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Abstract

In designing a Bayesian network for an actual problem, developers need to bridge the gap between
the mathematical abstractions offered by the Bayesian-network formalism and the features of the
problem to be modelled. Qualitative probabilistic networks (QPNs) have been put forward as quali-
tative analogues to Bayesian networks, and allow modelling interactions in terms of qualitative signs.
They thus have the advantage that developers can abstract from the numerical detail, and therefore
the gap may not be as wide as for their quantitative counterparts. A notion that has been suggested in
the literature to facilitate Bayesian-network development is causal independence. It allows exploiting
compact representations of probabilistic interactions among variables in a network. In the paper, we
deploy both causal independence and QPNs in developing and analysing a collection of qualitative,
causal interaction patterns, called QC patterns. These are endowed with a fixed qualitative semantics,
and are intended to offer developers a high-level starting point when developing Bayesian networks.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Reasoning with uncertainty is a significant area of research in Artificial Intelligence at
least since the early 1970s. Many different methods for representing and reasoning with
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uncertain knowledge have been developed during the last three decades, including the
certainty-factor calculus [2,22], Dempster-Shafer theory [21], possibilistic logic [8], fuzzy
logic [29], and Bayesian networks, also called belief networks and causal probabilistic net-
works [3,18,19]. During the last decade a gradual shift towards the use of probability theory
as the foundation of almost all of the work in this area could be observed, mainly due to
the impact, both theoretically and practically, of the introduction of Bayesian networks and
related graphical probabilistic models into the field.

Bayesian networks offer a powerful framework for the modelling of uncertain interac-
tions among variables in a given domain. Such interactions are represented in two different
manners: firstly, in a qualitative manner, by means of a directed acyclic graph, and sec-
ondly, in a quantitative manner, by specifying a conditional probability distribution for
every variable represented in the network. These conditional probability distributions allow
for expressing various logical, functional and probabilistic relationships among variables.
Much of the appeal of the Bayesian network formalism derives from this feature (cf. [3]
for a modern, technical overview).

It is well known that ensuring that the graph topology of a Bayesian network is sparse
eases the assessment of its underlying joint probability distribution, as the required prob-
ability tables will then be relatively small. Unfortunately, designing a network with a
topology that is sparse is neither easy nor always possible. Researchers have therefore
identified special types of independence relationships in order to facilitate the process of
probability assessment. In particular the theory of causal independence fulfils this pur-
pose [15]. The theory allows for the specification of the interactions among variables in
terms of cause-effect relationships, adopting particular statistical independence assump-
tions. Causal independence is frequently used in the construction of practical networks for
situations where the underlying probability distributions are complex. The theory has also
been exploited to increase the efficiency of probabilistic inference in Bayesian networks
[30,31]. A limitation of the theory of causal independence is that it is usually unclear with
what sort of qualitative behaviour a network will be endowed when choosing for a particu-
lar interaction type. As a consequence, only two types of interaction are in frequent use: the
noisy-OR and the noisy-MAX; in both cases, interactions among variables are modelled
as being disjunctive [4,16,19].

Qualitative probabilistic networks offer a qualitative analogue to the formalism of
Bayesian networks. They allow describing the dynamics of the interaction among variables
in a purely qualitative fashion by means of the specification and propagation of qualitative
signs [6,7,20,28]. Hence, qualitative probabilistic networks abstract from the numerical
detail, yet retain the qualitative semantics underlying Bayesian networks. The theory of
qualitative probabilistic networks, therefore, seems to offer potentially useful tools for the
qualitative analysis of Bayesian networks.

The aim of the present work was to develop a theory of qualitative, causal interaction
patterns, QC patterns for short, in the context of Bayesian networks. Such a theory could
assist developers of systems based on Bayesian networks in designing such networks, ex-
ploiting the qualitative information that is available in the domain concerned as much as
possible. In the paper, various interaction types are defined using Boolean algebra; qual-
itative probabilistic networks are then used to provide a qualitative semantic foundation
for these interactions. The Bayesian-network developer is supposed to utilise the theory
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by selecting appropriate interaction patterns based on domain properties, which thus can
guide Bayesian-network development.

The remainder of this paper is organised as follows. In the following section, the basic
properties of Bayesian networks are introduced, as are Boolean functions, and the no-
tions of causal independence and qualitative probabilistic networks. We start the analysis
by considering various causal-independence models, unravelling the qualitative behaviour
of these causal models using qualitative probabilistic networks in Section 3. Section 4
summarises the various patterns that have been obtained, and discusses these results in
the context of all possible patterns. Finally, in Section 5, it is summarised what has been
achieved by this research.

2. Preliminaries

To start, the basic theory of Bayesian networks, causal independence and qualitative
probabilistic networks are reviewed.

2.1. Bayesian networks

A Bayesian network is a concise representation of a joint probability distribution on a
set of statistical variables [19]. It consists of a qualitative part and an associated quan-
titative part. The qualitative part is a graphical representation of the interdependences
between the variables in the encoded distribution. It takes the form of an acyclic directed
graph (digraph) G = (V (G),A(G)), where each node V ∈ V (G) corresponds to a sta-
tistical variable that takes one of a finite set of values, and A(G) ⊆ V (G) × V (G) is a
set of arcs. In this paper, we assume all variables to be binary; for abbreviation, we will
often use v to denote V = � (true) and v̄ to denote V = ⊥ (false). Sometimes, we pre-
fer to leave the specific value of a variable open (i.e., it is taken as a free variable), and
then we simply state V . In other cases, we use this notation when a variable is actually
bound. The context will make clear which interpretation is intended. Furthermore, for ab-
breviation, we use the notation V1, . . . , Vn\Vi, . . . , Vj which stands for the set of variables
{V1,V2, . . . , Vi−1,Vi+1, . . . , Vj−1,Vj+1, . . . , Vn}. Furthermore, an expression such as∑

ψ(I1,...,In)=e

g(I1, . . . , In)

stands for summing over g(I1, . . . , In) for all possible values of the variables Ik for which
the constraint ψ(I1, . . . , In) = e holds. However, if we refer to variables separate from
such constraints, such as in∑

I1,I2
ψ(I1,...,In)=e

g(I1, . . . , In)

then we only sum over the separately mentioned variables, here the variables I1, I2, and
the equality only acts as a constraint.

The arcs A(G) in the digraph G model possible dependences between the represented
variables. Informally speaking, we take an arc V → V ′ between the nodes V and V ′ to
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represent an influential relationship between the associated variables V and V ′. If this arc
is given a causal reading, then the arc’s direction marks V ′ as the effect of the cause V .
Absence of an arc between two nodes means that the corresponding variables do not in-
fluence each other directly and, hence, are (conditionally) independent. In the following,
causes will often be denoted by Ci and their associated effect variable by E.

Associated with the qualitative part of a Bayesian network are numerical quantities from
the encoded probability distribution. With each variable V in the digraph is associated a
set of conditional probabilities Pr(V | π(V )), describing the joint influence of values for
the parents π(V ) of V on the probabilities of the variable V ’s values. These sets of prob-
abilities constitute the quantitative part of the network. A Bayesian network represents a
joint probability distribution on its variables and thus provides for computing any proba-
bility of interest. Various algorithms for probabilistic inference with a Bayesian network
are available [19,23,30].

Bayesian networks are successfully applied in a growing number of fields; biomed-
ical applications in particular have attracted a great deal of research activity (cf. [1,5,
11,12,24,25]). This may be due to the fact that biological mechanisms can often be de-
scribed quite naturally in causal terms. Consider, for example, the causal network shown
in Fig. 1, which models the causal mechanisms by which patients become colonised by
bacteria, for example Pseudomonas aeruginosa, after admission to a hospital. As the actual
names of the bacteria do not matter here, they are simply called A, B and C. After hav-
ing been colonised, the patient’s body responds to the bacteria in various ways, depending
on the bacteria concerned; in the end an infection may develop. An infection is clinically
recognised by signs and symptoms such as fever, high white blood cell count (WBC),
and increased sedimentation rate of the blood (ESR). Clearly, the probability distribution
Pr(Infection | BRA,BRB,BRC) specified for the network, where BRX stands for ‘Body
response to X’, is of great importance in modelling interactions among the various mech-
anisms causing infection; the actual type of interaction depends on the bacteria involved.

Fig. 1. Example Bayesian networks, modelling the interaction among bacteria possibly causing an infection in
patients after colonisation.
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Fig. 2. Example Bayesian network, modelling the interaction between the antimicrobial agents penicillin and
chlortetracyclin on infection.

As a second example, consider the interaction between bactericidal antimicrobial
agents, i.e., drugs that kill bacteria by interference with their metabolism, and bacteriosta-
tic antimicrobial agents, i.e., drugs that inhibit the multiplication of bacteria. Penicillin is
an example of a bactericidal drug, whereas chlortetracyclin is an example of a bacteriosta-
tic drug. It is well known among medical doctors that the interaction between bactericidal
and bacteriostatic drugs can have antagonistic effects; e.g., the drug combination penicillin
and chlortetracyclin may be have as little effect against an infection as prescribing no an-
timicrobial agent at all, even if the bacteria are susceptible to each of these drugs. Note
that here we interpret drugs as statistical variables, not as decision variables as in clinical
decision making. The depiction of the causal interaction of the relevant variables is shown
in Fig. 2; note the similarity in structure of this network in comparison to Fig. 1.

