
The incomparable:  probabilistic graphs for fMRI data analysis 
 
Abstract 
Probabilistic graphs are useful approaches when modelling effective cognitive networks from           
fMRI data. This paper summarizes three recent developments (Dynamic Bayesian Networks,           
Gaussian Dynamic Networks and Hierarchical Markov Fields) and discusses their          
(dis)advantages. We argue that, while these approaches differ, a proper comparison would only             
be possible based on a synthetic or empirical data set. Without such a benchmark, these               
techniques are not only incomparable but will also remain unused by applied researchers in the               
field, as they won’t be able to tell which techniques yields the most accurate results for the given                  
data.  
 
I Introduction 
Researchers in the social sciences are often using fMRI studies to map behavior onto brain               
function. The analysis of such “brain-data” is often performed with heavy assumptions of linear              
regression models. Some studies employ less model based approaches such as independent            
component analysis. In this paper, we are describing how probabilistic graphs can be used to               
model fMRI data. We are focusing on Bayesian Networks and Markov Networks. Both are              
probabilistic graphs that represent the connection (arcs) between variables (nodes). Markov           
Networks are undirected whereas Bayesian Networks are directed graphs. Furthermore, Markov           
Networks allow for circular structures, whereas Bayesian Networks do not.  
The aim of fMRI data analysis is in most cases to describe which neural patterns are activated                 
and, in some cases, if groups of subjects can be discriminated by these patterns (e.g. control/                
experimental group or patients/healthy subjects). 
 
We will first introduce the fMRI data structure, then we will discuss solutions for Bayesian               
Networks and Markov Networks. In the last part, we will be comparing the two approaches and                
discuss their limitations. 
 
II fMRI data structure  
fMRI data is gathered during a scanning session with a patient in an MRI scanner. It is based on                   
the principle that brain areas that are activated will be using more oxygen than the remaining                
areas. The BOLD (Blood- oxygen-level dependent) signal is what is mapped onto the resulting              
data structure. It is important to note, that the BOLD signal is in itself only a measure of how                   
much oxygen is transported in a certain brain area. This does not necessarily tell us at which time                  
point an area was active nor how long or how intense. There is a general difference between                 
resting state fMRI and fMRI scans during which event related reactions of the brain are               
measured. During a resting state scan, the participant lies in the scanner and is instructed to stay                 
awake but not think about anything in particular. A resting state scan is a sort of baseline                 



measurement. It has been shown that patients can be categorized into different diagnoses based              
on such resting state (other term: defaults network) scans. The idea is, that the basic network                
structure differs between patients and healthy population but also between different patient            
groups. An event related fMRI scan uses stimuli to elicit activation of certain brain regions, the                
goal is to map active brain areas to specific stimuli. The main problem of this approach is that                  
the BOLD signal is rather time sensitive. Another problem is the background noise that makes it                
difficult to map a stimulus reaction to a specific brain area.  
 
When using graphical models to analyse fMRI data, the aim is to show connections between               
areas of the brain (regional connections). In case of event related fMRI, stimuli information is               
transmitted through the brain in a specific temporal and regional scheme and connectivity             
patterns related to these stimuli can be estimated. In resting state fMRI, there is no stimulus                
information and the focus lies on finding connections in the baseline activity of the network.  
 
III Bayesian Networks in Cognitive Modelling 
Bayesian networks are graphical models that employ probabilistic reasoning to represent causal            
connections. A bayesian network B is defined as a pair B = (G, P), where G = (V(G), A(G)) is an                     
acyclic directed graph with a set of vertices, V(G) = {X1, …, Xn}, and a set of arcs, A(G).                   
Bayesian networks make use of the decomposition rule, ie the chain rule of conditional              
probabilities, simplifying the joint probability distribution: 

P(X1, X2,...,Xn) = P(xi | 𝜋(Xi))∏
n

i=1
 

 
In modelling brain connectivity, the nodes in the bayesian network represent the activated brain              
regions while the arcs characterize the interactions among the regions. The bayesian network             
then describes the probability distribution over the activation of brain regions. It as assumed that               
the nodes follow a Gaussian distribution. These models are referred to as Gaussian BN. 
 
With a neural system of n brain regions, the regions are indexed in a set I = {i, i = 1, 2, ...n}. The                        
activation of a brain region is measured by the average fMRI time-series over the region with xi                 
measuring the hemodynamic/BOLD response of region i.  
The BN is a graphical structure s and a joint distribution over the set of time-series x = {xi : i ∈                      
I}. Let ai denote the set of activations of the parents of the region i, then the likelihood of                   
activation can be represented as: 

P(x | 𝜃) = P(xi | ai,  𝜃i)∏
 

i∈I
 

Here 𝜃 = {𝜃 i ; i ∈ I} representing the parameters of the conditional probabilities. 
  



