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Abstract. Almost two decades after the introduction of probabilistic
expert systems, their theoretical status, practical use, and experiences
are matching those of rule-based expert systems. Since both types of
systems are in wide use, it is more than ever important to understand
their advantages and drawbacks. We describe a study in which we com-
pare rule-based systems to systems based on Bayesian networks. We
present two expert systems for diagnosis of liver disorders that served as
the inspiration and vehicle of our study and discuss problems related to
knowledge engineering using the two approaches. We finally present the
results of a simple experiment comparing the diagnostic performance of
each of the systems on a subset of their domain.

1 Introduction

Two major classes of expert systems are those based on rules, known as rule-
based expert systems, and those based on probabilistic graphical models, often
referred to as probabilistic expert systems or normative systems. Rule-based ex-
pert systems, originating from the pioneering work of Buchanan and Shortliffe
on the Mycin system [I], aim at capturing human expertise in terms of rules of
the form if condition then action. There is overwhelming psychological evidence
(e.g., [9]) that such rules are capable of modelling the human thought process.
A set of rules can capture a human expert’s relevant knowledge of a domain and
can be subsequently used to reproduce the expert’s problem solving in that do-
main. Probabilistic expert systems originate from research at the intersection of
statistics and artificial intelligence. This research focuses on the concepts of rele-
vance and probabilistic independence and has led to the development of intuitive
and efficient graphical tools for knowledge representation. A prominent tool for
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capturing expert knowledge in this approach are Bayesian networks [11], often
referred to, somewhat imprecisely, as causal networks, because of their ability to
capture causal relations. Bayesian networks, while also aim at capturing expert
knowledge, are based on the mathematical foundations of probability theory.
When used in reasoning, they apply mathematical formalism and make no claim
about reproducing the expert’s thought process.

Several authors have studied theoretical differences between rule-based ex-
pert systems and normative systems (e.g., [2I6)13]), in particular with respect to
handling uncertainty. Much less work, however, has been done on studying the
implications that choosing one approach over the other has on the knowledge
engineering effort and overall system performance. Today, theoretical develop-
ments and practical experiences with the probabilistic systems are matching
those of rule-based expert systems. Both rule-based and probabilistic systems
are in wide use and it is more than ever important to understand the advantages
and drawbacks of each of the approaches.

Our paper focuses on comparing the two approaches in the context of a chal-
lenging practical problem that we worked on independently, using both rule-
based and probabilistic approaches: diagnosis of liver disorders. Expert systems
that we have developed are of considerable size and have taken several years
to build. Hepatology, the study of diseases of the liver and biliary tract, is an
excellent domain for such comparison, as it is complex, contains both rare and
frequently occurring disorders, disorders for which both much biomedical knowl-
edge is available and which are described only in terms of symptoms and signs.

The remainder of this paper is structured as follows. Section 2] summarises
the main principles of the rule-based and probabilistic expert systems, and in-
troduces the systems on which our comparison is based. Section [ focuses on the
qualitative comparison of the two systems and, in particular, on the knowledge
engineering aspects of the two approaches. Section Ml describes the results of a
study that aimed at evaluating the diagnostic performance of the two systems.
Finally, Section [{ summarises our most important findings.

2 The Basics

The systems, HEPAR and HEPAR II (a successor of another HEPAR project!), fo-
cus on the diagnosis of liver disorders. Hepar is Greek for liver and this explains
similarity in names of the systems, which have been conceived independently.
We realize that these names may lead to confusion on the part of the reader and,
therefore, we will refer to them in this paper by HEPAR-RB and HEPAR-BN re-
spectively. HEPAR-RB is a rule-based system which was developed from 1984 to
1990 [8]. Its development was a joint work of Roelof Janssens (hepatologist, St
Elisabeth Hospital, Leidschendam, The Netherlands) and Peter Lucas; the latter
has since then also done work on probabilistic and decision-theoretic systems.
HEPAR-BN;, still under development, is a probabilistic system and it is a collab-
orative effort of Agnieszka Onisko, Marek Druzdzel and Hanna Wasyluk (hepa-
tologist, Medical Centre for Postgraduate Education, Warsaw, Poland) [I0].
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2.1 Rule-Based Expert Systems and the HEPAR-RB Project