As a last example, this time not concerning infectious disease, consider the interaction
between natural hormones that have partially related, but possibly opposite, working mech-
anisms, such as insulin and glucagon: two hormones that are involved in the regulation of
glucose levels in the blood. Insulin is needed to let glucose cross the membrane of most of
the body cells (exceptions are the brain cells, where, as a protective mechanisms, glucose
transfer is not insulin dependent) so that it can be utilised as fuel in the cell metabolism.
In this way glucose is transferred from blood to cytoplasm. Glucagon, on the other hand,
stimulates the release of glucose from the glycogen deposites, such as the liver, into the
blood. In order for glucagon to be effective, it is necessary that insulin is present, as oth-
erwise there will be little glucose stored in the body cells as glycogen. Too high levels of
insulin, insulin hypersecretion, as may occur in tumours called insulinomas, may give rise
to hypoglycaemia, i.e., abnormally low glucose levels in the blood. In all other cases, levels
of glucose in the blood will not be abnormally low (although the levels may be too high,
but this is not considered an acute danger). The causal interaction of the relevant variables
is shown in Fig. 3.
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Fig. 3. Example Bayesian network, modelling the interaction between insulin and glucagon secretion from hor-
monal gland tissue.

Although the Bayesian networks shown in Figs. 1, 2 and 3 have a very similar struc-
ture, their underlying interaction semantics is very different as we will see below. These
networks will be used in the following as running examples to illustrate some of the results.

2.2. Causal independence

In this section, we introduce a type of cause-effect interaction, called causal indepen-
dence, which essentially is a causal model with rather strong independence assumptions.

2.2.1. Probabilistic representation
One popular way to specify interactions among statistical variables in a compact fash-

ion is offered by the notion of causal independence [10,13–15]. The global structure of a
causal-independence model is shown in Fig. 4; it expresses the idea that causes C1, . . . ,Cn

influence a given common effect E through intermediate variables I1, . . . , In and a deter-
ministic function f , called the interaction function. The influence of each cause Ck on the
common effect E is independent of each other cause Cj , j �= k. The function f represents
in which way the intermediate effects Ik , and indirectly also the causes Ck , interact to yield
a final effect E. Hence, this function f is defined in such way that when a relationship, as
modelled by the function f , between Ik , k = 1, . . . , n, and E = � is satisfied, then it holds
that e = f (I1, . . . , In).

In terms of probability theory, the notion of causal independence can be formalised for
the occurrence of effect E, i.e., E = �, as follows:

Pr(e | C1, . . . ,Cn) =
∑

f (I1,...,In)=e

Pr(e | I1, . . . , In)Pr(I1, . . . , In | C1, . . . ,Cn) (1)

meaning that the causes C1, . . . ,Cn influence the common effect E through the inter-
mediate effects I1, . . . , In only when e = f (I1, . . . , In) for certain values of Ik , k =
1, . . . , n. Under this condition, it is assumed that Pr(e | I1, . . . , In) = 1; otherwise, when
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Fig. 4. Causal independence model.

f (I1, . . . , In) = ē, it holds that Pr(e | I1, . . . , In) = 0. Note that the effect variable E is
conditionally independent of C1, . . . ,Cn given the intermediate variables I1, . . . , In, and
that each variable Ik is only dependent on its associated variable Ck ; hence, it holds that

Pr(e | I1, . . . , In,C1, . . . ,Cn) = Pr(e | I1, . . . , In)

and

Pr(I1, . . . , In | C1, . . . ,Cn) =
n∏

k=1

Pr(Ik | Ck).

Formula (1) can now be simplified to:

Pr(e | C1, . . . ,Cn) =
∑

f (I1,...,In)=e

n∏
k=1

Pr(Ik | Ck). (2)

Based on the assumptions above, it also holds that

Pr(e | C1, . . . ,Cn) =
∑

I1,...,In

Pr(e | I1, . . . , In)

n∏
k=1

Pr(Ik | Ck). (3)

Finally, it is assumed that Pr(ik | c̄k) = 0 (absent causes do not contribute to the effect);
otherwise, the probabilities Pr(Ik | Ck) are assumed to be positive.

Formula (2) is practically speaking not very useful, because the size of the specification
of the function f is exponential in the number of its arguments. The resulting probabil-
ity distribution is therefore in general computationally intractable, both in terms of space
and time requirements. An important subclass of causal independence models, however, is
formed by models in which the deterministic function f can be defined in terms of sepa-
rate binary functions gk , also denoted by gk(Ik, Ik+1). Such causal independence models
have been called decomposable causal independence models [14]; these models are of
significant practical importance. Usually, all functions gk(Ik, Ik+1) are identical for each
k; a function gk(Ik, Ik+1) may therefore be simply denoted by g(I, I ′). Typical examples
of decomposable causal independence models are the noisy-OR [4,10,16,19,26] and noisy-
MAX [4,15,26] models, where the function g represents a logical OR and a MAX function,
respectively.



240 P.J.F. Lucas / Artificial Intelligence 163 (2005) 233–263
2.2.2. Boolean functions
The function f in Eq. (2) is actually a Boolean function; recall that there are 22n

dif-
ferent n-ary Boolean functions [9,27]. Hence, the potential number of causal interaction
models is huge. The Boolean functions can also be represented by the probabilities

Pr(e | I1, . . . , In)

in Eq. (3), with Pr(e | I1, . . . , In) ∈ {0,1}.
As mentioned above, in the case of causal independence it is usually assumed that the

function f is decomposable, and that all binary functions gk of which f is composed are
identical. As there are 16 different binary Boolean functions, and a causal interaction model
contains at least two causes, there are at least 16 n-ary Boolean functions, with n � 2, in
that case. Some of these Boolean functions can be interpreted as a Boolean expression of
the form

I1 � · · · � In = E

where � is a binary, associative Boolean operator. However, not every binary Boolean
operator is associative; Table 1 mentions which operators are associative and which are
not.

As a matter of notation, in the following we will frequently make use of the abbrevia-
tion:

Ij = (· · · (I1 � I2) � · · ·) � Ij−1) � Ij ) (4)

Table 1
The binary Boolean operators

Commutative, associative operators

∧ AND
∨ OR
↔ bi-implication
� XOR, exclusive OR
� always true
⊥ always false

Commutative, non-associative operators

↓ NOR
| NAND

Non-commutative, associative operators

p1 projection to the first argument
p2 projection to the second argument
n1 negation of first argument
n2 negation of second argument

Non-commutative, non-associative operators

→ implication
← reverse implication
< increasing order
> decreasing order
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if it is assumed that the Boolean operator � is left associative. Similarly, the notation

Ij = (Ij � (Ij+1 � (· · · � (In−1 � In) · · ·) (5)

is used if it is assumed that the operator � is right associative. Note that In ≡ I1 if �
is associative. In that case, we will simply use the notation In−1 to denote the Boolean
expression with one variable less than In, as usually will become clear from the context.
Finally, note that a Boolean operator � need not be commutative, and hence i1 � In−1 =
In−1 � i1, where In−1 = I2 � · · · � In, need not hold. Table 1 also indicates which of the
operators are commutative and which are not.

The commutative and associative binary operators mentioned in Table 1 give rise to
Boolean expressions that are special cases of symmetric Boolean functions (the two com-
mutative, non-associative operators are only symmetric for two arguments). A Boolean
function f is symmetric if

f (I1, . . . , In) = f (Ij1, . . . , Ijn)

for any index function j : {1, . . . , n} → {1, . . . , n} [27]. An example of a symmetric
Boolean functions is the exact Boolean function ek , which is defined as:

ek(I1, . . . , In) =
{� if

∑n
j=1 ν(Ij ) = k,

⊥ otherwise,
(6)

with k ∈ N, and

ν(I ) =
{

1 if I = �,

0 otherwise.
Hence, this function simply checks whether there are k cases where Ij is true. The follow-
ing basic properties of the exact Boolean function are useful in establishing properties of
symmetric Boolean functions explored below.

Lemma 1. Let ek(I1, . . . , In) be the exact Boolean function, then:

(1) ∀k ∈ N ∀I1, . . . , In: ek(I1, . . . , ij , . . . , In) ∧ ek(I1, . . . , ı̄j , . . . , In) ≡ ⊥, and
(2) ∀I1, . . . , In ∃k ∈ N: ek(I1, . . . , ij , . . . , In) ≡ ek−1(I1, . . . , ı̄j , . . . , In), and
(3) ∀I1, . . . , In ∃k ∈ N ∀l ∈ N, l �= k, l �= k − 1: ek(I1, . . . , ij , . . . , In) � ¬el(I1, . . . ,

Ij , . . . , In).

