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Abstract—Prognostics and health management (PHM) is
a maturing system engineering discipline. As with most
maturing disciplines, PHM does not yet have a universally
accepted research methodology. As a result, most
component life estimation efforts are based on ad-hoc
experimental methods that lack statistical rigor. In this
paper, we provide a critical review of current research
methods in PHM and contrast these methods with
standard research approaches in a more established
discipline (medicine). We summarize the developmental
steps required for PHM to reach full maturity and to

its way into future NASA launch vétles and spacecraft [8].
As the technology matures further, prognostics will play an
important role in the design and operation of commercial
systems such as passenger aircraft, automobiles, ships, the
energy infrastructure, and even consumer electronics

Despite substantial technical progress over the last decade,
PHM does not yet have a universally accepted research
methodology. More importantly, the scientific method that
underlies all scientific disciplines has not made its way into
PHM research. As a result, most component life estimation
efforts are based on dwc experimental methods that lack

statistical rigor. In this paper, weview current research
methods in PHM and contrast these methods witimdstrd
research approaches in an establislsetentific discipline
(medicine).

generate actionable results with true business impact.

Index  Terms—Prognostics, Prognostics and  Health

Management, Research Methods, Performance Metrics

I. INTRODUCTION ll. METHODS FOR PROGNSTICS AND REMAINING
Over the last decade, the reliable systems community started USEFUL LIFE ESTIMATION

focusing on the fundamental principles of system failures in anthe science of prognostics is predicatedan fundamental
attempt to understand Wwo complex electromechanical notions:

systems age and to predict when they might fail. The emergiggy|| electromechanical systems age as a function of use,
engineering discipline that links studies of failure mechanlsmspassa(‘:]e of time, and enviroantal conditions:

to system lifecycle management is referred to as Pr_ognosty:@omponem aging and damage accumulation is a monotonic
and Health Management (PHM). In recerags, aalysis of  process that manifests itself in the physical and chemical
vibration and acoustic emissions data from rotorcraft composition of the component;

drivetrains have led to breakthroughs in predicting impending signs of aging (either direct or indirect) are detectable prior
failures of these complex mechanical systems, resulting in thgq gvert failure of the compent (i.e., loss of function);
development of Health and Usage Monitoring Systemg |t js possible to correlate signs of aging with a model of
(HUMS) for rotorcraft [1]. Substantial adv_ances were mad_e iN component aging and thereby estimamaining useful life

life estimation for components ranging from rotating of individual components.

machinery [2] to batteries [3], from printed circuit boards [4] Figure 1 illustrates the states of component lifecycle as a
to solid rocket motors [5]. In the U.S. military, two significantinjte state machine.Note that there is no general agreement
weapon platforms ere designed with a prognostics capabilityn the research community with respect to the terminology

as an integral element of the overall system architecture: t)§eqd for component aging. In this paper, we will use the
Joint Strike Fighter Program [6] and the Future Combat

Systems Program [7]. Prognostic technologwlso finding
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Fig 1. Componenifecycle represented as a finite state machine.



following terminology: Accurate RUL estimation often requires monitoring and

¥ A new component refers to an electromechanical device analysis of environmental conditions the system is operated in
component with naliscernible damage at the chemical o(e.g., temperatures, temperature cyclpgessure,humidity,
physical level. ambient light and vibrations, acceleration, physical loads). In

¥ A worn component is a component that exhibits signs afddition, metrics related to use are often correlated with aging.
wear and tear due to use or time at the physical or chemi€ar example, a common life estimation metric quoted for
level. These signs may or may not be observable usitithium-ion batteries is 500 chargecharge cycles. Sinaitly,
conventional sensing methoddepending on the sizand rotorcraft drivetrain aging correlaavell with the number of
extent of the damagye The component continues to servegroundair cycles [9]. In commercial aircraft, structural fatigue
its primary purpose. is strongly correlated with the number of pressurization cycles.

¥ Remaining Useful Life (RUL) is an estimation of the In fact, the Federal Aviation Administration (FAA) maaigs
remaining life of a component prior to occurrence of ¢he replacementof life-limited parts (LLP) after a
failure. RUL is expressed using units cori@sging to the predetermined paspecific number of cycles. Careful
primary measurement of use of the overall system. Fobservation of use patterns and analysis of usalgéed data
example, the primary measurement that correlates with usten reveals interesting (and sometimes unexpected)
in commercial aircraft is cycles (typically measured byorrelations. For examplendandescent light bulbs almost
number of takeoffs); in aircraft engines, it is hours of always fail the moment they are turned on or off. As such,
operation;in automobiles, it is miles (or kilometers) driven; one might postulate that the average number edfbycles
in printers or copiers, number of pagemted might be a more accurate indicator of is@uced damage for

¥ A faulty (or faulted) component is on@hose intended light bulbs rather than total hours of oaton.

function is impaired or hasit has ceased to perform its : - . L
intended function within the systernis integrated in. B. Data-Driven Methods for Remaining Life Estimation

¥ Failure is the loss of function of the system. Most RUL estimation efforts follow a datiiven approach.

