Inference in Bayesian Networks

Algorithms for general DAGs
Basic idea of Pearl’s algorithm

- Object-oriented approach: vertices are objects, which have local information and carry out local computations
- Updating of probability distribution by message passing: arcs are communication channels
At least two nodes are connected by more than one path (in the underlying undirected path)

Thus, some variables can influence another through more than one causal mechanism

And same evidence counted more than once
Bayesian network inference algorithms

- **conditioning**
 - type: usually exact
 - loop-cutset conditioning
 - recursive conditioning

- **elimination**
 - type: usually exact
 - variable elimination
 - junction tree algorithm

- **particle-based**
 - type: approximate
 - forward sampling
 - MCMC

- **variational methods**
 - type: usually approximate
 - loopy belief propagation
 - expectation propagation
Loopy belief propagation

- Apply Pearl’s propagation algorithm to multiply-connected networks
- In (undirected) cycles, messages may circle indefinitely

Solutions:
- Stop after fixed number of iterations
- Stop when there are no significant changes in the beliefs
- If it converges, it is usually a good approximation
Problems with loopy belief propagation

- It may not converge
- **Cycling error:** old information is mistaken for new

Suppose V_4 observed and gets new information from V_2:
- V_4 sends V_3 a message with information about itself and node V_2
- V_3 passes that on to V_1 which in turn sends it to V_2
- V_2 misinterprets its own information for new and includes it into its distribution

Convergence error: the propagation algorithm assumes independence of the parents
Conditioning methods

The main ideas of these algorithms are as follows:

1. **Find a cutset**: if these nodes were instantiated, the network behaves as if it were singly-connected

2. **Compute the posterior probability distributions** e.g. using Pearl’s algorithm for every instantiation

3. **Marginalisation/conditioning** yields the requested distribution

A set is called a **loop cutset** if every cyclic chain contains three consecutive nodes X_1, X_2, X_3 such that X_2 is part of the cutset and either:

- $X_1 \leftarrow X_2$ and $X_2 \rightarrow X_3$, or
- $X_1 \rightarrow X_2$ and $X_2 \rightarrow X_3$
Suppose V_2 is cutset, then G can be instantiated by (e.g.) v_2

- Outgoing edges of V_2 can be deleted
- CPTs are updated, e.g. $P_{G^{v_2}}(V_5 \mid V_3) = P_G(V_5 \mid v_2, V_3)$
- It holds that:
 $$P_G(V_i, v_2) = P_{G^{v_2}}(V_i, v_2)$$
Cutset conditioning: general idea

Suppose we would like to compute $P(v_6)$:

- Find a cutset, e.g. $\{V_2\}$ (which others are there?)
- Delete edges: get **singly-connected networks**
- Compute $P_{G^{v_2}}(v_6 \mid v_2)$ and $P_{G^{-v_2}}(v_6 \mid \neg v_2)$
- $P(v_6) = P_{G^{v_2}}(v_6 \mid v_2)P(v_2) + P_{G^{-v_2}}(v_6 \mid \neg v_2)P(\neg v_2)$
Recursive conditioning: general idea

Suppose we would like to compute $P(v_6)$:

- If we use a cutset $\{V_2\}$ it will decompose G into two parts: G_1 (with V_2) and G_2 (with V_6)
- It holds: $P_{G^{v_2}}(v_2, v_6) = P_{G_1^{v_2}}(v_2)P_{G_2^{v_2}}(v_6)$
- So: $P^{v_2}(v_6) = P_{G_1^{v_2}}(v_2)P_{G_2^{v_2}}(v_6) + P_{G_1^{-v_2}}(\neg v_2)P_{G_2^{-v_2}}(v_6)$
Clustering inference algorithm

- Transform a BN into an equivalent polytree by merging nodes
 - Removal of multiple paths between nodes
 - New node has as states all possible instantiations of combined nodes
- Probabilities updating on transformed polytree

![Diagram](image)
Efficient method for clustering: junction tree algorithm

- Junction trees

- Constructing the junction tree
 - moralisation
 - triangulation
 - clustering nodes into a tree

- Computing parameters of the junction tree

- Using a message passing algorithm to compute probabilities
(Maximal) clique: a (maximal) complete subset of nodes of an undirected graph