Proof. Straight from the definition. �
Another useful symmetric Boolean function is the threshold function tk , which simply

checks whether there are at least k trues among the arguments:

tk(I1, . . . , In) =
{� if

∑n
j=1 ν(Ij ) � k,

⊥ otherwise.
Symmetric Boolean functions can be decomposed in terms of the exact functions ek as
follows [27]:

f (I1, . . . , In) =
n∨

ek(I1, . . . , In) ∧ ck (7)

k=0
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where ck are Boolean constants only dependent of the function f . For example, for the
Boolean function defined in terms of the AND operator we have: c0 = · · · = cn−1 = ⊥ and
cn = �, for the Boolean function defined in terms of the OR operator we have c0 = ⊥ and
c1 = · · · = cn = �, and for the XOR operator we have that ck = ⊥ if even(k) and ck = �
if odd(k).

Symmetric functions are generally not decomposable in the sense of the previous sec-
tion, but as the exact function ek simply checks sums, a symmetric Boolean function can
nevertheless be split into parts using equality (7).

We return to our example Bayesian-network model shown in Fig. 1. If we assume that
the bacteria A, B and C are all pathogenic, and thus give rise to an infectious response if
the patient becomes colonised by them, the interaction among the ‘Body response’ vari-
ables can be modelled by a logical OR, ∨. This expresses the idea that an infection must be
caused by one or more pathogenic bacteria. The interaction between penicillin and chlorte-
tracyclin as depicted in Fig. 2 can be described my means of an exclusive OR, �, as
presence of either of these in the patient’s body tissues leads to a decrease in bacterial
growth, whereas if both are present or absent, there will be little or no effect on bacterial
growth. The interaction between insulin and glucagon secretion as shown in Fig. 3 can
be described my means of the decreasing order operator, >, as insulin hypersecretion is a
cause of hypoglycaemia, but only if there is no glucagon hypersecretion. If there is only
glucagon hypersecretion, we will not have hypoglycaemia, whereas if we have neither in-
sulin hypersecretion nor glucagon hypersecretion, hypoglycaemia does not occur either.
In the following we use the interaction between various types of bacteria as examples to
illustrate how Boolean functions can be used to model different interactions with their as-
sociated meanings. The way penicillin and chlortetracyclin interact, as well as insulin and
glucagon, are, however, kept fixed.

2.3. Qualitative probabilistic networks

Qualitative probabilistic networks, or QPNs for short, are qualitative abstractions of
Bayesian networks, bearing a strong resemblance to their quantitative counterparts [28].
A qualitative probabilistic network equally comprises a graphical representation of the
interdependences between statistical variables, once again taking the form of an acyclic
digraph. Instead of conditional probabilities, however, a qualitative probabilistic network
associates signs with its digraph. These signs serve to capture the probabilistic influences
and synergies between variables.

A qualitative probabilistic influence between two variables expresses how the values of
one variable influence the probabilities of the values of the other variable. For example, a
positive qualitative influence of a variable A on its effect B , denoted S+(A,B), expresses
that observing the value � for A makes the value � for B more likely, regardless of any
other direct influences on B , that is,

Pr(b | a, x) � Pr(b | ā, x) (8)

for any combination of values x for the set π(B) \ {A} of causes of B other than A. A neg-
ative qualitative influence, denoted S−(A,B), and a zero qualitative influence, denoted
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Table 2
The operators for combining signs

⊗ + − 0 ? ⊕ + − 0 ?

+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

S0(A,B), are defined analogously, replacing � in the above formula by � and =, re-
spectively. If the influence of A on B is non-monotonic, that is, the sign of the influence
depends upon the values of other causes of B , or unknown, we say that the influence is am-
biguous, denoted S?(A,B). With each arc in a qualitative network’s digraph an influence
is associated.

The set of influences of a qualitative probabilistic network exhibits various convenient
properties [28]. The property of symmetry guarantees that, if the network includes the
qualitative influence S+(A,B), then it also includes S+(B,A). The property of transitiv-
ity asserts that the qualitative influences along a path between two variables, specifying
at most one incoming arc for each variable, combine into a single compound influence
between these variables with the ⊗-operator from Table 2. The property of composition
further asserts that multiple qualitative influences between two variables along parallel
paths combine into a compound influence between these variables with the ⊕-operator. In
addition to influences, a qualitative probabilistic network includes synergies modelling in-
teractions between influences. An additive synergy between three variables expresses how
the values of two variables jointly influence the probabilities of the values of the third vari-
able. For example, a positive additive synergy of the variables A and B on their common
effect C, denoted Y+({A,B},C), expresses that the joint influence of A and B on C is
greater than the sum of their separate influences, regardless of any other influences on C,
that is,

Pr(c | a, b, x) + Pr(c | ā, b̄, x) � Pr(c | a, b̄, x) + Pr(c | ā, b, x) (9)

for any combination of values x for the set of causes of C other than A and B . Nega-
tive, zero, and ambiguous additive synergy are defined analogously. A qualitative network
specifies an additive synergy for each pair of causes and their common effect in its digraph.

A product synergy between three variables expresses how the value of one variable
influences the probabilities of the values of another variable in view of an observed value
for the third variable [17]. For example, a negative product synergy of a variable A on a
variable B given the value � for their common effect C, denoted X−({A,B}, c), expresses
that, given c, the value � for A renders the value � for B less likely, that is,

Pr(c | a, b, x) · Pr(c | ā, b̄, x) � Pr(c | a, b̄, x) · Pr(c | ā, b, x) (10)

for any combination of values x for the set of causes of C other than A and B . Positive,
zero, and ambiguous product synergy again are defined analogously. For each pair of causes
and their common effect, a qualitative probabilistic network specifies two product syner-
gies, one for each value of the effect. Upon observation of a specific value for a common
effect of two causes, the associated product synergy induces an influence between the two
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causes; the sign of this influence equals the sign of the synergy. A qualitative influence that
is thus induced by a product synergy is termed an intercausal influence.

3. Qualitative analysis of causal independence

Even though the notion of causal independence is described in a qualitative fashion in
Section 2.2, the actual interactions obtained are determined by the interaction function f

used in defining it. QPNs offer qualitative abstractions of Bayesian networks, and, thus,
could serve in principle as tools for describing and analysing qualitative phenomena in
Bayesian networks. This is exactly what is done in this and subsequent sections. In this
section, we use QPNs to analyse and describe the interactions for various interaction func-
tions f . We start by considering qualitative influences among cause and effect variables,
which is followed by an analysis of synergies. Throughout the paper it is assumed that the
number of causes n is greater than or equal to 2.

3.1. Qualitative influences

Qualitative influences are investigated by considering the sign of the expression

Pr(e | C1, . . . , cj , . . . ,Cn) − Pr(e | C1, . . . , c̄j , . . . ,Cn) (11)

which is denoted by δj (C1, . . . ,Cj−1,Cj+1, . . . ,Cn). The sign σ of the qualitative influ-
ence Sσ (Cj ,E) is thus determined by the sign of the latter function.

The following result, obtained by using Eq. (3), enables us to investigate qualitative
influences in detail:

δj (C1, . . . ,Cj−1,Cj+1, . . . ,Cn)

= Pr(e | C1, . . . , cj , . . . ,Cn) − Pr(e | C1, . . . , c̄j , . . . ,Cn)

= Pr(ij | cj )
∑

I1,...,In\Ij

Pr(e | I1, . . . , ij , . . . , In)

n∏
k=1
k �=j

Pr(Ik | Ck)

+ Pr(ı̄j | cj )
∑

I1,...,In\Ij

Pr(e | I1, . . . , ı̄j , . . . , In)

n∏
k=1
k �=j

Pr(Ik | Ck)

−
∑

I1,...,In\Ij

Pr(e | I1, . . . , ı̄j , . . . , In)

n∏
k=1
k �=j

Pr(Ik | Ck)

= Pr(ij | cj )

[ ∑
I1,...,In\Ij

de(In\Ij )

n∏
k=1
k �=j

Pr(Ik | Ck)

]
,

where In = I1, . . . , In, and

de(In\Ij ) = Pr(e | I1, . . . , ij , . . . , In) − Pr(e | I1, . . . , ı̄j , . . . , In). (12)
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Recall that it is assumed that Pr(i | c̄) = 0. The multipliers
∏n

k=1,k �=j Pr(Ik | Ck) are re-
sponsible for possible variation among signs of the difference (11) for various values of
C1, . . . ,Cj−1,Cj+1, . . . ,Cn, as the difference (12) is not influenced by the values of cause
variables Ck . As the constituents in the difference (12) represent Boolean functions, this
difference can be interpreted as a mapping {⊥,�} × {⊥,�} → {−1,0,1}. Hence, from
the combined effect of the multipliers and the difference it appears that any qualitative
influence can be represented using causal independence.

Recall that a probability distribution Pr(E | I1, . . . , In) representing a Boolean function
can be interpreted as a Boolean expression or function. We first consider cases where the
Boolean function is symmetric; as the exact and threshold Boolean function are fundamen-
tal, we examine these two functions first.

