λ/x!. In our case, since the probability of a random innocent person from the
reference population having a match is P (s | m), and the population has size 1/P (s | m), we conclude that λ = 1. This yields
P (x > 1 | 1) = 1 − (P (0 | 1) + P (1 | 1)) = 1 − 2e−1 ≈ 0.26. Note that we have not used any information about the size of the refer-
ence population in particular.

5An example: suppose a scientist finds that if an animal is a cow, there is 100% chance that it has four legs. When you commit a source
probability error, you take this to mean that if an animal has four legs, there is a 100% chance that it is a cow.
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According to a medical expert witness, about two out of
17200 babies in families like Clark’s die of SIDS. Squar-
ing that number yielded a probability of roughly one in
74 million that two children would die of SIDS in one
family. In 2002, the President of the Royal Statistical
Society in the UK wrote a letter to the Lord Chancel-
lor to point out the fact that, in order to assume that
cases of SIDS occur independently in families, one has
to prove this in court, which had not happened. Also,
there are reasons for assuming that cases of SIDS do
not occur independently in families, there might be ge-
netic or environmental influences that predispose some
families to SIDS.6 A similar mistake was made in the
case of Lucia de Berk. In calculating the probability of
there being six suspicious incidents during her shift in
one year, it was assumed that all nurses and all shifts
were interchangable with respect to the possibility of a
person dying during a shift. Although medical specialists
tend to claim that this is in fact the case, nurses tend
to disagree. In their experience, patients tend to die on
the shifts of nurses they feel comfortable with. On top
of that, events marked as ‘incidents’ in the Lucia de B
case, always started with a phone call from a nurse to a
doctor. Different nurses have different personalities, and
their decision to call a doctor to report an incident is also
based on personality traits like self-confidence, as well as
professonial and personal experience and attitude [12].

This leads to a special case of the dependent evidence
fallacy: the Logically Dependent Evidence Fallacy, where
one piece of evidence follows logically from another. If
the two pieces of evidence are that a particular nurse
makes a lot of phone calls to report incidents, and that
that particular nurse has a lot of incidents on her shifts,
these are logically related.

The Conjunction Fallacy is a typical product of hu-
man limitations. It stems from the difficulty that humans
have to retain different pieces of information in memory,
which they solve by merging new pieces of information
with the old ones. In this process, certain subtleties such
as the uncertainty in a piece of information, tend to get
lost. Therefore, people might fail to take into account the
different uncertainties that a piece of evidence is made
up of, and thus assign a larger weight to the piece of
evidence than it should have [14].

The Coincidence Fallacy occurs when an observed
combination of events is implied to have a very small
probability, as was done in the Lucia de Berk case. In
this particular example, people failed to see the great
variance of the number of suspicious incidents on shifts
of a particular nurse within one year, thus judging that
a large number of incidents is very, very unlikely (the
famous one in 342 million number). They were proved
wrong in [7, 12]. This fallacy leads to an underestima-
tion of the probability of such an observed combination
of events. For example in [12], it is argued that, if we
were to consider the yearly number of suspicious inci-
dents during Lucia’s shifts as strong evidence for her be-
ing a serial killer, we should send one in twenty-six nurses
to jail each year, or maybe even one in nine! This means
that the yearly number of suspicious incidents during
Lucia’s shifts is not that unusual.

A tricky fallacy is that of Previous Convictions. It is
a special case of the Jury Observation Fallacy, and can
be illustrated as follows. Suppose that a jury, in a serious
crime case, has found the defendant to be not guilty. This
is told to another person, who has nothing to do with the
case. Next, this person is told that the defendant was
earlier convicted for a similar crime. Now, the person is
asked if this information increases or decreases his/her
belief in the correctness of the jury’s verdict. Typically,
this person’s confidence in the correctness of the jury’s
verdict will decrease after being confronted with the ex-
tra information of the defendant being convicted earlier
for a similar crime. The tricky part is that it can be
shown that the probability of the defendant being guilty
in the second case actually decreases once the prior con-
viction is known [4].