Dynamic Bayesian networks model the structure of brain connectivity by assuming a class of              
nonlinear continuous time interactions and modelling the temporal relationships among brain           
regions (Rajapakse, 2007). They extend the above model to incorporate temporal characteristics            
of the time-series x; x(t) = {xi(t): i ∈ I} where the set x(t) represents the activations of n brain                    
regions at time t. To keep the model simple, Rajapakse and Zhou assumed the temporal changes                
of activations of brain regions to be stationary, first-order Markov chain with transition             
probabilities independent of t, P(x(t+1) | x(t),...,x(1)) = P(x(t+1) | x(t)). The network represents              
the connectivity structure between 2 brain scans. 
 
Gaussian BN’s assume that the time series of each node, brain region, follows a Gaussian               
distribution and the BN is a set of linear regression equations. Dynamic BN’s, that hold               
first-order Markov chain and stationary assumptions, model the temporal processes ignored by            
the Gaussian BN by assuming that the time series of each node follows a multinomial               
distribution which then discretizes the data into levels. 
Discretizing the data in such a way causes a loss of information, which leads to a more recent                  
application by Wu & Wen in which they apply a “Gaussian Dynamic Bayesian Network”              
method and compare the results with a DBN.  
 
Gaussian dynamic BN 
From Rajapaske & Zhou present a DBN study based on 5 brain regions: 

 
Wu & Wen start by considering the above DBN as an “extended Bayesian network” with 10                
nodes. Then transformation of the nodes’ time series is implemented. They assume there are T               
time point for each variable r1,...,r5 and their time series in the DBN are r1(t),....,r5(t), which                
correspond to T-1 time points (for the first 5 variables). Then the last 5 regions: r1(t+1),...,r5(t+1)                
will correspond with the remaining T-1 time points. In this way the researchers were able to                
maintain the Gaussian distribution assumption for each of the nodes, and so apply the structure               



searching and parameter learning from a Gaussian BN can be applied to the Gaussian dynamic               
BN. 
 
Structure learning of DBN and an extension to Gaussian DBN 
The stationary, first-order Markov chain assumptions of a dynamic BN allow for two layers of n                
random variables where inter-scan connectivity is always forward. As can be seen from the              
figure above, this creates 2 columns of nodes and then conditional distributions are only defined               
for the second layer nodes given the first layer. The DBN is defined as a pair B = (G, ), where                   Θ   
G is the transition network structure and represents the set of parameters for the nodes. The       Θ           
arcs are direct dependencies between the connected nodes and missing arcs imply conditional             
independencies. The joint probability distribution is defined as: 

P(X1,...,Xn) = P(Xi|pa(Xi)) = Xi|pa(Xi)∏
n

i=1
∏
n

i=1
θ  

The parameter Xi|pa(Xi) contains the information of the conditional distribution of the nodes Xi  θ             
in the 2nd column given its parent nodes pa(Xi) that correspond to the variables in the 1st                 
column. The researchers applied the Bayesian Information Criterion (BIC) based learning           
approach, a search & score algorithm, to find the network with the highest score out of all                 
possible networks. Search & score algorithms measure the goodness of fit of the BN found and                
the results are interpreted as the highest score is the better fit. It is a penalized log likelihood                  
score of the data given the network structure. Below is the formula for the BIC, where the first                  
term is the maximized log-likelihood function measuring the degree of fit of the data D given the                 
DBN B. * the maximum likelihood estimate of the parameters. The second term is the BIC  Θ               
penalty term with d the number of independent parameters and m as the number of data samples. 

BIC(B|D) logP(D|B, *) - logm≈ Θ 2
d  

Given the assumptions of the model, node Xi with parent pa(Xi) has the following conditional 
distribution: 

p(xi|pa(xi)) = exp[- (xi-ui)2]1
2πσi  1

2σi²  

With ui = i + μ �(x� �)∑
 

x�∊pa(xi)
b − μ  

Where ui and are the conditional mean and conditional variance of node Xi given its parents,   iσ               
bp is the weight coefficient of the connection from parent node Xp to node Xi. i is the marginal               μ     
mean of node Xi and is the marginal mean of parent node Xp. Then the highest scoring     �μ              
network identified by the BIC approach is seen as a set of multivariate regression equations. The                
significance of the weight coefficient bp is tested with stepwise regression. 
Furthermore, two indices were created to test the performance of the Gaussian DBN on the               
synthetic datasets discussed below, they aid in evaluating the learning accuracy. The structure             

learning index: S = and the parameter learning index: P = (cij - ĉij)2. The    N (all)
N (wrong)          1

2n(n−1) ∑
n

i=1
∑
n

j=1
    



structure learning index is the ratio of the number of incorrect connections to the number of all                 
possible connections between the nodes. While P is the squared error between the true              
connectivity structure c and the estimated structure ĉ. 
The researchers applied Rajapakse & Zhou’s structure learning method to their discrete DBN for              
comparison with their Gaussian DBN.  
 