¥ An intermittent fault is a fault that reverses itself Unlike traditional reliability engineering approaches where
spontaneously, restoring function to the system whil@n€ is primarily interested in the initiation of faults, PHM
transitioning the component back to teornO state. requires a muchﬂ_ore intensive data col!ectlon process in

¥ Reliability is the probabity of survival of a system, order to c_:haracterlze d_amage accumulatlo_n and progression.
expressed by the probabilityR(r), which gives the In datadriven prognostics, the ch_allenge is to capture and
probability that the system functions over time intervafnalyze a multidimensional and noisy data stream from a large
[0,¢]. By definition R(0)=1 and R(x) =0, i.e., inthe number of channels (use condit® environmental conditions,

S o . direct and indirect measurements that are potentially related to

end the system will fail. IfQ(¢) indicates the probability of component damage) from a population of similar components.
unreliability, then it holds thatR(r) + O(r) =1 for each |n many cases, data collectiorstorage, and analysis
time point 7. requirements are onerous (e.g., vibration @uaticemissions

¥ Refurbishment of an aged system revesorn components data analysis requires sampling rates in the 10 kHz range and
to OnewO $tes through replacement. above).

¥ Repair of a failed system reverts its faulted components toThe challenge of datdriven RUL estimation does not end
OnewO status through replacement. with the complexity oftie data sets. Unlike diagnosigich
To illustrate, wheebearing faults in a car may manifestaims to isolate the root causeafaulteventthat has already

themselvesas vibrations or noise emanating from the wheel ifccurred prognosis isthe prediction ofa future failure

question. A failed wheel bearing, in contrast, will manifest

itself in failure of the vehicle(the overall system) to move. Failure Threshold
Methods for direct measurement of damage accumulation

and aging include physical ngpection, monitoring of A

measurands related to the damage (e.g., vibration, acoustic

emissions, oil debris), and naestructive inspection (e.g.; X

rays, ultrasound). Methods for indirect assessment of damage

involve observation of side effects of damagech as streaks

on printed paper indicating component aging in a printer, or a

puddle of oil underneath a car indicating damage to a seal or

fitting.

Damage

pdated prediction at P3

A. Impact of Use on Damage Accumulation

Mean Time Between Failures (MTBF) is a rather crude /
estimatorof when components may fail. Just as life spans of s
individual persons may vary greatly from the population life o
expectancy, useful life spans of individual components may 7 P2 T - >
vary substantially from the MTBF measured for their Time/Cycles

F.)Opu'atlon'. Comp_onent aging & comp_lex and often n_e_n Fig. 2. Uncertainty bands associated with prognostic RUL estimatic
linear function of time, usage, and environmental conditions. {ime progresses.




condition. Given that the future health of the componemopulation is not exposed. One may then simply compute the
depends on futurenvironmental and operationabnditions, relative risk RRfor short, of the occurrence of outco@elue
uncertainty management is an inherent element of RUb exposure or absence of exposure to fa€tor

estmation.  Figure 2 illustrates the uncertainty bands RR = P(O|F)/P(O|F).

associated with prognostic RUL estimation. While the por simplicity®s sakehe relative risk is often considered
component is relatively new and accumulated damage tige invariant; in practice, however, the relative risk is often
relatively minor, the uncertainty regarding the exact time gfye dependent. For example, age is an important factor in
failure is high(the wide probabity distribution illustrated in determining the effect of smoking on the occurrence of lung
red). As the component accumulates more damage and {ghcer: the older the person, thgHer the risk.
failure point approaches, thereusuallymuch less uncertainty pata used in a followsp study is often collected
as to when the component fault magcur (the narrow prospectively, although retrospective studies are also possible.
probability distribution illustrated in blue). A disadvantage of retrospective follawp studies is that all

C. ModetBased Methods for Remaining Life Estimation available patient information has been collected for another_
gurpose than the study at hand. As a consequence, essentia
ihformation may be missing, the level of detail of information
énay not be appropriate, and the information often lacks