Finally, there is a fallacy that is called What You See
Is All There Is (WYSIATI), by Daniel Kahneman in [8].
On the one hand, this expressed as investigators jump-
ing to conclusions on the basis of limited evidence, but
in some sense, it can also manifest itself as investigators
failing to see the absence of evidence [14]. To illustrate
this point, consider the story called Silver Blaze, in Sir
Arthur Conan Doyle’s The Memoirs of Sherlock Holmes.
It contains the following dialogue between Inspector Gre-
gory and Sherlock Holmes:

“Is there any point to which you would wish to draw
my attention?”

“To the curious incident of the dog in the night-time.”

“The dog did nothing in the night-time.”

“That was the curious incident,” remarked Sherlock
Holmes.

From this, Holmes infers that a member of the house-
hold must have been the culprit, as the dog would have
barked to a stranger coming into the house.

4 Biases in estimating subjec-
tive probabilities

Above, we have discussed several common fallacies that
people commit when confronted with reasoning with un-
certainty. As we have seen in Section 2.2, we do not only
have to reason about (in)dependent events in a proper
way, we also have to assess certain probabilities, that
might be subjective. Suppose, for example, that a foren-
sic expert on facial recognition is given a photograph of
the defendant, and a picture taken of the perpetrator of a
crime. Suppose that the defendant has a very clear mole
and scar on his/her right cheek, and that these features
are also visible in the photograph of the perpetrator. The
expert will compute the LR of seeing the mole and scar
in the picture of the perpetrator, given that the defen-
dant is or is not the perpetrator. To obtain posterior
odds, the prior odds have to be assessed first. Therefore,
an assessment must be made of size of the suspect pop-
ulation, and the number persons in that population that
have a mole and a scar on their right cheek. Chances are
that there are no statistics about this last trait, so these
numbers have to be estimated subjectively [11].

6Incidentally, more fallacies were committed in the Sally Clark case. The prosecutor’s fallacy led people to conclude that if the proba-
bility of two children dying of SIDS in one family is one 74 million, then that is the chance that the deaths were indeed accidental. This is
a fallacy because by only looking at the probability of the two deaths being accidental, one does not take into account the prior probability
that both children were murdered, which might be equally small, if not smaller. Recall from Section 2.2 that considering an alternative
hypothesis is the bread and butter of reasoning with uncertainty in court.
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Note that we define objective probabilities to be values
that are calculated according to the laws of the probabil-
ity calculus, for example, Bayesian reasoning. Subjective
probabilities are those that are estimations of the prob-
ability of an event, given by a person (‘subject’).

In this section, we highlight a number of common bi-
ases and heuristics with respect to estimating subjective
probabilities. These biases allow humans to deal with
probability assessment in a quick way, with limited men-
tal effort. At times, this is useful, but it can also be
inaccurate, and tricky to avoid.

4.1 Representativeness

The heuristic we want to highlight is that of represen-
tativenes, this section is based on [9, 17]. When assess-
ing probabilties, people judge the probability of an event
occurring by judging the extent to which the event is
representative for what they expect. For example, sup-
pose someone tells you about their former neighbour,
Steve [17]. Steve is described as “very shy and with-
drawn, invariably helpful, but with little interest in peo-
ple, or in the world of reality. A meek and tidy soul, he
has a need for order and structure, and a passion for de-
tail.” Now, you are asked to rank a list of occupations
(for example, farmer, salesman, airline pilot, librarian or
physician), according to your estimation of the probabil-
ity that Steve is engaged in such an occupation. Before
you read on, we suggest you grab a pen and draw the
list for yourself.

Typically, people will rank their occupations accord-
ing to how well the mental image created by the descrip-
tion fits the mental stereotype they have of a farmer, a
salesman, etcetera. In other words: the degree to which
the description of Steve is representative for a farmer,
a salesman, etcetera, determines how likely we think
him to be engaged in those occupations. People consis-
tently judge the more representative event to be more
likely. This is a form of substitution, when faced with a
hard question (“Which occupation is more likely?”), our
brains substitute it with a different question (“Which
stereotype is most similar to the description?”), and we
answer that question instead, thus reducing the mental
effort needed for completing the task [8].

So what is representativeness? In [9] the representa-
tiveness of an event is defined as the degree to which it
is similar in essential properties to its parent population,
and the degree to which it reflects the salient features of
the process by which it is generated. We give two exam-
ples to illustrate these criteria.