The datasets: Synthetic Data & real fMRI data 
We will discuss the most recent research in the Wu & Wen paper. In this paper, the researchers                  
generated a synthetic dataset and compared the results to real fMRI. A vector time series Xt =                 
(x1t, x2t, …, xnt) of x brain regions is generated with a first-order multivariate autoregressive               
model (MAR): 

Xt+1 = CXt + et 
With C is the linear connectivity matrix: 

 
And et the uncorrelated errors following a Gaussian model with 0 mean and a covariance matrix                
with diagonal elements equal to and off-diagonal elements equal to 0. With white noise     ²σ           
parameters to further examine the robustness of the Gaussian DBN inference: the variance of et               
at and signal to noise (SNR) of uncorrelated ² 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5)σ = (                  
Gaussian white noise at levels SNR = (0, 5,10, 15, 20, 25, 30, 35, 40). Finally, 30 sets of data                    
was generated for testing the gaussian DBN in comparison to the discrete DBN. 
The real fMRI data is a resting state dataset of 12 Beijing Normal University students, for                
individual 300 EPI functional volumes were collected. The dataset went through some            
preprocessing, the first 5 time points were removed and then the remaining were preprocessed              
for realignment, normalization and smoothing (Wu & wen 2014). A default mode network             
(DMN) was detected through principle component analysis reduction, independent component          
analysis separation and back-reconstruction. Time-series of 8 regions of interest (ROI) were            
chosen based on the DMN; posterior cingulate cortex (PCC), left hippocampus (lHC), right             
hippocampus (rHC), left inferior parietal cortex (lIPC), right inferior parietal cortex (rIPC), left             
inferior temporal cortex (lITC), right inferior temporal cortex (rITC) and medial prefrontal            
cortex (MPFC). The Gaussian DBN estimates the average time courses in each ROI. 
 
Discussion 

1. Results for structure learning for the synthetic fMRI data 



We discuss the results Wu & Wen obtained from the structure learning for the Gaussian DBN in                 
comparison to the structure learning for discrete DBNs for the generated synthetic dataset. The              
two plots below: A & B, show the effects of noise variability; et with on the learned error rate             ²σ       
of structure S and parameter index P. 
 

 
For the GDBN, the learning error rate for both the Structure and Parameter index remained at 0                 
consistently with the variations in the innovation variance , et, ie the residual error. These plots               1

indicate that the Gaussian DBN is a more robust method than the discrete DBN. 
In the plots below: C & D, the effect of white noise, signal-to-noise, on the learned error rate of                   
structure and parameter index are plotted.  

 
For the structure learning index, S, we can see that the GDBN remained at 0 for high values of                   
SNR, >25, with a steep increase while SNR decreased. While the discrete DBN had higher               
structure learning index rate over all values for SNR. As for the parameter learning index, it                
remained very close to 0 with a gradual increase as SNR decreased. Generally, the Gaussian               
DBN performed better. 

2. Results for structure learning for the real fMRI dataset 

1 Innovation variance in time-series analysis is the difference between the observed value of a variable at time t and the optimal 
forecast of that value based on information available prior to time t. 
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The figure below shows the effective connectivity structure learned by the Gaussian DBN based              
on the 8 ROIs detected by the DMN. The first note that comes to mind is how every node is                    
“dynamically influenced by its past activity”, which is not strange for brain activity data because               
it makes sense that an active region will be connected to itself from time point t to time point t+1.                    
We see that there are 5 regions in the Hub component of the network, with only 1 connection to                   
nodes in the non-hub component, from the right hippocampus region to the posterior cingulate              
cortex. Finally, the PCC appears to be a “confluent node” with no outgoing connections but only                
receiving information from other regions. 