Proposition 1. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with interaction function f equal to the exact function ek , then the sign σ

in Sσ (Cj ,E) is equal to ‘?’ for 1 � k � n − 1, whereas σ = − for k = 0 and σ = + for
k = n,n > 0.

Proof. Lemma 1 indicates that ek(I1, . . . , ij , . . . , In) ∧ ek(I1, . . . , ı̄j , . . . , In) is always
unsatisfiable. Both expressions are satisfiable for 1 � k � n − 1, but never both at the
same time according to Lemma (1), and thus it holds that σ = ?. For k = 0, it holds
that e0(I1, . . . , ij , . . . , In) ≡ ⊥ for any truth value for I1, . . . , Ij−1, Ij+1, In, whereas
e0(I1, . . . , ı̄j , . . . , In) is satisfiable. Hence, it holds that σ = −. For k = n,n > 0, it holds
that en(I1, . . . , ı̄j , . . . , In) ≡ ⊥, whereas en(I1, . . . , ij , . . . , In) is satisfiable. We conclude
that σ = +. �

For the threshold function, the following result is obtained.

Proposition 2. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with interaction function f equal to the threshold function tk , then the sign σ in
Sσ (Cj ,E) is equal to + for k � 1, and σ = 0 for k = 0.

Proof. The threshold function can be defined using Eq. (7) by taking c0 = · · · = ck−1 = ⊥
and ck = · · · = cn = �. As a consequence, tk(I1, . . . , ij , . . . , In) and tk(I1, . . . , ı̄j , . . . , In)

can both be satisfied, but it is also possible that tk(I1, . . . , ij , . . . , In) is satisfied because
ek(I1, . . . , ij , . . . , In) is satisfied, which for k � 1 implies that tk(I1, . . . , ı̄j , . . . , In) is not
satisfied. Finally, if tk(I1, . . . , ij , . . . , In) is falsified, so is tk(I1, . . . , ı̄j , . . . , In). Summaris-
ing, for k � 1 the qualitative influence σ = +. For k = 0, both t0(I1, . . . , ij , . . . , In) and
t0(I1, . . . , ı̄j , . . . , In) are always true, and hence σ = 0. �

Next suppose that the interaction function f is decomposable. We start by consider-
ing Boolean expressions built up from the commutative, associative Boolean operators, as
discussed above, which we shall study as special cases of symmetric Boolean functions.

Proposition 3. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is defined in terms of the commuta-
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Table 3
Qualitative influences: commuta-
tive, associative operators

Operator Sign

∧ +
∨ +
↔ ?
� ?
� 0
⊥ 0

tive, associative binary operators shown in Table 1. Then, the sign σ in Sσ (Cj ,E) as
indicated in Table 3 holds for any cause variable Cj and given effect variable E.

Proof. Let f be the symmetric Boolean function corresponding to Pr(e | I1, . . . , In) in
difference equation (12). Then, the following results are obtained, using Eq. (7):

• ∧: cn = �, and ck = ⊥, for each k �= n, hence ek(I1, . . . , ij , . . . , In) ∧ ck is only sat-
isfiable for k = n, and if the expression is satisfied, it follows from Lemma 1 that
en(I1, . . . , ı̄j , . . . , In) ≡ ⊥. Thus, it follows that σ = +.

• ∨: c0 = ⊥, and ck = �, for each k > 0, hence, according to Lemma 1 ∃k, k > 0:
ek(I1, . . . , ij , . . . , In) ≡ ek−1(I1, . . . , ı̄j , . . . , In) ≡ �. However, for k = 1, it holds that
e1(I1, . . . , ij , . . . , In) ∧ c1 is satisfiable and e0(I1, . . . ,¬ij , . . . , In) ∧ c0 ≡ ⊥. There-
fore, σ = +.

• ↔: ck = � if n − k is even; otherwise ck = ⊥. We obtain that if for some k, and the
appropriate truth values for the variables I1, . . . , In: ek(I1, . . . , ij , . . . , In) ∧ ck ≡ �
then ek−1(I1, . . . , ij , . . . , In) ∧ ck−1 ≡ ⊥ and vice versa. Hence, σ = ?.

• �: for each k, ck = � if odd(k); ck = ⊥ if even(k). For k being odd, ek(I1, . . . , ij , . . . ,

In) may be satisfied, but this also holds for ek(I1, . . . , ı̄j , . . . , In). From Lemma 1 it
then follows that σ = ?.

• �,⊥: here we have that fn(I1, . . . , In) = � or fn(I1, . . . , In) = ⊥ for any Ik , k =
1, . . . , n. In both cases: σ = 0. �

Next, the commutative, non-associative operators are studied. Firstly, consider the NOR
operator, and assume it to be right associative. It holds that

(I1 ↓ (I2 ↓ (I3 ↓ · · · ↓ (In−1 ↓ In) · · ·)
≡ ¬I1 ∧ (I2 ∨ (¬I3 ∧ · · · ∨ (¬In−1 ∧ ¬In) · · ·) (13)

if n is even, and

(I1 ↓ (I2 ↓ (I3 ↓ · · · ↓ (In−1 ↓ In) · · ·)
≡ ¬I1 ∧ (I2 ∨ (¬I3 ∧ · · · ∧ (In−1 ∨ In) · · ·) (14)

if n is odd. Clearly, it matters whether a variable Ij takes an odd or even argument position,
as this determines whether or not it will be negated. Table 4 gives the signs assuming the
operators to be right associative; one proof is given below.
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Table 4
Signs of qualitative influences for the commutative, non-associative op-
erators; right-associative case

Operator Sign for even Sign for odd

Last Non-last Last Non-last

↓ − + + −
| − + + −

Proposition 4. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is equal to the NOR operator ↓. Then,
S−(Cj ,E) is satisfied for j < n and odd, or j = n and even; S+(Cj ,E) holds for j < n

and even, or j = n and odd.

Proof. Consider the case that the subscript j of Ij is odd, with j < n. Then, Boolean
expressions of the form (¬I1 ∧(I2 ∨(· · ·∨(¬Ij ∧Ij+1) · · ·) have to be considered. Clearly,
¬Ij ∧ Ij+1 ≡ ⊥ for any combination of truth values of Ij and Ij+1, with the exception of
ı̄j if Ij+1 = �. Hence, S−(Cj ,E) holds.

Next, suppose that the subscript j of Ij is even, with j < n. Then, Boolean expressions
of the form (¬I1 ∧ (I2 ∨ (· · · ∧ (Ij ∨ Ij+1) · · ·) need consideration. If Ij+1 = �, then the
value of Ij does not matter, and hence de(In\Ij ) = 0. However, if Ij+1 = ⊥, we obtain
(Ij ∨ Ij+1) ≡ � only for ij . Hence, de(In\Ij ) � 0 in that case, i.e., S+(Cj ,E) holds.

Finally, if j = n then the cases considered above still apply, except that odd and even
need to be reversed. �

The left-associative case is simply obtained by determining n − j + 1 for Ij in the
left-associative Boolean expression, and looking up the sign in Table 4, where the result
for the first argument becomes the result for the last argument. This is a consequence of
commutativity.

For the Boolean operators which are associative but non-commutative, a distinction
must be made between the situation where the cause variable Cj is in the first or any other
argument position, and in the last or any other argument position. This is illustrated by the
proof below for the p1 operator.

Proposition 5. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is equal to projection to the first
argument p1. Then, S+(Cj ,E) is satisfied for j = 1, otherwise, if j �= 1, S0(Cj ,E) holds.

Proof. Let In and I ′
n be Boolean expressions corresponding to the constituents of dif-

ference (12). In general, it holds that I1 p1 In−1 = I1. Now, if j = 1, then In ≡ i1
and I ′

n ≡ ı̄1. This implies that S+(Cj ,E) holds, as Pr(e | I1, . . . , ij , . . . , In) = 1, and
Pr(e | I1, . . . , ı̄j , . . . , In) = 0, which follows from the logical analysis above.

Next, assume that j �= 1, then In = I ′
n = I1, and thus the difference (12) is always equal

to 0, i.e., S0(Cj ,E) holds. �
Finally, the results in Table 6 for the increasing order operator are proven.
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Table 5
Qualitative influences: non-commutative, associative
operators

Operator Sign

First Non-first

p1 + 0
n1 − 0

Last Non-last

p2 + 0
n2 − 0

Proposition 6. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is equal to the logical increasing or-
der operator <. Let V (G) contain n � 1 interaction variables I1, . . . , In and an effect
variable E. If assuming that the operator < is left associative, it holds that S?(Cj ,E) if
j < n, otherwise, if j = n, S+(Cj ,E) holds. Assume that the operator < is right associa-
tive, then S−(Cj ,E) holds for j < n; otherwise, for j = n, S+(Cj ,E) is satisfied.