Consider the following problem [9]: “All families of six
children in a city were surveyed. In 72 families the exact
order of births of boys and girls was GBGBBG. What is
your estimate of the number of families surveyed in which
the exact order of births was BGBBBB?” Assuming the
birth of a boy or a girl to be equally likely, both birth se-
quences are equally likely. However, the first one is more
representative than the second one, since it reflects the
proportion of boys and girls in a population. Thus, peo-
ple judge the first sequence to be more likely than the
second. This is an example of the first criterium; boys
and girls in equal proportions is what you expect in the
total population. The second criterium can be illustrated

by asking the same question, only for the sequences BB-
BGGG and GBBGBG.

Here, the first sequence seems less likely, as it doesn’t
reflect the randomness we expect to see in the births of
boys and girls, and thus does not reflect the features of
the process by which birth sequences are generated. As
a consequence, only a subset of all equally likely possible
outcomes is perceived as a representative sample.

Having defined the scope of the representativeness
heuristic, we discuss a few errors and biases that are as-
sociated with it.

Firstly, the representativeness heuristic causes an In-
sensitivity to Prior Probability of Outcomes, as different
priors have no effect on representativeness, but they do
have an effect on the (posterior) probability of an event.
To illustrate this, recall Steve. For most of us, the de-
scription of Steve matches the most with our stereotype
of a librarian. However, as there are more salespersons
than librarians, this fact should enter into the equation
to get a reasonable estimate of the probability that Steve
is a librarian, versus that of Steve being a salesman.

This effect is clearly present, even when subject are
aware of the prior probabilities, and know what they
mean and how to reason with them. Let us consider an
example that is similar to the one described above [17].
Suppose we have a population of 100 men, 70 of them are
engineers, while the other 30 are lawyers. Now, subjects
are confronted with the description of a person drawn
from that population, and they have to estimate the odds
that that description belongs to an engineer or a lawyer.
When provided with no description, subjects correctly
estimate the probability of a person being an engineer
to be 70%, and that of him being a lawyer to be 30%.
However, this changes when provided with a description
like “Dick is a 30 year old man. He is married with no
children. A man of high ability and high motivation, he
promises to be quite successful in his field. He is well
liked by his colleagues.” This description contains no in-
formation that makes it to be more representative of a
lawyer or of an engineer, so essentially, we are given no
information. However, subjects tend to interpret this as
meaning that there is a fifty-fifty chance of Dick being
an engineer or Dick being a lawyer, and forget about the
prior probabilities for these occupations in the popula-
tion.

Aparrently, people respond differently when they are
given no evidence, than when they are given worthless
evidence. This is particularly interesting in the light of
the subject of this paper: reasoning with probability in
court.

Another mistake made due to the representativeness
heuristic is that of Insensitivity to Sample Size. This is
illustrated in [9], where the authors asked subjects to
come up with probability densities for three types of
distributions: a binomial distribution with p = .5 for
each of the two outcomes, a binomial distribution with
p = .8 for one of the two outcomes, and a distribution of
height. They let subjects draw probability distributions
for populations of sizes 10, 100 and 1000, and found that
the median distribution given by the subjects was inde-
pendent of population size. In reality, one would expect
the distributions to be ‘flatter’ for small populations and
more localised around p (or the average height) for larger

7This can be further illustrated with an example [17]. Suppose we have an urn filled with balls, 2/3 of which are of one color, and 1/3 of
which are of another colour. Suppose John draws five balls from the urn and finds that four are red and one is white. Jane draws twenty balls,
twelve of them red and eight of them white. Who should feel more confident that 2/3 of the balls in the urn are red, and 1/3 of the balls are
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populations.7

A mistake that is related to the one of insensitivity
to sample size is that of the Misconception of Chance,
or the belief in the Law of Small Numbers [16]. It is not
limited to laymen, also. This mistake is made when peo-
ple assume a small sample to have a high probability of
showing a trend that is representative for a large sam-
ple. For example, people expect to see high degrees of
randomness in small sequences of random events, such
as the tossing of a coin. This is also known as the Gam-
bler’s Fallacy, when roulette players expect black to be
due after a sequence of reds, and can thus manifest it-
self as an expectation that people have that chances will
‘cancel eachother out’ in short sequences, because that
is what they do in the long run. This expectation of local
representativeness leads us to underestimate the prob-
ability of extraordinary samples when the samples are
small.