A rule-based expert system S can be defined as a triple S = (A, ®, R), with a set
of possible conclusions A, a set of observable findings @, and a set of generalised
Horn clauses, or rules, R taking the form:

(e1 A Neph~fi Ao A fy) = dy (1)

where d € A and e;, f; € (AU @) (the subscript « of d is discussed below).
The negation sign ~ in a rule denotes a special type of closed-world assumption,
called negation by absence [7]. Negation by absence was especially designed to
accommodate the way medical doctors handle patient findings: usually only pos-
itive (present) findings are recorded, whereas only a small proportion of negative
(absent) findings are written down. A finding may only be assumed to be ab-
sent when the corresponding test has been performed. For example, ~(jaundice €
Signs) is true when an attempt has been made to observe signs in the patient, and
no jaundice was observed; formally: ((Signs # unknown) A (jaundice ¢ Signs)).

If H C Ais a set of possible diagnostic conclusions, called the hypothesis set,
and E C @ is the set of observed patient findings, then a diagnosis D is defined
as follows [5]:

D={de HRUE Fna d}

where Fna denotes logical deduction using negation by absence. Note that this
definition implies that rule-based systems of the Mycin type are deductively
incomplete. However, this incompleteness has no significant drawback. On the
contrary, it even has an advantage: it reduces the amount of information re-
quested from the user [5].

A traditionally popular way to deal with uncertainty in rule-based expert
systems has been the certainty-factor calculus as originally developed for the
(E)Mycin system by Shortliffe and Buchanan [I]. The subscript = in rule ()
expresses uncertainty with respect to d given absolute certainty of the rule’s
conditions. Although the certainty-factor calculus has attracted a fair amount
of criticism, the model is in fact related to encoding and processing uncertainty
in Bayesian networks, as was only recently shown [6].

HEPAR-RB [7] is a rule-base expert system which is structured along the
lines briefly discussed above. The system is able to differentiate among nearly 80
disorders of the liver and biliary tract. It uses a hierarchical reasoning strategy,
as illustrated in Fig.[Il The system includes 118 different variables, some of which
are multivalued. Only non-invasive tests are included; liver biopsy, for example,
is not included, as one of the aims of the development of the system was to assist
clinicians in the appropriate selection of patients who need to be submitted to
such invasive tests.

A performance evaluation has been carried out twice, using data from the
Rotterdam University Hospital (Dijkzigt Hospital) [8]. The second of these
datasets, which includes 181 patient cases after removal of patients of whom
the diagnosis was unclear, will be used in this paper as one of the datasets for a
comparative quantitative analysis of HEPAR-RB and HEPAR-BN. This dataset
will be referred to in the sequel as the DH dataset.
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Fig. 1. Diagnostic strategy in HEPAR-RB.

2.2 Probabilistic Expert Systems and the HEPAR-BN Project

A probabilistic expert system consists of a Bayesian network with a set of algo-
rithms to manipulate its incorporated probabilistic information. More formally,
a Bayesian network is defined as a pair B = (G, Pr), where G is an acyclic di-
rected graph, modelling probabilistic (in)dependencies among variables, and Pr
is a set of local conditional probability distributions, which together define a
joint probability distribution on the variables. The graphical part of a Bayesian
network normally reflects the causal structure of a problem. Fig. Blshows a sim-
plified fragment of the HEPAR-BN Bayesian network model. The network models
18 variables related to diagnosis of a small set of hepatic disorders: three risk
factors, 12 symptoms and test results, and three disorder nodes.