Another approach to prognostic RUL estimation is th
modelbased approach. The modelsed approach involves

development of firsprinciples models of component use anq ¢ iont reliability. Highly relevant followup studies, that

damage accumulation, and the uscapératlonal data to f!ne have had an ipact on patient management are, therefore,
tune model parameters. Modeling approaches include

terialslevel del h rack arowth or spal ormally prospective in nature. The study is called
materialsievel models such as crack gro P&Bobservational® if the outcome is observed without
progression models, or mael@vel models such as gasth

I dels for turbi ) Th ; Iintervention. In an intervention study, the outcome is
cycie models for turbine engines. ere are fewer examlo|‘*?1Semipulated by imposed actions such as medical treatmen

of mdo?:;b_ased approaﬁhes $h_the EHIYI Lléer?tu;et;h?rrl}tréef‘e latter study design is common in investigating the
are dateoriven approaches. IS refiects the fact that Mode e ctiveness and presence of adverse reactions to drugs, and

ics i re involv r hardiiaeen . . : -
based prognostics is a more involved process thardd e1n particular, has become the standard in clinical cancer

Erogréostlrcos.nggﬁfgdl_nga”on rtgs Ift'ge:'rt]y :T)lfoﬁge an;gggiemgg dresearch. The two groups of patients are in that case chosen by
?Se'se pRL?L esmatip())wn I\);Iodelgased roanosticsalso has randomizationwhere the control (reference) group is OtreatedO
prect y prog by a placebo or statef-the-art treatment, and the treatment

;dg%nggg?fe'sggﬁgi“gg’gg?r(é?;'t% ré va?: f:xg'g?gg?urs;nce group is subjected to the new, experimental treatment. This
' study design is also known as the randomized clinical trial
(RCT). Although the RT offers one of the most rigorous
lll. PROGNOSTICS INMEDICINE experimental study designs in clinical medicine, it requires
Arguably, PHM is a maturing science. The concept of usingonsiderable expense, preparation, and staff involvement.
data on individual components to determine RUL and tRote again that if it is not the purpose to investigate the effects
optimize maintenance practices using such data (i.@f an intervention, the followap gudy is observational.
autonomic logisticg10]) is still in the experimental stagin In addition to the follomup study, there exists thease
contrast, prognostic reasoning,lang with diagnosis, is the control study where presence and absence of a particular
basis for managing diseases in medicine. As diseases devealafcome, rather then the factor, is taken as the starting point.
in time, one usually speaks of thatural historyof a disease. By going back in time, the researcher attempts mal fut
The natural history starts before a diagnosis has been magfat factors may have caused the outcome. -Castol
Further progression of a disease, pogsilffter clinical studies often suffer from selection bias.
intervention, is usually referred to as the Oclinical course@he results of clinical studies are often used to develop
Knowledge of the prognosis of a disease is crucial fqirognostic models that help clinicians in estimating outcomes
selecting appropriate treatment. Thus, medicine includesfar patients. In particular, versimple prognostic scoring rules
wealth of prognostic methods [11]. are popular in medicine. A prognostic scoring rule is often a
For the prevention of démse, it is important to know what simple additive formula, where presence or level of
factors determine the occurrence of the disease. A distinctigiginificance of a factor is given a number greater than zero
is often made betweensk factors which are known to be (e.g., 1, 2, etc.), and a zero if absent. Tésulting total score
causally related to the disease, aistk indicators for which  conveys prognostic information based on statistics. For
such causal relationship is (yet)kmown. For example, blood example, the International Prognostic Index (IPI1) is one of the
cholesterol level is a risk factor of myocardial infarctionclinical aids clinicians use to determine the survival of patients
whereas gender is a risk indicator. with nonHodgkin lymphoma. Based on age (gredten 60
Insight into the natural history and clinical course of diseasgars), stage of the disease, raised levels of lactate
is obtained by deployment of various study methods. Some @éhydrogenase in blood, clinical performance status and
these mdtods are scientifically rigorous yet expensive anghvolvement of more than one lymphatic node, a total score is
time consuming, while others are less demanding. Thalculated. For example, a total score of 2 points is interpreted
purpose of dollow-up studyis to determine whether there is aas Olovto-intermediate riskO (5 year survival of 51%),
difference between two study populations where theadled whereas a score of% points correlates with high risk (5 year
index population is exposetb a factor and the referencesurvival of 26%) [12].