Another interesting mistake that is being made is
that of Insensitivity to Predictability [17]. Let us get back
to Steve. The description of Steve was given by a former
neighbour of his, and we have no information on how well
this neighbour knew Steve, how long ago it was that they
were neighbours, how skilled the neighbour is in judging
personalities, etcetera. Did you take this into account
when ranking your list of possible occupations of Steve
according to the probability that he is engaged in such an
occupation? You probably did not. Even people trained
in statistics will perform this task based on representa-
tiveness, rather than actually assessing the likelihoods
based on the predictive value of the description [8].

4.2 Availability

An interesting heuristic is that of availability, in which
we assess the probability of an event happening based on
the ease with which an example of such an event springs
to mind. This ease can be due to different effects.

The bias of Retrievability of Instances is the most di-
rect way in which examples of an event are available in
the forefront of our brains. Events are easier retrieved if
they occured recently, explaining why we are more anx-
ious of being the victim of a terrorist attack after there
just has been one. Events are also easier to retrieve if
they are in some way familiar, for example, when they
happen to family members or friends, or even famous
people. Having once seen a house burn down also makes
it easier for us to retrieve an example of a house burning
down than only having read about houses burning down;
personal experience also influences the ease with which
we retrieve examples.

A maybe less obvious bias is that of the Effectiveness
of the Search Set. When confronted with the question as
to whether there are more words in the English language
that start with an r (such as ‘rain’ or ‘river’), or more
words that have an r at the third position of the word
(such as ‘more’ or ‘word’), we find it easier to recall words
that start with an r, than to recall words that have an
r at the third positions. We thus tend to conclude that

there are more words in the English language that start
with an r, than that there are words with an r at the
third position, while in fact words with an r at the third
position are more frequent than those with an r at the
first position.

These two biases again illustrate that we tend to
judge events that take less mental effort to conceive to
be more probable than events that require our brains to
work harder to imagine them.

4.3 Adjustment and Anchoring

Anchoring is providing a person with a number that can
be used as a starting point for assessing a subjective
probability. The person can adjust this number until he
or she thinks it to be appropriate. However, as it turns
out, people generally do not adjust the number enough,
since they intuitively feel that the true number cannot be
too far away from the initial one they have been given,
which is yet another heuristic humans use when assessing
probabilities.

This knowledge is very powerful if you are often re-
quired to haggle over a price. Starting out with proposing
a very low (or high, depending on whether you are buying
or selling) can be very lucrative. In the context of buy-
ing or selling, however, you do have to be reasonable.
The price you propose is always based on something,
and you have to be able to defend it to some extend.
The surprisingly, the Insufficient Adjustment bias also
works when the anchor you have been given is obtained
randomly, and should thus contain no information about
the true value. Tversky and Kahneman report an exper-
iment in which subjects were asked to estimate the num-
ber of African countries in the United Nations [17]. The
subjects were divided in groups; and each group got a
different anchor, that was obtained by spinning a wheel
of fortune. The median of the guesses for the number
of African countries in the UN from the group that re-
ceived 10 as an anchor, was 25. The group that got 65
as an anchor has a median of 45 in their guesses.

A different manifestation of the use of the anchor-
ing and adjusting heuristic is seen in subjects estimat-
ing conjunctive and disjunctive events. People tend to
have a bias towards overestimating the probability of
conjunctive events, and underestimating the probability
of disjunctive events. The overall probability of a con-
junctive event is lower than the probability of a singular
event, while the overall probability of a disjunctive event
is higher than that of a singular event. When anchored
with the probability of a singular event, which is always
a natural place to start when considering conjunctive or
disjunctive events, people do not adjust the conjunctive
or disjunctive probabilities sufficiently to get to a correct
estimate. In the context of a court case, in which several
pieces of evidence may have to be combined, this may
have significant effects.