A junction tree represents a tree of maximal cliques

Separator sets: variables shared by neighbours

A junction tree factorises as:

\[P(V) = \frac{\prod_C \varphi_C(V_C)}{\prod_S \varphi_S(V_S)} \]

with \(C \) cliques and \(S \) separators

For all pair of cliques \(C_1 \) and \(C_2 \), all nodes on the path between \(C_1 \) and \(C_2 \) contain \(C_1 \cap C_2 \) (running intersection property)
Moralisation

Let G be an acyclic directed graph, its associated undirected moral graph G^m can be constructed by moralisation:

1. add lines to all non-connected vertices, which have a common child, and
2. replace each arc with a line in the resulting graph

Proposition: if G is an I-map, then so is G^m
Triangulation

A chord of a cycle is a pair V_i, V_j of non-consecutive vertices in a cycle such that (V_i, V_j) is an edge in G.

An undirected graph G is called **chordal** or **triangulated** if every one of its cycles of length ≥ 4 possesses a chord.

Theorem: every triangulated graph has a junction tree.
Constructing the junction tree

Given a triangulated graph G. A junction tree is obtained using the following steps:

- Find all the **cliques**, each one becomes a cluster, i.e., a node in the junction tree

- If two clusters have a non-empty intersection, create an edge with the intersection as **separator**

- If this graph contains a cycle, then all separators on this cycle contain the same variable. Remove the cycle by creating a **maximal spanning tree**: include as many separators as possible while avoiding a cycle
Example
Theorem. Let G be an I-map of a probability distribution P. It holds that G is triangulated iff the probability distribution can be factorised in terms of marginal densities over variables in the cliques of G.

This can be done as follows:

- Choose a node C in the junction tree that contains X and all of X’s parents

- Multiply $P(X \mid \text{pa}(X))$ yielding C’s table
The original graph is factorised as:

\[
P(V) = P(V_6 | V_4, V_5)P(V_5 | V_2, V_3)P(V_4 | V_1) \cdots \]

\[
P(V_3)P(V_2)P(V_1 | V_2)
\]
The junction tree has parameters (e.g.):

\[
\varphi(V_2, V_3, V_5) = P(V_5 | V_2, V_3)P(V_3)
\]

\[
\varphi(V_1, V_2, V_5) = P(V_1 | V_2)P(V_2)
\]

\[
\varphi(V_1, V_4, V_5) = P(V_4 | V_1)
\]

\[
\varphi(V_4, V_5, V_6) = P(V_6 | V_4, V_5)
\]

\[
P(V) = \frac{\prod_C \varphi_C(V_C)}{\prod_S \varphi_S(V_S)}
\]

where the separator potentials \(\varphi_S(V_S)\) are set to 1.
Message passing

Updating works in 2 passes:

1. Updating from V to W (forward pass):

$$\varphi^*_S = \sum_{V \setminus S} \varphi_V \quad \quad \varphi^*_W = \frac{\varphi^*_S}{\varphi_S} \varphi_W$$

This sets the separator to the marginal in φ_V

2. Then, from W to V (backward pass):

$$\varphi^{**}_S = \sum_{W \setminus S} \varphi^*_W \quad \quad \varphi^*_V = \frac{\varphi^{**}_S}{\varphi^*_S} \varphi_V$$

Note: here the variables are implicit, i.e., $\varphi_V = \varphi_V(V)$
Message passing: soundness

The update procedure

\[\phi^*_S = \sum_{V \setminus S} \phi_V \quad \quad \quad \phi^*_W = \frac{\phi^*_S}{\phi_S} \phi_W \]

is sound, i.e., after an update the probability distribution is the same (after step 1)

Proof. Note that nothing happens with \(\phi_V \), so define \(\phi^*_V = \phi_V \). Then:

\[P^*(V \cup W) = \frac{\phi_V \phi^*_W}{\phi^*_S} = \frac{\phi_V \phi^*_S \phi_W}{\phi^*_S \phi_S} = \frac{\phi_V \phi_W}{\phi_S} = P(V \cup W) \]