More sophisticated statistical models used in medicéb thetargetare considered more accuraf&e error metric is
prognostics include logistic regression and CoxOs regressiomepresentave of the accuracy metricError defines the
[13]. CoxOs regression, also known as the proportional hazaddsiation fran desired output. Most accurabgsed metrics
model, has the advantage that the clinical course of the disease derived directly or indirectly from errdt.is defined as:
can be explicitly modeled by means gbrbabilistic survival AN@G) = () -r'(@),
func_tlon S() = AT >1), the probablll_ty t_hat the patient where 7' (i) is the remaining useful life stimation at time
sunives more thant years. If mortality is the outcome . - . . .
variable, then one speaks oburvival analysis If mdgm glven that thle mformatlon (featl_Jrgs and COﬂdltlons) up
F(t)=1-S(t), and £(r) = F'(¢) is the first derivative of to time indexi and 7, (i) is thetrueremaining useful life
the distribution functionF, then the concept ohazard, N contrast, precisiohased metrics express thegree of

defined ash(¢) = 7(¢)/ S(¢), gives the instantaneous risk offeproducibility. If a large numbeof estimates are made with

demise after time. Logistic regression and CoxOs re ressiodifferent measurementyprecision would be the size of the
- =09 9 g Uistribution around the target that results from noise in the

zri]rgthg:juslt;vraen:ltje msetr?tt:esc?(\:/\?ilth E%E?tf:ggho%etphoedséag alt:gs easurements, uncertainty of the model, future conditions,
be used toclasgify individual patients, for éxamy le thoseetc' When all estimatesare grouped tightly togeer, the
P ’ pie. distributionis considered precisghether or nothey arenear

I'klilyrgz(;lé;\f\fnriggir; tr:{glIfilvgn)geearsBanStig?]S?](;?V?é?kz nﬁ;'v ethe target Figure 3 illustrates the concepts of accuracy and
9 » bay . .. Precision.Standard deviationis a basic precision measure. It
been proposed as alternatives to the traditional multivari €4efined as:

regression models. The advantag®afesian networks is that

they handle missing data with ease when computing the risk;S(l.) _ E,"ZI(A'(Z')—M),
in addition, input and output variables can be chosen n-1

arbitrarily. This freedom of choice renders those models as the
most flexible available. Temporal Bayesian netwodlew  where M is the sample mean of the error.

modeling temporal evolution of a disease process, includingF_ _ _
the effect of interventions, as a function of time. There is nowFinally, robustnesexpresses the quality of being able to
some recent literature describing actual clinical prognostiéithstand changes in input or external disturbarmesh as
Bayesian models [14]. However, more work is required tgnvironmental conditions|f the algorithm is capable of
investgate their clinical value. coping \_NeII with those (unpredictable) variations with
Although outcomes in medicine are often expressed in terffénimal impact on the accuracy and precision of the RUL
of morbidity or mortality, many prognostic models yield sfStimate, it is called a robust algorithrSensitivity is a
range of values corresponding to severity of the disease. ThEgeresentative robustnebased metric. Itis defined:as
more detailed prognostic models have achieveduaial role S(i)= IS{ AM'(i)},
in clinical decisioamaking and optimal treatment selection. LG A
This is especially true for models that have been substantiaiggere | M is the distance measure between two successive

with statistical significance. Thiact that aprognostic model outputs forthe value of metrioM and Awmu: is the distance
is based on ra RCT makes the conclusions trustworthypetween two successive inputs.

irrespective of who conducted the research In addition, other, less commometrics are used in the
PHM communiy. In order to mature the science of PHM
IV. PROGNOSTIC METRCS beyond its current state, the PHM community needs to reach

In medicine, prognostic methods, such as CoxOs regressih, agreement on systematic, objective, and quantitative
usually predictmorbidity and mortality possibly referring to Measures that can be used as prognostic metrics.
time. There is a clear justification for use of such methods, as
they guide the choice of appropriate, effective treatment.
Whether or not the choice improves due to use of g_diseasqgrobabimy RUL Estimate ~_| Target Value
specific prognostic model has been established empirically foihensity e
many prognostic models in medicirla.contrast, there areo /1 \
universally accpted methodsto quantify the benefit of / !
prognostics in engineering. Nonetheless, a number of /
researchers have investigated economic metrics that attempt to / \
quantify benefits of prognostics, for example, ROI, Total 4 .
Value, and others [15]. Other metrics e performance J
based metrics that focus on how well prognostic algorithms
are doing. These metrics can be categorized into aceuracy Accuracy
based metrics, precisidrased metrics, and robustndssed
metrics. Saxena et al [16] provide a comprehensive review of
metrics for evaluating performance of prognostichniques

Accuracybased metrics describthe closeness oRUL
estimates to the actual remaining lifsstimateshatare closer