Proof. Consider the case where < is assumed to be left associative. Recall the definition
of Ij = (· · · (I1 < I2) < · · ·) < Ij−1) < Ij ). First, we assume j < n. Clearly, if ı̄n holds,
then In ≡ ⊥. So, we only consider the case for in. Now, assume that Ij−1 ≡ �, then for
both ij and ı̄j it holds that Ij ≡ ⊥. So, there is no difference in the resulting truth values
for ij and ı̄j , and the difference (12) is therefore equal to 0. Next, consider the case that
Ij−1 ≡ ⊥. Then, we obtain: (Ij−1 < ij ) ≡ � and (Ij−1 < ı̄j ) ≡ ⊥. For ij+1, this would
yield Ij+1 ≡ ⊥ and Ij+1 ≡ �, respectively, inverting the truth values of Ij . The resulting
truth values can also be both ⊥ when taking īj+2. So, this means that the difference can
be 0, −, or +, thus S?(Cj ,E) holds for j < n. Now, assume that j = n, then only in can
satisfy the expression. Hence, S+(Cj ,E) holds.

Next, consider the case that < is right associative. Recall definition (5) of Ij = (Ij <

(Ij+1 < (· · · < (In−1 < In) · · ·). Assume that j < n. Now, (ij < Ij+1) ≡ ⊥, whereas (ı̄j <

Ij+1) is satisfiable. Hence, S−(Ck,E) holds. Next, consider the case that j = n. Then,
only in is able to satisfy I1, i.e., S+(Cj ,E) holds. �

The proofs for the other non-commutative, non-associative operators are similar; the
results are given in Table 6. Tables 3, 5 and 6 clearly indicate that it is possible to model
all possible qualitative influences among causes and effects, even if it is assumed that the
interaction function is decomposable.

We return to our example in Fig. 1. It is known that some bacteria may protect a host
against infection. Suppose that this holds for bacteria A and B , then each of these would
make the development of infection less likely, even though there could be circumstances
where these bacteria turn pathogenic. Now, let C be a bacterium with only pathogenic
strains, then the right-associative version of the implication (Table 6) would model this
situation appropriately. For the qualitative influence of penicillin or chlortetracyclin on
bacterial growth we obtain an ambiguity due to the exclusive OR. This clearly expresses
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Table 6
Qualitative influences: non-commutative, non-associative operators;
RA: right associative; LA: left associative

Operator Sign

RA LA

First Non-first First Non-first

← + ? + −
> + ? + −

Last Non-last Last Non-last

→ + − + ?
< + − + ?

that the effect of penicillin on bacterial growth as depicted in Fig. 2 is dependent on the
presence or absence of chlortetracyclin and vice versa. For the qualitative influence of
insulin hypersecretion on hypoglycaemia, as shown in Fig. 3, we obtain a positive sign
due to the decreasing order operator, whereas for glucagon hypersecretion we obtain a
negative sign. Here we take the left-associative version of the decreasing order operator >,
as this is the most specific one, and, therefore, expresses the situation when two variables
are involved. This formal representation is clearly consistent with what has been described
about the glucose metabolism above.

3.2. Analysis of additive synergies

Recall that in the case of causal independence, additive synergies describe how two
causes jointly influence the probability of the effect variable. Using definition (9) of an
additive synergy, and considering interactions between the causes Cj−1 and Cj , we obtain:

δj−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn)

= Pr(e | C1, . . . , cj−1, cj ,Cj+1, . . . ,Cn)

+ Pr(e | C1, . . . , c̄j−1, c̄j ,Cj+1, . . . ,Cn)

− Pr(e | C1, . . . , cj−1, c̄j ,Cj+1, . . . ,Cn)

− Pr(e | C1, . . . , c̄j−1, cj ,Cj+1, . . . ,Cn)

=
∑

f (I1,...,In)=e

d(Ij−1, Ij )

j−2∏
k=1

Pr(Ik | Ck)

n∏
k=j+1

Pr(Ik | Ck),

where

d(Ij−1, Ij ) = Pr(Ij−1 | cj−1)Pr(Ij | cj ) + Pr(Ij−1 | c̄j−1)Pr(Ij | c̄j )

− Pr(Ij−1 | cj−1)Pr(Ij | c̄j ) − Pr(Ij−1 | c̄j−1)Pr(Ij | cj ).

As the function f renders the variables I1, . . . , In\Ij−1, Ij dependent of the variables Ij−1
and Ij it is not possible to distribute summation over the expression.

Let Pr(ij−1 | cj−1) = p and Pr(ij | cj ) = q , then the difference d(Ij−1, Ij ) corresponds
for different values of Ij−1 and Ij , using the assumptions introduced in Section 2.2, to
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Table 7
Difference d(Ij−1, Ij ) for various values of
the variables Ij−1 and Ij

Ij−1 Ij d(Ij−1, Ij )

ij−1 ij pq

ı̄j−1 ij −pq

ij−1 ı̄j −pq

ı̄j−1 ı̄j pq

the results given in Table 7. As a consequence δj−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn) can be
simplified to obtain the following result:

δj−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn)

=
∑

I1,...,In\Ij−1,Ij

∑
Ij−1,Ij

f (I1,...,In)=e

σ (Ij−1 � Ij )pq

j−2∏
k=1

Pr(Ik | Ck)

×
n∏

k=j+1

Pr(Ik | Ck), (15)

where � represents the exclusive or, and

σ(Q) =
{−1 if Q ≡ �,

1 otherwise.

The multipliers

j−2∏
k=1

Pr(Ik | Ck)

n∏
k=j+1

Pr(Ik | Ck),

with
∏j−2

k=1 Pr(Ik | Ck)
∏n

k=j+1 Pr(Ik | Ck) � 0, will generally differ for various δj−1,j (C1,

. . . ,Cj−2,Cj+1, . . . ,Cn). The sum of terms σ(Ij−1 �Ij )pq will not; which of those terms
will actually be included in the final sum is determined by the function f .

As before, a distinction has to be made between operators that are associative and
commutative, those that are non-commutative but associative, and those that are neither
commutative nor associative. The results for the associative and commutative operators
are given in Table 8. In this case, we can simply assume that j = 2 without loss of gener-
ality, which simplifies the proofs. Again, the proof for only some of the Boolean operators
is given here.

Proposition 7. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is equal to the logical OR. Then, it
holds that Y−({Cj−1,Cj },E) for any two cause variables Cj−1,Cj and the given effect
variable E.
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Table 8
Signs of additive synergies for the
commutative, associative operators

Operator Sign

∧ +
∨ −
↔ ?
� ?
� 0
⊥ 0

Proof. If the interaction function is represented by the Boolean expression I1 ∨ I2 ∨ · · · ∨
In, then it is easily verified that∑

I1,I2
I1∨···∨In

σ (I1 � I2)pq

for given values of I3, . . . , In is either equal to −pq (= pq −2pq) or to 0 (= 2pq −2pq).
Since,

∏n
k=3 Pr(Ik | Ck) � 0, a logical OR interaction function clearly results in a negative

additive synergy. �
We next present the proof for the case that the Boolean operator is equal to the bi-

implication.

Proposition 8. Let B = (G,Pr) be a Bayesian network representing a causal independence
model with decomposable interaction function f that is equal to the logical bi-implication.
Then, it holds that Y ?({Cj−1,Cj },E) for any two cause variables Cj−1,Cj and the given
effect variable E.

Proof. Let the interaction function be represented by the Boolean expression I1 ↔ I2 ↔
·· · ↔ In ≡ I1 ↔ I2 ↔ In−2. Two general cases for which the Boolean expression is true
are distinguished. Firstly, assume that (I1 ↔ I2) ≡ � and In−2 ≡ �. It is easily verified
that then the inner sum of Eq. (15) is equal to 2pq . Secondly, assume that (I1 ↔ I2) ≡ ⊥,
and In−2 ≡ ⊥ as well. Then, the inner sum is equal to −2pq . As the used multipliers will
be different, the result is ambiguous. �

Next, the two commutative, non-associative operators are considered. Here, we only
supply a proof for the NAND | operator; the results are summarised in Table 9. Note that
it is now no longer permitted to only look at the variables I1 and I2.

Proposition 9. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the logical NAND|.
Then, it holds that Y+({Cj−1,Cj },E) for j < n and even or j = n and odd, and
Y−({Cj−1,Cj },E) holds for j < n and odd or j = n and even.
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Table 9
Signs of additive synergies for the commutative, non-associative opera-
tors; right-associative case

Operator Sign for even Sign for odd

Last Non-last Last Non-last

↓ + − − +
| − + + −

Proof. Note that we have that:

(I1 | (I2 | (I3 | · · · | (In−1 | In) · · ·) ≡ ¬I1 ∨ (I2 ∧ (¬I3 ∨ · · · ∧ (¬In−1 ∨ ¬In) · · ·)
if n is even, and

(I1 | (I2 | (I3 | · · · | (In−1 | In) · · ·) ≡ ¬I1 ∨ (I2 ∧ (¬I3 ∨ · · · ∨ (In−1 ∧ In) · · ·)
if n is odd. First, we consider j < n and even. Then, ¬Ij−1 ∨ (Ij ∧ Ij+1) ≡ ⊥ for the
combination ij−1 and ı̄j ; for the other combinations of truth values this expression is satis-
fiable. If j = n and odd, the Boolean expression In−1 ∧ In needs to be considered, and this
is only true for the combination in−1 and in. In both cases, the result is Y+({Cj−1,Cj },E).