Given a patient’s case F, i.e., values of some of the modelled variables, such
as risk factors, symptoms, and test results, a probabilistic system derives the
posterior probability distribution over the possible disorders D: Pr(d | E), for
each d € D. This probability distribution can be directly used in diagnostic
decision support.

To give the reader an idea of the number of numerical parameters needed to
quantify a Bayesian network, let us assume for simplicity that each variable in
the model in Fig.[2is binary. The complete joint probability distribution for 18
binary variables would contain 2!7 = 131,072 independent parameters (we take
here into account that for every propositional variable z, Pr(Z) = 1 — Pr(x)).
Explicit information about independencies included in the model allows for spec-
ifying the joint probability distribution by means of a series of conditional prob-
ability distribution tables (CPTs) of individual nodes conditional on their direct
predecessors. A CPT for a binary variable with n binary predecessors requires
specification of 2" independent parameters. A popular approximation of the in-
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Fig. 2. A Bayesian network (a simplified fragment of the HEPAR-BN model).

teraction between a node and its direct predecessors in a Bayesian network is
the Noisy—OR gate [I1]. In Noisy—OR gates, each of the arcs is described by
a single number expressing the causal strength of the interaction between the
parent and the child. If there are other, unmodelled causes of a, we need one
additional number, known as the leak probability [3], denoting the cumulative
causal strength of all unmodelled causes of a. If each of the interactions in our
model is approximated by a leaky Noisy—OR. gate, only 43 numbers suffice to
specify the entire joint probability distribution. It is apparent from the above ex-
ample that Bayesian networks offer a compact representation of joint probability
distributions and are capable of practical representation of large models.

The HEPAR-BN model [10] is a causal Bayesian network involving a subset
of the domain of hepatology: 11 liver diseases (described by 9 disorder nodes),
18 risk factors, and 44 symptoms and laboratory tests results. It was designed
for gathering and processing clinical data of patients with liver disorders and,
through its diagnostic capabilities, reducing the need for liver biopsy. An inte-
gral part of the HEPAR system is its dataset, created in 1990 and thoroughly
maintained since then at the Gastroentorogical Clinic of the Institute of Food
and Feeding in Warsaw (we will refer to this dataset as the IFF dataset). The
current IFF dataset contains over 800 patient records and its size is still growing.
Each hepatological case is described by over 200 different medical findings.

3 Qualitative Comparison

There are numerous structural, qualitative differences between rule-based and
Bayesian network systems which determine the way these systems diagnose dis-
orders in patients. These differences also give rise to different methodologies for
the development of such systems. Due to space constraints, we will compare
HEPAR-RB and HEPAR-BN only with regard to multiple-disorder diagnosis and
knowledge modelling.
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3.1 Single versus Multiple Disorder Diagnosis

The single disorder assumption takes that a patient only suffers from one disorder
at the same time, i.e., disorders are assumed to be mutually exclusive. This is
often unnecessarily restrictive, as it happens fairly often that a patient suffers
from multiple disorders and a single disorder may not account for all observed
findings. This is certainly the case for liver diseases, where an initial disease
process may give rise to multiple disorders.

As diagnostic problem solving in rule-based systems is taken as logical de-
duction, the capability of producing multiple, alternative diagnostic solutions is
dependent on the freedom allowed in the syntax of rules. Multiple disorder diag-
nosis is only possible when disjunctions are allowed in the rules, i.e., when rules
are non-Horn clauses. As many rule-based systems, including HEPAR-RB, re-
strict rules to the (generalised) Horn-clause format, multiple disorder diagnoses
such as d; V (dy Ad3), the patient has either d; or both dy and d3, is not possible.
Instead, dlagnostlc conclusions have the form D = {d} k }, to be inter-
preted as: cl1 A dk This conjunction consists of diagnostic conclusions dJ
with a measure of uncertalnty z;. HEPAR-RB includes a multi-valued variable
‘diagnosis’ which can take on disorders as values. A simple type of multiple dis-
order diagnosis is therefore obtained in HEPAR-RB, as values are not assumed
to be mutually exclusive.