Precision

Fig. 3: lllustration of Accuracy and Precision for RUL



V. PHM RESEARCH METHDDS In addition,the availability of sensors I&kely to belimited

Metrics aside, one of the main issues with PHM today is thiQ anylegacysystem. Even for new systeptisere is astrong
there is 1 robust methodology that governs PHM researchd€Sireto restrict the number of sensopecauseof weight
Papers published in the field often utilize hegrewn concernsand the belief that unreliable sensors may make the
researchmethodology. While those methodologies may b@verall system less reliable. These concerns hivebe
derived from math, physics, statistics, or other domainis, it Weighed againspotentialbenefits ofPHM. In the aerospace
oftenimpossibleto deriveactiorable conclusbns based on the Pusiness, Oevery sensor needs to eam its way into the gyste
work presented. To illustrate the point, Table 1 summarized’HM sensors are no exception.
the research methods used in several PidMted papers
presented at the 2008 IEEE Aerospace Conferendée
summary presented in the table is not intended agieigmi 1 nereé are fundamental tradeddf between coverage,
of particular authors or research projects. Rather, it is used¥geuracy, uncertainty, complexity, time horizon of prediction
ilustrate the arbitrary nature of PHM research method&nd COSt. As the complexity and castthe prognostic system
including the variety of test practices and data analysiécreases (e.g., through addition of sensors or data
methods used and the tentative nature of conclusiof0C€SSing), so does its accuraeywhile uncertaintyand
Furthermore, none of these papers reach its conclusiofPVerage decrease
through statistical significance (i.e-test or similar methods). "

In order to understand the conclusions of a PHM paper, on&- Decision Process _ _ _
need to study the methodology and decide whether theAS mentloned_earller, prognosmystemd_emgrs are driven
methodology has merit, whethethe conclusions are PY Systémrequirements ancare constrained p resource
statistically significant, and whether the resute applicable availability. To that endthe prognosticdecision process
to a broad range of componertf similar form or function. should eltherlead_to a choice of_prognostlg technology that
This approach is neither scalable nor sustainaine, in fact it Meets the requirements (possibly at different levels of
impedes progressin contrat, one only neds to read the performance) or to the conclusion t_mmghlevel requirements
abstracof a medical research article in order to understand tff@nnotoe met given overall constraints.
research objectives and conclusions. The facthieatesearch ~F19ure 4 shows the selection flowdown process for
project is based on a standard methodology such as rddfognostic designThe flrst_ step isa fallure_modesanalyss
eliminates the guesswork and establistreslibility. such as FMEA to determine the most critical faultdlext,

In order to establish a business case around PHM, PH§Nsor capabilities are assessed to provide irfoom about
needs tdecome less of an art and more of a scieandthe sampling rates and _the trending q_ualltles of their derived
community needs to develop a standard resear patures. The _avallablllty of models is _subs_equently ass_essed
methodology. Arguably, what we are missing in PHM is the@nd their quality and other c_haracterlst_lcs (like computational
equivalent of RCT: a robustredible research methodology PUrden) are analyzed. In a final step, different approaahes
that every prognostic RUL estimatieffort is based on. their _likelihood to meet the requirement metrics are

The purpose of this paper is not to propose a particulﬁ?ns'dereC_j' This will yield a degree of fulfillment. If the mgh
research methodology that can be standardized across ! requirements are not met, the process repeats until all
PHM community. We believe that a universaigcepted POSSible approaches have been considered certain
ressarch methodology will evolve through continued dialogufeduiements are waed.
in the community. Rather, we would like to identify the
minimum requirements for a universal research methodology [Top Level Requirement]
for PHM. In the following sections, we will first discuss the .
elements required fahe design of a prognostic system before
discussing the research methodology. J

Top n% causes

| determine sensor capabilities l

B. Tradeoffs During Prognostic System Design

A. Sensors
The systemlevel goals and requirements for PHM need to
be flowed down to prognostic needfr componentsand

-

ultimately to the prognostimethodto be employedSensrs

are vital information sources that acquireasurementsvith Sampling rate

some correlation to the damage propagation properties of the 17

fault of interestat a sampling ratand with a signato-noise | assess model availability |
ratio that allove accurate state assessment pratliction of g

future béravior. Sensor fusion techniquesglvanced feature
extraction methodsand virtual sensorare often adopted as omputational overhead

data processing methedb improve thequality of prognostic 17

data. In any case, expectations of prognostic performance
should be definedavith respect to the practical limitations of
the sensor and data acquisition systems.