 
Additionally, two strengths of the Gaussian DBN stand out in comparison to the Gaussian BN.               
Firstly, the GDBN explicitly takes into consideration the temporal relationships existing in brain             
regions between consecutive scans. This is not available in BN since firstly, temporal             
relationships aren’t taken into consideration because network structures can have the same            
skeleton with different arc directions but still arriving at the same marginal likelihood. Secondly,              
the GDBN is capable of constructing recurrent networks simultaneously maintaining the acyclic            
property of transition networks. Recurrent networks are important in biological systems, and            
such a feature is not possible in Gaussian BN, which make Gaussian DBNs a more relevant                
model for brain connectivity analysis. 
  
Limitations of methods 
Like all methods, the ones described above bring their limitations. Conventional Gaussian BN             
ignored the temporal relationships of interactions between brain regions. This limitation,           
however, was taken care of by Wu & Wen (2014). This was done so by allowing for paths                  
between nodes, thus making conditional dependence between variables feasible. Still, some           
limitations exist with the application of Gaussian BN. The quality of the algorithm remains              
unsure when time is extended to higher levels than t + 1. Limitations are thus possibly found in                  
concert with brain complexity (e.g. different order modelling, instantaneous interactions between           



brain regions, etc.). Gaussian BN furthermore assumes linearity, and it’s unlikely that this             
assumption holds in practice (Wu & Wen, 2014). A big limitation of the Gaussian BN is the                 
feature of acyclicity, which forms a barrier for ‘feedback’, which is an essential part of biological                
systems, like the human brain. This limitation brings us to the DBN, where this is easily dealt                 
with. Concerning Dynamic Bayesian Networks (DBN), more limitations exist. Like for Gaussian            
BN, the problem of instantaneous interactions rises here as well. Time-invariant connectivity            
between brain regions has been assumed for both methods, while variation has been found by               
empirical studies (Rajapakse, Zhou, 2007). 
 
IV Markov Fields 
In a 2014 paper, Liu, Awate, Anderson and Fletcher approach another problem of fMRI data               
analysis: modeling group level connectivity patterns from individual scans. Often, researchers           
would like to describe a group level pattern, to generalize their findings in individuals or to be                 
able to compare different groups. In their paper, they used an image segmentation method that               
uses information of each subject’s scan (individual level) to estimate a group level connectivity              
pattern. This group level pattern can be seen as the mean of a distribution of connectivity clusters                 
that exist in the population of subjects. Or it other words: a group functional network is shared                 
amongst subjects of one population and the individual networks are just a sample of this group                
functional network. The goal is to find the most salient characteristics of brain connections of a                
specific populations.  
The researchers are suggesting a hierarchical Markov random field (HMRF) to not only estimate              
connections on the individual but also on the group level. The HMRF estimates the group-level               
connectivity map by balancing the individual estimated networks and the group network to             
include as little variability as possible on the group level and modelling a random factor for                
individual variability from the data of the subject’s scans. In other words, the spatial coherence               
within a subject (beta parameters in this paper) and the generalization of the individual maps               
onto a group map (alpha parameter/ pooling factor in this paper) are balanced. The necessary               
parameters are estimated with the help of Gibbs Sampling, which iteratively estimates the             
parameters needed to get the posterior distribution. 



 
Schematic representation of the balancing of parameters in HMRF (Liu et al. 2014) 
 
The proposed method is compared to other methods of image segmentation on how high the               
intersession reliability is and on how much effect perturbations of the data (bootstrapping) have.              
On the intersession reliability, the proposed HMRF algorithm performs best, with highest            
overlap between sessions. It must be noted though, that over all subjects, HRMF shows a high                
variability. It would be interesting if this variability can be found in all subjects or if it is caused                   
by a specific subset. The other methods seem to produce more stable results across subjects in                
one scanning session (Fig.5, in the original article).  
To check the robustness of the method, bootstrapped data (100 samples) are produced and three               
different methods are run. From these results, seven networks that are also described in the               
literature are extracted and compared. Unfortunately, the article uses binary maps to show the              
variance of the bootstrapped results instead of correlations, which makes it difficult to evaluate              
the effect of the perturbation fully. It seems though that HRMF doesn’t miss any important parts                
in any of the selected networks and has rather low variance between the bootstrapped samples.  
 
Limitations of HMRF  
The main downside of the HMRF (or any other pattern recognition method that is used on fMRI                 
data) is the interpretation problem of the results. Once the patterns are found, one has to interpret                 
them in a useful manner. A related problem is to decide how many patterns are kept. In the                  
article by Liu et al., the solution is to use patterns that are closest to patterns described in the                   
literature. 
Furthermore, in HMRF, the temporal effect is ignored, as it is in other image segmentation               
algorithms or algorithms to extract patterns. The result are connected clusters of activation, on              
the individual and group level, with the idea that group level connectivity can distinguish              
between different patient groups. Given the temporal structure of fMRI data (and especially the              



difference in temporal activation of the physiological measurements), one would expect a            
successful model to include this dimension. 
 