Secondly, consider the case that j < n and odd. Then, the Boolean expression Ij−1 ∧
(¬Ij ∨ Ij+1) must be considered. This is true for ij−1 and ij , satisfiable for ij−1 and
ı̄j , and otherwise false. If j = n and even, we need to consider ¬In−1 ∨ ¬In. It holds
that ¬in−1 ∨ ¬in ≡ ⊥; otherwise, the Boolean expression is true. It is concluded that
Y−({Cj−1,Cj },E) holds in both cases. �

We next move on to consider the non-commutative, associative operators.

Proposition 10. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to projection to the
first argument. Then, it holds that Y 0({Cj−1,Cj },E) for any two cause variables Cj−1,Cj

and the given effect variable E.

Proof. It holds that the Boolean expression representation of the interaction function f is
equal to (I1 p1 I2 p1 · · · p1 In) ≡ I1. Now, if j > 2, then d(Ij−1, Ij ) will be computed
for every value of Ij−1 and Ij , and hence, the result of summing these results will be 0.
If j = 2, then Ij−1 should always be equal to ij−1, and hence the sum is only taken over
d(i1, i2) and d(i1, ı̄2), which, however, also yields 0. �

Similar results are obtained for the other non-commutative, associative operators, and
their proofs are similar. Note that, in contract to the results for the qualitative S relation,
there are no differences in results when considering either the first, last of any other pair
of causes. The reason for this is that the operators select at most one argument, and hence,
either all 4 possible Boolean combinations of Boolean values of the two interaction vari-
ables if the selected variable is not among them, or two combinations of Boolean values,
with one of them fixed, need to be considered. In both cases, there are an equal number of
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Table 10
Signs of additive synergies for the
non-commutative, associative oper-
ators

Operator Sign

p1 0
p2 0
n1 0
n2 0

products pq and −pq , which cancel out each other, resulting in a total of 0. The results
are summarised in Table 10.

Finally, the non-commutative and non-associative operators have to be considered. This
analysis is more difficult, as a distinction must be made between assuming the operators
to be right associative or left associative. We present the proof for the increasing order
operator <. The other proofs are similar.

Proposition 11. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the increasing order
operator <. Let V (G) contain n � 2 interaction variables I1, . . . , In and an effect vari-
able E. Assume that the operator is left associative, then it holds that Y+({Cj−1,Cj },E)

for j < n; for j = n it holds that Y−({Cj−1,Cj },E). Next, assume that the operator is
right associative, then it holds that Y+({Cj−1,Cj },E) for j < n; for j = n it holds that
Y−({Cj−1,Cj },E).

Proof. Firstly, consider the case that the operator < is assumed to be left associative. Re-
call definition (4) of Ij . We take Ij−1 and Ij as the interaction variables, with j < n.
Now if ı̄j holds, then Ij ≡ ⊥, and hence In is satisfiable. We conclude that we need
to take into account d(ij−1, ı̄j ) + d(ı̄j−1, ı̄j ) = 0. Next, consider the case that ij holds.
Then if ı̄j−1 holds, we have that Ij ≡ �. As In−1 must be false in order to make
In ≡ �, there must be at least one variable Ik , k > j , which falsifies In−1. Finally,
for ij−1, the expression Ij is again satisfiable. Now, as d(ij−1, ij ) = pq , we know that
δj−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn) � 0. Next, consider the case that j = n. Then In must
always be true in order In to be true. Now, if ı̄n−1 holds, we know that In ≡ �, whereas if
in−1 holds, then In is only satisfiable. Hence, it was shown that δn−1,n(C1, . . . ,Cn−2) � 0.

Secondly, consider the case that the operator < is right associative. Recall defini-
tion (5) of Ij . We first consider the case that j < n. Clearly, in order Ij to be satis-
fiable, in must holds. However, Ij ≡ ⊥ if it holds that there exists an Ik that is true
for j � k < n. Hence, only d(ı̄j−1, ı̄j ) = pq needs to be taken into account, resulting
in δj−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn) � 0. Finally, consider j = n. Here, we simply
have that only d(ı̄n−1, in) = −pq needs to be taken into account, so we conclude that
δn−1,n(C1, . . . ,Cn−2) � 0. �

The proofs for the other operators that are non-commutative and non-associative are
along similar lines. The results are summarised in Table 11.
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Table 11
Signs of additive synergies for the non-commutative, non-associative
operators; RA: right-associative; LA: left-associative

Operator Sign

RA LA

First Non-first First Non-first

← + − + −
> − + − +

Last Non-last Last Non-last

→ + − + −
< − + − +

We return to our example in Fig. 1. In the previous section, the individual effects, but
not the synergies, of the colonisation by bacteria A, B and C on the patient’s body response
were modelled. It appears that the right-associative version of implication also rightly ex-
presses that colonisation by both bacterium A and B makes development of an infection
less likely, whereas bacterium C is so pathogenic that it overrides the preventive effects
of bacteria A and B . For the interaction between penicillin and chlortetracyclin, modelled
as an exclusive OR and shown in Fig. 2, we have an ambiguous additive synergy. This
is as might be expected, as when these potential causes of decreased bacterial growth are
both present or absent, there will be no antimicrobial effect, in contrast to when only one
of these is present. For the interaction between insulin and glucagon hypersecretion, mod-
elled as the decreasing order operator > and shown in Fig. 3, we have a negative additive
synergy, as the two hormones have opposite effects on the glucose level of blood.

3.3. Analysis of product synergies

We basically use the same approach as employed in the previous section on additive
synergies for product synergies in this section. For the analysis of product synergies, the
equation of interest is:

δE
j−1,j (C1, . . . ,Cj−2,Cj+1, . . . ,Cn)

= Pr(E | C1, . . . , cj−1, cj ,Cj+1, . . . ,Cn)

× Pr(E | C1, . . . , c̄j−1, c̄j ,Cj+1, . . . ,Cn)

− Pr(E | C1, . . . , cj−1, c̄j ,Cj+1, . . . ,Cn)

× Pr(E | C1, . . . , c̄j−1, cj ,Cj+1, . . . ,Cn)

=
∑

I1,...,In\Ij−1,Ij

{
τ(cj−1, cj ;In\Ij−1, Ij ) · τ(c̄j−1, c̄j ;In\Ij−1, Ij )

− τ(cj−1, c̄j ;In\Ij−1, Ij ) · τ(c̄j−1, cj ;In\Ij−1, Ij )
}

×
j−2∏

Pr(Ik | Ck)

n∏
Pr(Ik | Ck), (16)
k=1 k=j+1
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Table 12
Signs of product synergies for the commutative and
associative operators

Operator Sign for e Sign for ē

∧ 0 −
∨ − 0
↔ ? ?
� ? ?
� 0 0
⊥ 0 0

where

τ(Cj−1,Cj ;In\Ij−1, Ij ) =
∑

Ij−1,Ij

f (I1,...,In)=E

Pr(Ij−1 | Cj−1)Pr(Ij | Cj ). (17)

The arithmetic expression between the braces in (16), consisting of additions and subtrac-
tions of products of instances of τ(Cj−1,Cj ;In\Ij−1, Ij ), is the essential element in the
analysis below; it will be denoted by β . Furthermore, we will once more use the abbrevia-
tions p = Pr(ij−1 | cj−1) and q = Pr(ij | cj ). In the following, the equation above will be
studied for all possible Boolean operator definitions of the interaction function f , which
is again assumed to be decomposable. As before for the operators which are commutative
and associative, instead of focusing the analysis on two arbitrary cause variables Cj−1 and
Cj , for simplicity’s sake, the interaction of the two equally arbitrary variables C1 and C2
is examined, i.e., we take j = 2. Again, for only some of the Boolean operators a proof is
provided.

Proposition 12. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the logical OR.
Then, it holds that X−({Cj−1,Cj }, e) for any two cause variables Cj−1,Cj given that the
effect is true; and X0({Cj−1,Cj }, ē) when the effect is assumed to be false.

Proof. Let the interaction function be represented by the Boolean expression In = I1 ∨
I2 ∨In−2. First, we consider the situation where E is true. There are two cases to consider.
Let In−2 ≡ ⊥, then β = 0−pq = −pq . For In−2 ≡ �, we get β = 1−1 = 0. So, summing
over I3, . . . , In yields

∑−pq · ∏n
k=3 Pr(Ik | Ck) � 0. We conclude that X−({C1,C2}, e)

holds.
Let us now consider the case that E is false. This implies that both I1 and I2 must be

false. We get β = (1−p)(1−q)− (1−p)(1−q) = 0; this means that δē
1,2(C3, . . . ,Cn) =

0, and thus X0({C1,C2}, ē) holds. �
For the bi-implication, the following result is obtained.