However, this might be compensated by us knowing
in which direction the bias will occur. In the case of
guessing the numbers of African countries in the UN,

white? Intuitively, most people will reckon that John has much stronger evidence of having drawn from an urn with 2/3 red balls and 1/3 white

balls than Jane. However, the correct posterior odds are:
P (2/3 red|4r,1w)
P (1/3 red|4r,1w)

=
P (4r,1w|2/3 red)
P (4r,1w|1/3 red)

× P (2/3 red)
P (1/3 red)

=
(2/3)4·1/3
(1/3)4·2/3 ×

.5

.5
=

(
2/3
1/3

)3
= 8/1 for

John, and similarly 16/1 for Jane. Therefore, Jane is more certain than John of having drawn from an urn containing 2/3 red balls. John’s
set of drawn balls provides stronger intuitive evidence of being drawn from an urn with a majority of red balls than Jane’s set of balls,
since the proportion of red balls to white balls is larger in John’s draw (4:1) than in Jane’s (12:8, or 3:2). This is an illustration of how the
judgment of posterior odds is dominated by the extent to which a sample has proportions that are consistent with what we expect, and
almost unaffected by the size of the sample.

6



we can never be sure if people will adjust upwards from
the anchor, or downwards. With the bias in estimating
conjunctive and disjunctive events, the structure of our
problem will give us a hint about the direction of our
bias, which helps us in reducing that bias.

There are many more biases due to the three heuris-
tics described above, but discussing these is beyond the
scope of this work.

5 How to interpret and design
Bayesian models?

Although Bayesian reasoning is an established method
for reasoning with uncertainty, which is well documented
and understood, there exist different ways of solving the
same problem, and Bayesian Networks that represent a
certain Bayesian argument need not be unique to yield
acceptable results. In this section, we discuss how differ-
ent ways of thinking about Bayesian reasoning affect the
choices we make and how we interpret the result.

5.1 Three Bayesian semantics

In [15], Shafer and Tversky distinguish three distinct se-
mantics for the Bayesian ‘language’ that describes how
to deal with reasoning with uncertainty according to
Bayesian principles.

The first semantics is that of frequency. We look at
our evidence by asking how often, in a repeated experi-
ment consisting of the situation at hand, the truth will
turn out the way it does for our evidence. The second
semantics is that of propensity. Here, we view the evi-
dence in the context of a causal model, and ask about
the propensity of the model to produce the results we ob-
serve. Note that, while the last view seems a very natural
way of thinking for us, it might predispose us to commit
certain fallacies and fall for certain biases more often
than when looking at our model through frequency eyes.
For example, the propensity approach could make us
more vulnerable for the base rate neglect fallacy, or the
insensitivity to predictability bias. On the other hand,
the propensity view might cause us to spot dependen-
cies more easily, thus being less vulnerable for fallacies
in combining different pieces of evidence.

Finally, the third semantics is that of betting. View-
ing our evidence in the light of betting, we might make
comparisons of the probability of certain events by as-
sessing our willingness to bet a certain amount of money
on it. This view might be the least useful in interpreting
Bayesian reasoning, as several studies have shown that
people are often willing to loose money, in order to con-
tinue to believe in what they believe [15]. Also, people
tend not to derive believes from their bets, but bet on
what they believe in. On the other hand, the betting se-
mantics is a more general view of probability than the
frequency and propensity semantics. However, the bet-
ting semantics does not help us much in our understand-
ing of the probabilistic principles in our model.

5.2 Two Bayesian designs

Besides recognising three semantics with which we can
look at our evidence and model, Shafer and Tversky dis-
tinguish two main ways of organising our model: the total
evidence design and the conditioning design.

The total evidence design bases each probability and
each conditional probability on all the evidence that is
available. This is used for computing the probability of
certain outcomes. Note that this ordering of events is
opposite from how we tend to think about evidence in a
court case. Recall from the chain of reasoning in Figure 1
that we start with the event (defendant is guilty or not),
and work towards the probability of this leading to us
finding the evidence that we found. This can be turned
around by considering an alternative chain of reasoning
(see Figure 2), that does not have the causal nature of
the chain as presented in Figure 1, but expresses a similar
idea [10].

R M S G

Figure 2: An alternative way of seeing the causal chain
of events of Figure 1, now expressed as a chain of rea-
soning, rather than a chain of events. We might get
a reported match between the evidence and a sample
from the defendant (M). This is suggesting, although
not guaranteeing, a true match between the evidence and
the defendant (M). This is again suggestive (but by no
means certain) of the defendant being the source of the
evidence (S), which in turn is suggestive of the defendant
being guilty of committing the crime (G).

Please note that for more complicated examples than
that of Figure 2, there might be different choices for or-
ganising our evidence. A limitation of this design is that
its effectiveness depends on the decomposability of the
evidence. This in turn depends on how the information
we have is organised, which both reflects and determines
how we think about the problem.