 
V Comparison and Future Work 
 
The two presented methods were used either for non-resting or resting state fMRI data. It would                
be interesting to see if the methods are flexible enough to be used on the other sort of data. For                    
HMRF, one might expect a good result on non-resting state data as circularity can be modelled,                
but the method will ignore time dependencies. A literature search didn’t yield research on this.               
Bayesian Networks were successfully applied to resting state data to show differences between             
diseased and healthy subjects (Li et al. 2013). Dynamic BN appear to be more relevant for fMRI                 
data than normal BN’s given their inclusion of the temporal characteristic of such datasets. Since               
they’re discrete models, loss of information is too great. The new approach (i.e. Gaussian              
Dynamic BNs) shows better results for the dynamic BN networks but as we see from the                
literature this method is relatively new and applications for “disease detection” . Unfortunately,             
we couldn’t source a study comparing DBNs and BNs on resting state data (nor on non-resting                
state data) to compare both methods.  
 
The big advantage of HMRF is the possibility of estimating group level maps and how individual                
maps are used as samples from a population map. This thinking might be approached by a form                 
of Hierarchical (D)BNs and might be an interesting topic for future research. Peelen et al.               
(2009), modelled ICU survival with the help of a hierarchical dynamic BN. Unfortunately, the              
definition of “hierarchical” is different in their paper though, stating that variables can be              
expressed as combination of other variables and that there is hence a hierarchy within the nodes                
of a network. In HMRF, the Bayesian idea of a population distribution (of clusters) stands behind                
the word “hierarchical”.  
 
While researching different approaches of probabilistic graphs for fMRI data, one important flaw             
was found: there is no consistent benchmarking data used in the articles. Benchmarking might be               
achieved by synthetic data, but as long as every study uses a slightly different way of simulating,                 
the results of these studies are not comparable (for an overview of problems and benefits of                
simulated data see: Rodrigues and Andrade, 2015). Alternatively, one could use a sample data              
set and decide to use such a data set as benchmark. It is important for the entire field of fMRI                    
data analysis research to agree on simulation methods or on a few benchmark data sets. Several                
universities and research institutes are sharing their fMRI data at websites such as OpenfMRI. 
A good example for a benchmarking data set is the denoise data by Kendrick Kay et al.(2013). 
 
VI Conclusion 



 
Proper comparison of these methods on a stimulus as well as a resting state data set would help                  
evaluate these methods and might help applied researchers to choose these data driven methods              
of analysis over region of interest approaches. For such a comparison, a proper benchmark data               
set needs to be agreed on.  
 
 
 
 
 
 
 
 
 
References:  
 
Kendrick, Ariel, Jonathan, Robert, Brian, 2013, GLMdenoise: a fast, automated technique for 
denoising task-based fMRI data; 
http://journal.frontiersin.org/article/10.3389/fnins.2013.00247/full 
 

Liu,  Awate, Anderson, Fletcher, 2014, A functional network estimation method of resting-state 
fMRI using a hierarchical Markov random field 
https://doi-org.ezproxy.leidenuniv.nl:2443/10.1016/j.neuroimage.2014.06.001 
 
Peelen, de Keizer, de Jonge, Bosman, Abu-Hanna, Peek, 2010, Using hierarchical dynamic 
Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit 

http://www.sciencedirect.com/science/article/pii/S1532046409001373 
 
Rajapakse, Zhou, 2007, Learning effective brain connectivity with dynamic Bayesian networks 
http://cs.ru.nl/~peterl/BN/RajapakseZhou2007.pdf 
 
Rodrigues, Andrade, 2015: Synthetic neuronal datasets for benchmarking directed functional 
connectivity metrics:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435472/ 
 
Wu, Wen, Li, Yoa, 2013, A new dynamic Bayesian network approach for determining effective 
connectivity from fMRI data 
http://rdcu.be/tsw0 

https://doi-org.ezproxy.leidenuniv.nl:2443/10.1016/j.neuroimage.2014.06.001
http://www.sciencedirect.com/science/article/pii/S1532046409001373
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435472/
http://rdcu.be/tsw0
http://cs.ru.nl/~peterl/BN/RajapakseZhou2007.pdf
http://journal.frontiersin.org/article/10.3389/fnins.2013.00247/full