IAssess approach likelihood to meet metrics*
"V
Degree of fulfi limen

Fig. 4: Selection flowdown process for prognostitg]




TABLE |

SUMMARY OF PHM RESEARCH PAPERS PUBSHED AT THE IEEE AEROSPACE CORERENCE IN 2008

Target
Authors Component Method Summary Quantity Hypothesis Tested | Methods Used Conclusion
He and Bearings Analysis of bearing 47 condition indicators Multiple linear HUMS condition
Bechhoefer and spall progression do not correlate with | regression indicators extracted from
(18] data collected by bearing life when the | analysis, K-Nearest | vibration data useful in
Sentient (limited to damage is small Neighbor estimating RUL
data collected after
fault was seeded)
Chenetal. [19] | Bearings Custom-designed test | 4 (2 control | Al-based methods Probabilistic significantly earlier
rig; run to failure and 2 test) | are useful in Diagnostic and detection may be
determining RUL Prognostic System | achieved using ProDAPS
(ProDAPS) on data from the
vibration and electrostatic
sensors
Baybutt et al. Actuator rapid thermal cycling, 1 set it is possible to proprietary data detection ability was
[20] electronic rapid cycling of discern between analysis and demonstrated for both
components electromagnetic fields healthy and visualization tools types of aged transistors
(FET, (FET), overcharging functionally and the seeded capacitor
capacitor) (capacitor) degraded operation fault
Kumar, Sotiris, | Laptop Operational settings 10 (9 for Statistical Mahalanobis these two algorithms can
and Pecht [21] | computers under multiple training, 1 approaches are Distance and be used for fault
environmental for test) useful in predicting Projection Pursuit detection and isolation.
conditions (thermal, the future reliability Analysis
humidity) of complex electronic
systems
Palazzolo, Axial-Piston Hydraulic test rig; 1 Physics-based high-fidelity developed and
Scheunemann, | Variable nominal and seeded models are valuable | physics-based demonstrated promising
and Hartin [22] | Displacement | fault (piston leakage) as a prognostic RUL | model; time- and fault estimation
Pumps conditions estimation tool for frequency-domain algorithms for diagnosing
VDPs data analysis axial-piston VDPs
Hofmeister et FPGA solder | Special test boards 32 SJ-BIST is an canary circuit All faults of 100 Q or
al. [23] joints subjected to highly- effective method for larger were detected, and
accelerated life tests detecting faults in there were no false
(temperature cycling, solder joint networks alarms.
vibration, drop) in FPGA 1/0 ports
Keller et al. [24] | Actuator Special test 20 (5each | thereis a correlation | Finite Element work in progress
power assemblies subjected | of four between thermal Analysis modeling
converter to deep thermal different cycle solder fatigue
solder joints cycling substrates) | and the magnitude of
the thermal
expansion mismatch
Saha and Lithium-ion Test rig with two not It is possible to Relevance Vector The combined Bayesian
Goebel [25] batteries different temperature specified predict RUL of Machines and regression-estimation
baselines batteries under Particle Filters approach shows promise

environmental and
load conditions
different from training
data sets.

in estimating RUL for
batteries.




particular damage level by comparing that with information
Top level requirement Establish root cause Pareto ‘ from real data

— Suggest changes to system _ } If n_e_ither a modebgsed approach_ can pe pursued_ nor a

‘ conditionbased datariven approach is feasible, there is still
the option to engage in flegtide statistics. Here, one would
tap into data, typically at a rather coarse level of granularity,
gathered at the fleet level from a large number of fielded
systems, and adjust reliability curves (e.g., Weibull curves)
based orspecific conditions.

If the prognosticrequirements cannot be met, the design
cycle could continue, conceptuallyby suggesting system
changes. These include requirements modifications or system
design modifications. The scope of these changes depends or

Are there sensors
and historical case:

Are there
istorical cases?

an damage propagation
be modeled?

Is sensor-based
ncertainty acceptable?

s model-based
cost, scope &
uncertainty
acceptable?

Is fleet-based
uncertainty acceptable?

sensor-based

Is hybrid approach
ncertainty acceptable?

Gannot meet requirements the design commitments made so far as well as overall system
W/ existing constraints @ goals. However, the prognostics design can be seen (and
should be seen) as integrated into the whole system design

Fig. 5 Prognostic desigprocesg17] processes (as opposed to as an@udtep after the system

design is done).