Proposition 13. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the logical bi-
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Table 13
Signs of product synergies for the commutative, non-associative operators assuming that
E = �; right-associative case

Operator Sign for e

Even Odd

Last Non-last Last Non-last

↓ 0 0 − +
| − + 0 0

Table 14
Signs of product synergies for the commutative, non-associative operators assuming that
E = ⊥; right-associative case

Operator Sign for e

Even Odd

Last Non-last Last Non-last

↓ − + 0 0
| 0 0 − +

implication. Then, it holds that X?({Cj−1,Cj }, e) for any two cause variables Cj−1,Cj

given that the effect is true; and X?({Cj−1,Cj }, ē) when the effect is assumed to be false.

Proof. Let the interaction function be represented by the Boolean expression In = I1 ↔
I2 ↔ In−2. Firstly, take E to be true. Let us assume that In−2 ≡ �, then I1 and I2 must
be both true or false. The result is then β = pq . Next, we assume that In−2 ≡ ⊥; then,
I1 must be true and I2 must be false, or I1 must be false and I2 must be true. We get:
β = [p(1 − q) + (1 − p)q] · 0 − pq = −pq . It is concluded that X?({C1,C2}, e) holds.

Assume now that E is false. For In−2 ≡ � we get that either I1 or I2 is true, but not both.
From this, as above we conclude that β = −pq . Subsequently assuming that In−2 ≡ ⊥
yields the same as above for e and In−2 ≡ �; hence, β = pq . Again, X?({C1,C2}, e) is
satisfied. �

The results for the commutative, non-associative operators ↓ and | are shown in Ta-
bles 13 and 14. Again only the right-associative case is covered in the tables, but using
commutativity, it is easy to obtain the signs for the left-associative case. Below, the proof
for the NOR operator ↓ is given.

Proposition 14. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the NOR operator
↓. Then, it holds that X0({Cj−1,Cj }, e), resp. X0({Cj−1,Cj }, ē), for any two cause vari-
ables Cj−1,Cj given that the effect is true, resp. false, with j even, resp. odd. Furthermore,
X+({Cj−1,Cj }, e), resp. X+({Cj−1,Cj }, ē), holds for j < n and odd, resp. even, whereas
X−({Cj−1,Cj }, e), resp. X−({Cj−1,Cj }, ē), holds for j = n and odd, resp. even.

Proof. Equivalences (13) and (14) are again used as a basis for the proof.
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Case I: e (E is true) holds. Let j < n and odd, then Ij−1 ∨ (¬Ij ∧ Ij+1) needs to
be considered. Firstly, suppose that Ij+1 = �, then, ı̄j−1, ij are not taken into account,
yielding β = [1 − (1 − p)q] · 1 − 1 · [1 − q] = pq � 0. Secondly, suppose that Ij+1 = ⊥,
then only ij−1, ij and ij−1, ı̄j must be considered, yielding: β = [pq +p(1 − q)] · 0 − 0 =
0. Hence, it can be concluded that X+({Cj−1,Cj }, e) holds.

Next, let j = n and odd, then In−1 ∨ In needs to be considered. Here, only ı̄j−1, ı̄j
is discarded, yielding β = [1 − (1 − p)(1 − q)] · 0 − [p][q] = −pq � 0. Hence,
X−({Cn−1,Cn}, e) holds.

For j < n and j even, the Boolean expression ¬Ij−1 ∧(Ij ∨Ij+1) needs to be analysed.
Firstly, suppose that Ij+1 = �, then only the combinations ı̄j−1, ij and ı̄j−1, ı̄j are able to
satisfy this expression. As result, we have that β = [(1 −p)q + (1 −p)(1 − q)] · 1 −[(1 −
p)] · 1 = 0. Secondly, suppose that Ij+1 = ⊥, then only ı̄j−1, i)j needs to be taken into
account. This implies that β = 0 − 0 = 0 holds. Summarised, X0({Cj−1,Cj }, e) holds.

Next, let j = n and even, then the Boolean expression that needs to be considered is
¬In−1 ∧ ¬In. Hence, only the pair ı̄n−1, ı̄n is able to satisfy this expression. It therefore
holds that β = [(1 − p)(1 − q)] · 1 − [1 − p][1 − q] = 0, i.e., X0({Cn−1,Cn}, e) holds.

Case II: ē (E is false) holds. The proofs are very similar to the ones given above, as the
same cases have to be considered, which we shall not fully repeat. If j < n is odd, then for
Ij+1 = �, only ı̄j−1, ı̄j needs to be taken into account. This yields β = [(1 − p)(1 − q)] ·
1 − [1 − p][1 − q] = 0. Secondly, suppose that Ij+1 = ⊥, then ı̄j−1, ij and ı̄j−1, ı̄j must
be considered, yielding: β = [(1 − p)q + (1 − p)(1 − q)] · 1 − [1 − p] · 1 = 0. Hence, it
can be concluded that X0({Cj−1,Cj }, e) holds.

Next, let j = n and odd, then only ı̄j−1, ı̄j are considered, yielding β = [(1 − p)(1 −
q)] · 1 − [1 − p][1 − q] = 0. Hence, X0({Cn−1,Cn}, e) holds.

For j < n and j even, let Ij+1 = �, then only the combinations ij−1, ij and ij−1, ı̄j
falsify the Boolean expression above. As result, we have that β = 0. Secondly, suppose that
Ij+1 = ⊥, then all combinations of values for Ij−1 and Ij , with the exception of ı̄j−1, ij ,
need to be taken into account. This implies that β = [1−(1−p)q] ·1−1 · [1−q] = pq � 0
holds. Summarised, X+({Cj−1,Cj }, e) holds.

Finally, let j = n and even, then all combinations of values for Ij−1 and Ij with the
exception of ı̄n−1, ı̄n need to be taken into account. It therefore holds that β = [1 − (1 −
p)(1 − q)] · 0 − [p][q] = −pq � 0, i.e., X−({Cn−1,Cn}, e) holds. �

Next, we consider the operators which are non-commutative, but associative. The results
are summarised in Table 15, and correspond to those for the additive synergies, discussed

Table 15
Signs of product synergies for the non-commutative,
associative operators

Operator Sign for both e and ē

p1 0
p2 0
n1 0
n2 0
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in the previous section. The explanation why only zero product synergies are obtained is
analogous to that for the additive synergies as well.

Finally, the operators which are neither commutative nor associative are considered.
The proof for the implication is given below. Again we make a distinction between a right-
associative and a left-associative reading of Boolean expressions.

Proposition 15. Let B = (G,Pr) be a Bayesian network representing a causal indepen-
dence model with decomposable interaction function f that is equal to the logical impli-
cation →. Let V (G) contain n � 2 interaction variables I1, . . . , In and an effect variable
E. For any two cause variables Cj−1,Cj given that the effect is true and assuming →
to be left associative, it holds that X+({Cj−1,Cj }, e) for j < 1 � n. Assuming that → is
right associative, it holds that X−({Cj−1,Cj }, e) for j < n, and X+({Cj−1,Cj }, e) for
j = n. If the effect is taken to be false, the following holds. Assuming that → is left asso-
ciative, we obtain X+({Cj−1,Cj }, ē) for j < n, and X0({Cj−1,Cj }, ē) for j = n. Finally,
assuming that → is right associative, the product synergy is equal to X0({Cj−1,Cj }, ē)
for 1 < j � n.

Proof. Case I: e (E is true) holds. Assume that the operator → is left associative. Recall
definition (4) of Ij and take j < n. If in is assumed to hold, then we have to take into
account all four Boolean combinations of Ij−1 and Ij , resulting in β = 0. Now, assume
that ı̄n holds. Suppose that Ij−2 ≡ �, then we obtain Ij ≡ ⊥ for ij−1, ı̄j , and Ij ≡ �
for the other three combinations. For Ij−2 ≡ ⊥, it holds that Ij ≡ ⊥ for ij−1, ı̄j and
ı̄j−1, ı̄j . As the truth value of Ik may change from � to ⊥ for k > j , we need to take
into account ij−1, ı̄j with β = 0, or ij−1, ı̄j and ı̄j−1, ı̄j with β = 0, or ij−1, ij and
ı̄j−1, ij with β = 0, or all four combinations with the exception of ij−1, ı̄j yielding β =
[1 − p(1 − q)] · 1 − (1 − p) · 1 = pq � 0. Hence, X+({Cj−1,Cj }, e) is satisfied. Finally,
assume that j = n. For in it holds that In ≡ �, whereas for ı̄n, we obtain In ≡ ⊥ for
in−1, whereas for ı̄n−1 the truth value depends on the truth value of In−2. The result is
equal to β = [pq + (1 − p)q + (1 − p)(1 − q)] · q − (1 − p) · 1 = pq � 0; hence again
X+({Cj−1,Cj }, e) is shown to hold.