In the case of a Bayesian network, the single disorder diagnosis assumption
is modelled by using a single diagnostic variable D, which takes disorders as its
possible values. Due to the axiom }_ ;. p) Pr(D = d) = 1, where p(D) is the
domain of the variable D, the disorders are mutually exclusive. This was one of
the underlying assumptions of an initial version of HEPAR-BN, influenced by
the IFF dataset that was available to us that had every patient case ultimately
diagnosed with only one liver disorder.

Instead of representing all disorders by a single variable, every disorder can
also be represented by a separate variable. This allows for exploiting the mul-
tiple disorder assumption in Bayesian networks. Normally, a Bayesian network
algorithm is used to compute the posterior probability:

Pr(d| E) (2)

T10 wk

for each d € A, where A is the set of disorder variable, and F is the set of patient
findings. However, the probability of this co-occurrence is actually:

Pr(D | E) (3)

where D C A; for example D = {d;,d>}. Bayesian networks incorporate the
necessary probabilistic information to compute probability (@)). Computing the
probability distribution over all possible combinations of diseases is for a suffi-
ciently large set of diseases infeasible. Many Bayesian-network systems including
HEPAR-BN; therefore, compute the probability distributions (2], and do not at-
tempt to do full multiple disorder diagnosis.

We may conclude that although the foundations of HEPAR-RB and HEPAR-
BN are quite different, the systems implement essentially the same restricted
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type of multiple disorder diagnosis. This facilitates the comparison of the sys-
tems’ diagnostic performances.

3.2 Knowledge Modelling

Development of a rule-based expert system amounts to eliciting heuristic knowl-
edge of the type Features = Class, where ‘Features’ is a Boolean expression
involving features relevant with respect to the class, and = a classification re-
lation. For example, one of classification relations underlying one of the logical
rules in HEPAR-RB is the following:

(Chronic_disorder A Female_gender A (age > 40) A (Raynaud’s_phenomenon V
{burning_eyes, dry_mouth} C Signs) A Biliary-obstructive_type) = PBC

Development of a Bayesian network usually involves causal modelling, where
one attempts to acquire knowledge of the form Causey,...,Cause,, — Effect.
For example, in HEPAR-BN one of the underlying causal relations is:

Cirrhosis, Total_proteins_low — Ascites

For rule-based systems, the essential modelling problem is to decide which fea-
tures to include in the classification relation, and which to leave out, as this
will have a significant bearing on the quality of the system. The decision which
variables to include in a causal relation when developing a Bayesian network is
less hard, as experts are usually confident about the factors influencing another
factor. Moreover, acquiring information about the actual interaction among the
factors involved in a causal relation is dealt with separately, when acquiring prob-
abilistic information. This seems to suggest that the development of a Bayesian
network may require less time than the development of a corresponding rule-
based system. On the other hand, the developer of a rule-based system has a
more direct control over the diagnostic behaviour of the system, whereas in the
case of a Bayesian network, insight into possible changes in behaviour is mainly
obtained by examining the model’s result for test cases.

HEPAR-RB was developed over a period of four years, during regular meet-
ings with Dr. Roelof Janssens, taking a total of approximately 150 hours.
Certainty-factors were gathered by using the direct scaling method, i.e., a scale
from -100 to 100 was used, and the hepatologist was asked to indicate his belief
concerning certain statements on this scale. Subsequently, considerable time has
been invested in refining the rule base using patient data [4].