Figure 5illustrates the prognostic design process in more
detail using a decision tree. D. Information requirements

Starting again with the higlevel requirements, one needs to Roemer et al.[26] provide an excellent summary of
flow down the requirements and substantiate them at the lewaflormation requirements fovarious prognostic approaches
that is meaningful for the prognioss technology choices. (reproducedn Table 2). They conclude that as the fidelity of
Specifically, one needs to establish what-lifeited module the prognostics approach increases from evidéased
or component to apply prognostics to (or whether prognostiapproaches to physidmsed models, there is greater need for
is needed at all, for that matter). To that end, one coustlditional sensor data and detailed failure moddlkis
analyze the top drivers that impact the highd requirement, analysis does not make any statement about the quality of the
for example, by performing a Pareto analysis of the failuneailting remaining life estimates.
modes for a particular component. The constraints posed by the requiretseand sensors have

After determining what failure mechanism might benefia strong correlation with the accuracy of the remaining life
from a prognostic assessment, a survey of the existing damagediction as well as the associated uncertaitigere models
propagation models needs to beade. Here, it is vital to are not availableaccuracy decreases while uncertainty bounds
assess whether a fundamental understanding of the damggecally increase. A similar relationship is s#yved where
growth exists or whether it can be established. Damag#ormation from sensors becomes sparegéher because they
propagation modeling is often times a very compleagre poor predictors drecause they are simply missing.
undertaking. When performed at the materials level, it canE. Uncertainty Management
involve finite element modeling which in turn requires precise In most dynamic systems, there is a great deal of uncertainty
information about material properties, geometric desigabout the current state of the component and even more about
information, and load sensing information for both the currefigture usage of the components. This means the prediction
time frame as well as future load profiles. A model does ngbout the component will typically not be known with
need to be availablat the materials level. Simpler models cafertainty [27]. Because of this, prognostic systems may need
also be used but they will trade off coverage with accurady have a method for communicating their confidence in each
and narrow uncertainty bounds. prediction. _

If there is (or will be) no suitable model, one still might be Uncertainty management is #&indamental aspect of
able to provide prognostic estimates by engaging inta da
driven approach. Datdriven approaches may be suitable TABLE 2
alternatives to modddased approaches when retrospective ~ PROGNOSTIC INFORMATION REQUIREMENT$26]
data exist in sufficient quantity. Sufficient quantity in this

context means that remo-failure has been observed for all Experience- Evolutionary Physics-
fault modes ofriterest several times. This may be an issue for based based
new systems without service experience. If sufficient Engineering Not required Beneficial Required
historical data are not available, the prognostic requirements poie . o Notrequred  Benefal
cannot be met. In many cases, neither a pure mussd Past Operating Beneficial Not required Required
approach nor a pure datisiven agroach is able to provide Conditons —— Required Required
the desired prognostic capability. In these situations, hybrid conditions

approaches can help. Hybrid approaches inclingeuse of pentfle Fault Notrequited Required Required
models that were not specifically designed for damage Maintenance Beneficial Not required Beneficial
propagation. Instead, the models can be driven to geovi History

response that is recognized as being consistent with a InGeneral NoSensors/No  Semsors/No  Sensors and

Model Model Model



prognostics both in electromechanical systems and i%¥ Verify and validate the models and algorithms developed.
medicine. Not surprisingly, the basic ideas underlying survival
analysis in medicine are similar to reliability analysis of VI. CONCLUSIONS ANDNEXT STEPS

electromechanal systems mentioned earlier (e.g., survival |, yhis paper, we discussed the traditional approaches to
probability S(z) is similar to reliability R(r)). However, ,oonostic RUL estimation in engineering and medicine.
whereas survival analysis is a very common method Despite superficial differences, the two disciplines are based
medicine, reliability analysis is not commonly employed irbn similar concepts and have similar objectives. The concepts
complex electromechanical systemH. uncertainty becomes of natural history and disease progression are similar to the
too large, therenay be no gain in the resulting action becauseoncepts of dang® accumulation and fault progression in
at a given risk level, the action will always be immediateengineering. Risk factors in medicine are similar to prognostic
Knowing thatthe average failure ifar in the futureoffers indicators in engineering. In medicine, the purpose of
little value when uncertainty is largevluch of the prognostic prognostic life estimation is to determine the optimal
work is therefore (besides getting an accurate estimate of th€atment policy in order to or maximiziée expectation for
remaining time) geared towards managing (i.e., reducing) tfige individual patient while satisfying qualitf-life goals. In
uncertainty. engineering, the purpose of prognostic RUL estimation is to
determine the optimal maintenance policy in order to
F. Elements of a Universal Research Methodology for PHMpinimize the total lifecycle cost while satisfying o
A universal esearch mthodology forprognostics needto  system safety goals.
address all of the issues discussed above. To that end, th@ne might conjecture that disease progression in medicine is
following elements are required: subject to substantial variability due to factors such as
genetics, environmental factors, .eDamage accumulation in
¥ Establish the business case for a prognostic solution thakisgineered systems is also subject to vaitghdlue to factors

derived from higHevel system requirements. such as build quality, operating conditions, etc. The medical
¥ Select tle set of metrics that support a particular prognostigpproach normalizes such variability through rigorous

life estimation requirement. application of methods such as randomization, elimination of
¥ Select faults of interest by employing FMECA or similarlysample bias, propergelected study population sizes, and

rigorous methods. careful assessment of statistical significance. It is time to start
¥ For the highest ranked faults (by criticality and frequencygxpecting similar rigor in PHM research studies.