Next, the operator → is assumed to be right associative. Recall definition (5) of Ij .
Assume that j < n − 1. Again, there are two cases to consider: Ij+1 ≡ � and Ij+1 ≡ ⊥.
For Ij+1 ≡ �, we have that β = 0, as we sum over all possible values of both Ij−1 and Ij ,
yielding β = 0. For Ij+1 ≡ ⊥, we sum over all values of Ij−1 and Ij , with the exception
of the combination ij−1 and ij (as ij−1 → (ij → ⊥) ≡ ⊥). We obtain β = (1 − pq) ·
1 − 1 · 1 = −pq � 0, and thus it can be concluded that X−({Cj−1,Cj }, e) holds. Now,
assume that j = n. If in is assumed to hold, then I1 ≡ �. Similarly, it holds that I1 ≡ � if
In−1 ≡ In ≡ �. The expression I1 can only be false for the combination in−1 and ı̄n. It is
concluded that β = [1 −p(1 − q)] · 1 − (1 −p) · 1 � 0, i.e., X+({Cj−1,Cj }, e) was shown
to hold.

Case II: ē (E is false) holds. The notational conventions as introduced above will again
be adopted. It is clearly possible to reuse most of the results obtained for case I above. First,
assume that → is left associative. Take j < n. For in, the summations over Ij−1 and Ij are
empty. Now, assume that ı̄n holds. Then we sum over the same values of the interaction
variables as for E = �. So, the results are exactly the same. Now take j = n; only ı̄n is of
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Table 16
Signs of product synergies for the non-commutative, non-associative operators assuming
that E = �; RA: right-associative; LA: left-associative

Operator Sign for e

RA LA

First Non-first First Non-first

← + + + −
> 0 + 0 0

Last Non-last Last Non-last

→ + − + +
< 0 0 0 +

Table 17
Signs of product synergies for the non-commutative, non-associative operators assuming
that E = ⊥; RA: right-associative; LA: left-associative

Operator Sign for ē

RA LA

First Non-first First Non-first

← 0 + 0 0
> 0 0 + −

Last Non-last Last Non-last

→ 0 0 0 +
< + − 0 0

interest then. For in−1, it holds that In ≡ ⊥, whereas for ı̄n−1 it holds that In is satisfiable.
Hence, we obtain β = 0. Next, assume that → is right associative. Take j < n. Then, if
Ij+1 ≡ �, it holds that I1 ≡ �, and the sums over Ij−1 and Ij are all empty. Assume now
that Ij+1 ≡ ⊥, then only the combination ı̄j−1 and ı̄j yields Ij−1 ≡ ⊥. The corresponding
β is equal to β = 0. Finally, assume that j = n. The only possibility of falsifying I1 is by
the combination ij−1 and ı̄j . This yields β = 0. �

The results of the analysis are given in Table 16 assuming that the effect is positive and
in Table 17 assuming a negative effect.

We return to the example in Fig. 1, where, as in the previous section, we assume that
logical implication provides a suitable formalisation of the interactions between the bacte-
ria involved in infection. Now, assume that there is a patient in hospital having an infectious
disease. Recall that bacteria A and B are known to be not particularly pathogenic, whereas
bacterium C is. Assuming that the patient is colonised with bacterium C makes it more
likely that the patient is colonised with A or B , as if A or B are present, then C is also
present. On the other hand, when we assume that the patient is being colonised by bac-
terium A (or B), and we use these to explain the infection in the patient, it is less likely
that the patient is colonised by the other bacteria. This is because we are dealing here with
a pathogenic strain of bacterium A (or B) causing the infection, as otherwise A or B would
not have caused the infection. This probabilistic behaviour is appropriately modelled by the
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right-associative version of implication. The causal mechanisms involved in the interaction
between bacterial growth and antimicrobial agents, as shown in Fig. 2, was modelled by
means of the exclusive OR. According to Table 12 the intercausal influences modelled by
the exclusive OR with an arbitrary number of causes are ambiguous. However, if we as-
sume that there are no other factors involved but these two antimicrobial agents, it can be
shown, along the lines of Proposition 13, that assuming that there is decreased bacterial
growth due to penicillin (chlortetracyclin) it holds that use of chlortetracyclin (penicillin)
becomes less likely (negative product synergy); assuming that there is no decrease in bac-
terial growth while using penicillin (chlortetracyclin) it holds that use of chlortetracyclin
(penicillin) becomes more likely (positive product synergy). This is consistent with our
knowledge of the underlying mechanisms as described in Section 2.1. Recall that the mod-
elling of the causal mechanisms involved in hypoglycaemia, as shown in Fig. 3, was done
by means of the decreasing order operator. Assuming that hypoglycaemia is present in
a patient forces activation of the insulin hypersecretion mechanism and inactivation of
glucagon hypersecretion mechanism. As a consequence, assumptions about insulin and
glucagon hypersecretion can no longer influence each other (zero product synergy). On the
other hand, assuming absence of hypoglycaemia in a patient with insulin hypersecretion
(glucagon hypersecretion) renders glucagon hypersecretion (insulin hypersecretion) more
likely, as in that case the two complementary mechanisms have to compensate for each
other (positive product synergy). Again we use the most specific result, which in this case
concerns the first argument for the left-associative version of the interaction as described
in Table 17. This description is again consistent with our knowledge about the underlying
physiological mechanisms as described in Section 2.1.

4. The qualitative patterns

From the results obtained in the previous section, it follows that it is possible to ex-
ploit the semantics of causal independence models using Boolean operators in developing
a Bayesian network fulfilling particular qualitative requirements. In this paper, we have
considered 26 of the most common ones. Three different qualitative relationships were
studied, with one of them, the product synergy, consisting of two relationships: one for a
positive effect e and one for a negative effect ē. For each qualitative relationship there are 4
different possible signs. As a consequence, the maximum number of different possible in-
teraction models, which we have called QC patterns, is 44 = 256. The number of patterns
that can be realised is determined by relationships between the relations S, Y and X.

Note that Sσ (Cj ,E), with σ ∈ {−,+, ?}, leaves Yσ ′
({Ci,Cj },E), i �= j , undetermined.

For example, assume that σ = + it holds that

Pr(e | C1, . . . , cj , . . . ,Cn) − Pr(e | C1, . . . , c̄j , . . . ,Cn) � 0. (18)

This implied that σ ′ can still be anything, as (18) simply says that in the expression

Pr(e | c1, c2,C3, . . . ,Cn) + Pr(e | c̄1, c̄2,C3, . . . ,Cn)

− Pr(e | c1, c̄2,C3, . . . ,Cn) − Pr(e | c̄1, c2,C3, . . . ,Cn)
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we have that

Pr(e | c1, c2,C3, . . . ,Cn) � Pr(e | c̄1, c2,C3, . . . ,Cn)

and

Pr(e | c̄1, c̄2,C3, . . . ,Cn) � Pr(e | c1, c̄2,C3, . . . ,Cn)

from which it is impossible to determine the sign σ ′. A similar property holds for the
product synergy. Hence, additive and product synergies do indeed offer something extra.

There is, however, one exception to this, as is shown in the following proposition.

Proposition 16. Let S0(Cj ,E) be the qualitative influence that is satisfied for cause vari-
able Cj and effect variable E in the Bayesian network B = (G,Pr), then it holds that
Y 0({Ci,Cj },E), X0({Ci,Cj }, e) and X0({Ci,Cj }, ē), with i �= j .

Proof. From S0(Ci,E) it follows that Pr(e | C1, . . . , cj , . . . ,Cn) = Pr(e | C1, . . . , c̄j , . . . ,

Cn). Substituting this in the definitions of the additive and product synergy yields the re-
quested result. �

There are also some other QC patterns which are identical to each other for the 26
Boolean functions considered; in summary the Tables 3–6 and 8–17 yield 18 different pat-
terns. These are the patterns that can be used in selecting an appropriate Boolean function
in Bayesian-network design.

5. Conclusions and further research

The qualitative characteristics of interactions in Bayesian-network probability tables
have been analysed and described in this paper, taking causal independence and QPNs as
a foundation. This paper builds upon results regarding causal independence obtained pre-
viously by other researchers. Heckerman et al. [13–15] have previously studied causal
independence assuming that the chosen interaction functions are well understood, and
that their expected probabilistic behaviour matches the intuition underlying this choice.
This may no longer be the case if the interactions to be modelled become more complex.
Zhang and Poole have previously proposed to use algebraic methods to formalise causal
independence [30]. However, the subject of Zhang and Poole’s work is the algorithmic
complexity of probabilistic inference—which is why they restrict to commutative and as-
sociative operators—not trying to understand the qualitative nature of causal independence.
New in the present paper is, therefore, the utilisation of QPNs in a systematic analysis of
probabilistic interactions in causal independence models, and this is seen as its main sci-
entific contribution. By determining the signs of the relations S, Y and X for a specific
interaction function f , we obtain the qualitative, causal pattern or QC pattern for the func-
tion. The theory can thus be used in the process of designing a Bayesian network, where,
dependent on the problem at hand, a particular QC pattern can be selected, and be used in
the design process and in acquiring the necessary probabilistic information.
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Not all QC patterns realisable by Boolean functions may have been identified. As dif-
ferent Boolean functions may yield identical QC patterns, it is as yet unknown whether
all possible QC patterns can be realised. This is something that requires further research.
Another important topic of future research is to find more examples from reality matching
the various QC patterns, such that the use of QC patterns can be more easily understood
and used by Bayesian-network researchers interested in developing applications.
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