Exercise. Proof that after both passes (local consistency):

\[\sum_{V \setminus S} \phi^*_V = \sum_{W \setminus S} \phi^*_W \]
Global consistency junction trees

Global consistency: a cluster tree is globally consistent if for any nodes V and W with intersection I we have:

$$\sum_{V \setminus I} \varphi_{V} = \sum_{W \setminus I} \varphi_{W}$$

Junction trees are after the message passing globally consistent:

Proof.
By induction on distance of the path between V_0 and V_n.
Suppose they are neighbours: then by local consistency. Otherwise, we have consistency of length k. Since I will be in the separator between V_k and V_{k+1} (running intersection property), local consistency can again be applied, so the property follows for $k + 1$.
The need for triangulation

Suppose we would not triangulate:

\[V_5 \text{ appears in two non-neighbouring cliques. There is no guarantee that marginal } V_5 \text{ should be equal, i.e.,} \]

\[\sum_{V_2, V_3} \varphi_{235}(V_2, V_3, V_5) = \sum_{V_4, V_6} \varphi_{456}(V_4, V_5, V_6) \]
If a variable V_E is observed, we modify the potential φ which includes V_E such that the marginal is V_E and otherwise the same.

A node C_1 can send a message to another node C_2 if it has received a message from all its other neighbours.

Choose an arbitrary node as root and collect and distribute messages to and from this node.

Afterwards, it holds:

$$\varphi_C(V_C) = P(V_C \mid V_E)$$

Moreover:

$$\varphi_S(V_S) = P(V_S \mid V_E)$$
Proof sketch correctness

Recall that after the update procedure it holds that
\[\sum_{V \setminus S} \varphi_V(V) = \varphi^*_S(S). \]
So then:

\[
P(W) = \sum_{V \setminus S} P(V \cup W)
= \sum_{V \setminus S} \frac{\varphi_V(V)\varphi_W(W)}{\varphi_S(S)}
= \frac{\sum_{V \setminus S} \varphi_V(V)\varphi_W(W)}{\varphi_S(S)} = \varphi^*_W(W)
\]

In general, factors are eliminated one by one.
Sampling

Logic sampling traverses the tree from the root nodes:

- Initialise $\text{Count}(x, e) = 0$ and $\text{Count}(e) = 0$
- Randomly choose a variable from the root nodes, weighted by the priors
- Repeat: randomly choose values for the children, weighted by the conditional probability given the known values of the parents
- If e is in the assignment, then increase $\text{Count}(e)$ by 1
- If both x and e are in the assignment, then increase $\text{Count}(x, e)$ by 1

After many iterations:

$$P(x | e) = \frac{\text{Count}(x, e)}{\text{Count}(e)}$$
Example

\[P(v_1) = 0.8, \ P(\neg v_1) = 0.2 \]

\[P(v_2|v_1) = 0.4, \ P(\neg v_2|v_1) = 0.6 \]
\[P(v_2|\neg v_1) = 0.9, \ P(\neg v_2|\neg v_1) = 0.1 \]

To calculate \(P(v_1 \mid v_2) \) sample e.g. 1000 instantiations

\[Count(v_1, v_2) \approx 320 (= 0.8 \cdot 0.4 \cdot 1000) \]
\[Count(\neg v_1, v_2) \approx 180 (= 0.2 \cdot 0.9 \cdot 1000) \]
\[Count(v_2) \approx 500 \]

So \(P(v_1 \mid v_2) \approx \frac{320}{500} = 0.64 \)
Complexity

Computational complexity loop cutset conditioning: $O(n \cdot d \cdot 2^{d+l})$, where n is the number of vertices, d is the maximal in-degree and l is the number of vertices in the cutset.

Computational complexity junction tree algorithm: $O(n \cdot 2^c)$ where c is the number of vertices in the largest clique.

However, generally probabilistic inference within an arbitrary network is NP-hard.

Also for approximate inference!

Empirically: sometimes approximate inference can be used to compute marginals if exact methods fail.
References

Max Henrion: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. *UAI*, 1986, pp. 149-164
Ideas for seminar topics

- Inference by weighted model counting
- Inference by arc reversal
- Loopy belief propagation
- Lifted belief propagation
- Inference with continuous variables

⇒ and many more!