For cases in which the evidence is less clearly de-
composable, an alternative approach is to choose a con-
ditioning design of our Bayesian model. Here, we build
a model with a probability distribution, based on a hy-
potheses. Then, we condition the model on certain pieces
of evidence, to see what the probability is of us finding
our other pieces of evidence. If the probability of find-
ing these other pieces of evidence is low, this indicates
that our model is probably based on a hypotheses that
is unlikely to be true. While the name of this design at-
tracts our attention to the second part of the process,
it is the model building and assessing of the probability
distributions that is the hard part.

Within the condition design of a Bayesian model,
there are again two directions to choose from; an ob-
servational design and a partitioning design.

In the observational design, the evidence whose prob-
ability of finding is determined by conditioning our
model on the other evidence, is deliberately obtained af-
ter the model is built. This has as advantage that it
might yield more open minds while building the model,
but it might also be wise to let the new evidence be
obtained by a person who is unfamiliar with the model.
This approach might have been benificial in the Lucia de
Berk case. It could have been used to assess how likely it
is to find a certain number of suspicious incidents hap-
pening on the shift of the same nurse within a year. How-
ever, this would take some time (at least a year), so even
if it is conducted properly, it might not be very helpful.
Another approach would be to just not use the records of
suspicious incidents while building the model, and con-
sulting them only after building the model.
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In the partitioning design, the total evidence is par-
titioned in ‘old evidence’ and ‘new evidence,’ and the
probabilities are assessed based on the old evidence, af-
ter which the model is conditioned on the new evidence.

This section has given a quick overview of some of
the design choices that can be made while constructing
a Bayesian model for reasoning with uncertainty. For a
more detailed description, please refer to [15].

6 The role of Bayesian reason-
ing in court

As we have seen above, reasoning with probabilities
comes with all sorts of complications. We must watch
out for the probabilistic fallacies that prey on us when
we reason with uncertainty. Furthermore, we must have
the discipline to really think about the (implicit) assump-
tions we make when estimating subjective probabilities.
On top of that, we have to have a good understanding
of what we are doing when organising our evidence in a
Bayesian Network.

How can we use all this in court? What ways are there
to organise the responsibility for these different aspects
of reasoning with uncertainty? What are the problems
with these different approaches? In this section, we high-
light ways of dealing with reasoning with uncertainty in
court, using Bayesian theory in particular.

6.1 Bayesian reasoning in court

In [13] it is argued that, as lawyers are taught a certain
type of statistics, they have a limited view of the concept
of probability. To illustrate this, they quote a judge:

“The concept of ‘probability’ in the legal sense is cer-
tainly different from the mathematical concept, indeed it
is rare to find a situation in which these two usages co-
exist, although when they do, the mathematical probabil-
ity has to be taken into the assessment of probability in
the legal sense and given its appropriate weight.”

A main limitation of the statistical teaching to those
practicing law, is that it argues that axioms of proba-
bility apply only to repeated experiments, thus suggest-
ing that there exists no rational way of assessing certain
case-specific probabilities, hence the quote above.

Yet, the authors of [13] argue that expert witnesses
should only testify to the LR of the evidence. The assess-
ment of the prior probalities of the hypotheses, and thus
that of the posterior probabilities, should be left to the
court. This is also how evidence is used in the Dutch sys-
tem [11]; the expert witness provides a testimony about
the LR of the two hypotheses that he/she has investi-
gated with respect to the given evidence. Then, the judge
has to assess the prior odds of each piece of evidence,
and combine the posterior odds of all pieces of evidence
to come to a judgement. In the Dutch system, the NFI
(Nederlands Forensisch Instituut, or Dutch Forensic In-
stitute) provides a report for each piece of evidence, in
which the LR is not only given in numbers, but also ver-
balised, in a way that is shown in Table 1.

Table 1: The verbal terms of probability and their nu-
merical definition, as used by the NFI [11].

Order of magnitude
of LR = P (results|H1)

P (results|H2)

The results of the
test are. . .

1 – 2 about as likely
2 – 10 a bit more likely
10 – 100 more likely
100 – 10,000 much more likely
10,000 – 1,000,000 very much more likely
> 1,000,000 extremely more likely

. . . when H1 is true
than when H2 is true.