determine the root cause. PHM has not yet become standard business practice in the

¥ Determire whether existing sensors can support management of complex engineered systems. This is largely
prognostic solution (or establish a case for needed sensdte to the lack of sentific rigor in PHM research. TheHM
and data acquisition/processing capability). community needs to reach an agreement on systematic,

¥ Determine the most appropriate approach, trading ofbjective, and quantitative measures that can be used as
desired performance, resources available for developmeptpgnostic metrics. Moreover, PHM research studies should
acceptable uncertainty, etc. be based on clear scientific hypotheses anehsiic methods

¥ Determine the appropriate humber of component sampldssigned to prove or refute thaull hypothese based on
required for ésting to reach a statisticallgignificant common prognostic metrics and at actionable levels of
conclusion at the required confidenlewel (typically 95% statistical significance. As with medicine, these studies may
or above). be retrospective (i.e., based on analysis of previecshgcted

¥ Develop test scenarios to operate and agectmponents data) or prospective (i.e., based on a data collection plan). The
under conditions representative of actual use (realiststudies may result in the establishment of simple prognostics
loads and environmental conditionslf possible, test measures similar to the medical prognostic metrics mentioned
component samples in the training set all the way tearlier. For example, levels of vibration in a rotating
failure. Collect and analyze operational and environmentalomponentmay be classified into a small number of discrete
data as well as dict and indirect indicators of aging fromprognostic scores, and these scores may be mapped to
the fleet of components under study appropriate logistics actions.

¥ If needed, develop a system/subsystem/component model
that d_escrlbes the operation of thg _system under nommaA_ ROLE OF GOVERNMENT AGENCIES
andbideallyBunder abnormal conditions. ) _ ] ) )

¥ Develop RUL algorithms using datagathered from the  Rigorous medical studies are very expensive to design and

training set. conduct. In contrast, typitsPHM studies are conducted
¥ Develop an uncertainty management model, possibly fRrough Small Business Innovative Research (SBIR) projects
conjunction with the RUL algorithms. in the U.S., which are often too lebudget and shotterm to

¥ Estimate RUL on components at frequent intervals aanovide meaningful results. Too often, funding priorities and
compare RUL estimates witactual (eventual) failure resources change drastically due to progration or
times. administrative  considerations, seriously impacting or
¥ Measure ad report accuracpased metrics, precision disrupting research projects and making it futile to plan or
based metrics, and robustnéssed metrics for RUL execute longerm roadmaps.
estimation.



In the U.S., medical research is funded through two principai-house and the associated unease about licen&nmpdy
sources: the National Institutes of Héalt(NIH) and technology.
pharmaceutical companies (less important funding source®Ve do not have a solution in mind for the lack of mmop
include private research foundations). Unlike governmestientific disclosure and limited adoption of prognostic
agencies that fund PHM research, NIH research goals &mowledge in the industry. Rather, we will conclude by
long-term and rather deterministic: for example, NIH willposing a questionwhat will it take the industry to adopt and
continue to fud cancer research as long as cancer continuessivare PHM knowledge in a pmompetitive fashion so that we
be a significant cause of mortality and morbidity (of coursegll benefit fromsafer, more reliable, and more cesffective
even NIH research directions are not entirely immune te noangineered systems?
scientific influences, but such disruptions are exceptions rather
than the norm).

Unfortunately, given the limited budgets available for PHM REFERENCES
researCh and the fractu_red n_ature of the funding sources, thﬁfeM. Revor and E. Bechhoefer, ORotor track and balance cost benefit
is no current mechanism (in the U.S.) to fund loexgn, analysis and impact on operational availability,0 American Helicopter

substantial PHM research projects that can produce actiona[gI]eSSOCiitly GOIQ Annual ';%“Jf_“v Ba't"}‘gmv 2004. § Life Extension i
Qi i H H P . Marble and D. Tow,Bearing Health Monitoring and Life Extension in
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