They note that an advantage of this approach is that
probabilities can still easily be communicated when there
are no exact numbers. If an expert can only give a rough
estimate, they can use the verbalised terms of probability
to still communicate likelihoods in a standardised fash-
ion. Furthermore, each report on a piece of evidence is
accompanied with an attachment that explains the basics
of Bayesian reasoning, two main fallacies (the prosecu-
tor’s fallacy and the source probability error) and con-
tains Table 1.

In such a system, we can expect judges and lawyers
to be familiar with Bayesian reasoning, and we can ex-
pect them to have experience in using Bayesian reasoning
properly and avoiding fallacies. As we have seen with the
Lucia de Berk case, this expectation might be unjusti-
fied or naive. In [5], Norman Fenton and Martin Neil also
argue that all fallacies mentioned in Section 3 can be eas-
ily avoided by having just some understanding of Bayes’
Theorem. However, in a system such as the one in the
United States, where a jury has to make a judgement,
we cannot expect members of a jury to fully understand
Bayes’ Theorem. This sentiment is shared by the people
actually in court, as can be shown by the following quote
from an appeal judge [5]:

“The introduction of Bayes’ theorem into a crimi-
nal trial plunges the jury into inappropriate and unnec-
essary realms of theory and complexity deflecting them
from their proper task. The task of the jury is . . . to eval-
uate evidence and reach a conclusion not by means of a
formula, mathematical or otherwise, but by the joint ap-
plication of their individiual common sense and knowl-
edge of the world to the evidence before them.”

While the first part of this statement is something
we might feel sympathetic to, the second part is worry-
ing, since we know from Sections 3 and 4 that people in
general and laymen in particular are very vulnerable to
making mistakes in working with probabilistic evidence,
and thus cannot be trusted to rely on common sense and
still come to the right conclusions. Therefore, Fenton and
Neil argue that Bayesian reasoning must be used in court
by the jury, and they propose to use Bayesian Networks
to help the jury make their judgement.

6.2 The use of Bayesian Networks in
court

Fenton and Neil acknowledge the problem of commu-
nicating abstract models of probability to a jury, so
they propose to ease the members of the jury into
drawing their own (correct!) conclusions about statis-
tical problems in small examples. Then, they feel the
jury is sufficiently equipped to deal with more complex
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Bayesian reasoning. To support this claim, they argue
that Bayesian reasoning can be seen as something simi-
lar to long division:

1. We understand the basic principles behind it, and
we can work out small examples by ourselves;

2. Scientists have developed algorithms for the gen-
eral case;

3. The algorithms do not need to be understood by
laypeople, as sufficient experts have tested and val-
idated them;

4. There are tools that implement the algorithms to
acceptable degrees of accuracy (a calculator in the
case of long division, a tool like SamIam [1] in the
case of Bayesian reasoning);

5. There are different tools implementing similar al-
gorithms and they all give approximately the same
result;

6. Most people are able to enter the basic assumptions
into the tool and press the relevant button to get a
correct result (for long division, the basic assump-
tions consist of determining what number you want
to divide by what other number, for Bayesian rea-
soning, the assumptions are a bit more complex).

In this section, we first show how the jury might be
taught about Bayesian reasoning in small examples, ac-
cording to Fenton and Neil. Then, we discuss in short the
validity of the six assumptions made above for Bayesian
reasoning.

Fenton and Neil argue that a visual representation
of the probabilistic model is benificial in helping laymen
to make correct probabilistic computations themselves.
They propose to either visualise them by a simple ani-
mation of ‘stick figures,’ where parts of the population
are highlighted, according to the probabilities they rep-
resent. An alternative approach is to use an event tree of
the kind presented in Figure 3.

Figure 3: An example of an event tree that will help ju-
rors gain insight into Bayesian reasoning. Figure from [5].

In that particular event tree, there is a population of
possible suspects of 100,000. Assuming that we are look-
ing for one perpetrator, the prior probability of the defen-
dant being the actual source of the evidence found at the
crime scene is thus 1/100, 000, while the prior probability
of the defendant not being the source is 99, 999/100, 000. If,
for the sake of simplicity, we make the assumption that
P (r | s) = P (m | s) = 1 in terms of the causal chain of
Figure 1, we are certain to get a reported positive match
if the defendant is the source of the evidence. However,
there is also a probability of getting a postive match if
the defendant is not the source, and thus a probability
of the defendant being innocent, despite being a positive
match. This example helps to explain to jurors the pros-

ecutor’s fallacy, and thus helps to teach them to avoid
it.

Now, Fenton and Neil assume that, having explained
this example to the jurors and having them come to their
own conclusions regarding possibility, they have checked
off the first assumption given above. Let us assume that
the jurors agree to accept assumptions 2 — 5. Now comes
the tricky part. Fenton and Neil propose that an expert
witness constructs a Bayesian model that summarises
the evidence in the case. This expert also constructs
Bayesian network based on this model, together with
the prior probabilities for each variable in the model.
In court, the jurors will watch while the expert enters
the found evidence into the model, watching the proba-
bility of the defendant being guilty change as variables
are conditioned on with the evidence. Figure 4 shows a
simple example of what this might look like.

Figure 4: An example of a Bayesian Network as used
in a court case. Three pieces of evidence are taken into
consideration: a match for the DNA of the defendant
(Adams) with a DNA sample from the crime scene, a wit-
ness failing to identify the defendant and the existence
of a strong alibi. The network starts out with only prior
proabilities, and the evidence is added one by one by con-
ditioning on those variables. While doing so, the proba-
bilities of Adams being guilty change. Figure from [5].

Fenton and Neil claim that all the jury has to do,
is judge whether or not the assumptions made by the
expert are reasonable, and, given the result, whether or
not the defendant is found guilty. This will only work if
assumption 6 is true: if “most people are able to enter
basic assumptions into the tool and press the relevant
button to get a correct result.”

This is where we consider them to be somewhat opti-
mistic. Fenton and Neil’s objective is to relieve the jury
from having to deal with mathematical formula’s, and to
avoid them committing fallacies of the types described in
Section 3. While the first objective is achieved by using
a Bayesian Network to visualise the mathematics going
on in the model, some fundamental issues are not solved.

For example, Fenton and Neil expect the jury to judge
whether or not the choices made by the expert are rea-
sonable or not. By definition, they should know about
the fallacies described above, since otherwise they would
not be able to determine whether or not the fallacies are
committed. A solution is to ask another expert to ver-
ify this, but that has always been an option, when only
being provided with the mathematical model. We con-
clude that not much is gained in this respect. On top of
that, we have seen in Section 5 that there are many ways
of constructing a Bayesian model and of interpreting it.
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The jury has to have an understanding of these different
designs and interpretations in order to decide whether
or not the chosen structure is suitable for the problem
at hand. Again, not much is gained by using a Bayesian
network to visualise the model.

Next, the jury has to determine if the probability as-
sessments of the expert are reasonable. This might be
even more problematic when the jury is presented with
a neat model in which they can tweak the parameters
and get a visualised result immediately, than when they
are confronted with a more abstract mathematical for-
mula. The anchoring and adjusting heuristic described
in Section 4.3 might play a crucial role here, risking the
tendency of jurors to judge certain prior probabilities as
reasonable or not, depending on how much they cause
the probability of the defendant being guilty to change
when the prior probabilities change.

Finally, although jurors are not confronted with ab-
stract mathematical models, they will still have to in-
vest quite some time and effort in understanding reason-
ing with uncertainty, which they might still experience
as tedious and “not their task.” The many nuances and
subtleties of Bayesian reasoning are impossible to explain
using the simple event tree of Figure 3.

7 Conclusion

In this work, we have investigated the role of Bayesian
reasoning in court. We have explained fallacies, heuris-
tics and biases that are involved in reasoning with un-
certainty. We have addressed different interpretations
and designs for Bayesian models, and how they might
influence the way we look at the problem. Finally, we
have discussed a proposal by Fenton and Neil for using
Bayesian Networks rather than mathematical formula’s
to present Bayesian reasoning in court. We find that
many of the difficulties with abstract formula’s are not
really relieved when using a visualisation of the model
instead. We do see that visualisations may help a lay-
man in understanding some principles behind reasoning
with uncertainty, but question how much is gained by
visualising the model for the jury. In particular, the risk
of committing probabilistic fallacies is not necessarily re-
duced by using a visualisation of the Bayesian model that
is used to combine the different pieces of evidence in a
court case.
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