In case of the HEPAR-BN system, we elicited the structure of the model based
on medical literature and conversations with our domain expert, Dr. Hanna Wa-
syluk. We estimate that elicitation of the structure took approximately 50 hours
with the experts (in addition to Dr. Wasyluk, we verified the parts of the model
with Drs. Daniel Schwartz and John Dowling of the University of Pittsburgh).
Access to the IFF dataset allowed us to learn all the numerical parameters of
the model from data rather than eliciting them from experts.
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4 Quantitative Comparison

In this section, we compare the two systems HEPAR-RB and HEPAR-BN in
quantitative terms, using data from two different datasets mentioned earlier: the
DH dataset from Rotterdam and the IFF dataset from Warsaw.

4.1 Patient Data

As the diagnostic categories distinguished in the systems HEPAR-RB and
HEPAR-BN are different, so are the patient findings used in order to diagnose
disorders. Both the IFF and DH datasets had to be converted to make com-
parison between the systems possible, which is not a straightforward process.
First, we focused on identifying those medical findings that are common for
them. Those attributes whose values were not mutually exclusive were broken
down into several attributes. This is a simple consequence of the probabilistic
constraint that the outcomes of a random variable must be mutually exclusive.
We also assumed that missing values of attributes correspond to values absent,
which is a popular assumption in case of medical datasets [12].

We identified 46 findings that were common for both systems. Due to differ-
ent disorder mapping in both data sets, we found only two common disorders:
primary biliary cirrhosis and steatosis hepatis. Of these two, primary biliary cir-
rhosis (PBC) was the only one with a reasonable number of patient cases in both
data sets and, therefore, we focused on PBC in our experiment.

4.2 Results

The results of our experiment are presented in Tables[Il(a) through [[f). Our first
observation was that in a significant portion of the cases HEPAR-RB was not
able to reach a conclusion. If the most likely disease is the one that the system
recommends, HEPAR-BN will always make a diagnosis. To make the comparison
fair, we assumed that there is a probability threshold that has to be crossed
in order for the system to make a diagnosis with a reasonable confidence. We
would like to point out that in practice this threshold depends on the utility of
correct diagnosis and misdiagnosis (which are disease-dependent). The threshold
can be naturally introduced into a probabilistic system using decision-theoretic
methods. In our experiments, we chose a fixed threshold of 50%, which is rather
conservative towards HEPAR-BN. HEPAR-BN was not able to cross this thresh-
old in a number of cases that is comparable to HEPAR-RB.

Tables [Ml(a) and MI(b) summarise the results of both systems when tested
with the 699 IFF patients. Similarly, Tables [[{c) and [M(d) present the results
for HEPAR-RB and HEPAR-BN, respectively, for the 181 DH patients. In both
cases, the performance of HEPAR-BN was determined by cross-validation using
the leave-one-out method. Table [e) gives the results for HEPAR-BN trained on
the DH dataset and tested with the IFF dataset, whereas the results of Table[If)
were obtained the other way around. Note that the results of Table [e) are
inferior to those given in Table [I{f).
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Table 1. Comparison of diagnostic accuracy of HEPAR-RB (H-RB) and HEPAR-BN
(H-BN); PBC+ and PBC— stand for PBC present and absent, respectively; UC:
unclassified.

Results (a) and (b) for 699 IFF patients.

Patients Patients
H-RB|PBC+ (%) PBC— (%)|Total| |[H-BN|PBC+ (%) PBC— (%)|Total
PBC+ 174 (62) 15 (4)| 189| |PBC+ 263 (94) 61 (15)| 324
PBC— 11 (4) 85 (20) 96| |PBC— 13 (5) 190 (45)| 203
ucC 95 (34) 319 (76)| 414 ucC 4 (1) 168 (140)| 172
Total 280 (100) 419 (100)| 699| | Total 280 (100) 419 (100)| 699
(a) (b)
Results (c¢) and (d) for 181 DH patients.
Patients Patients
H-RB|PBC+ (%) PBC— (%)|Total| [ H-BN|PBC+ (%) PBC— (%)|Total
PBC+ 1(73.3) 1 (1) 12| |[PBC+ 12 (80) 1 (1) 13
PBC— 2 (13.3) 143 (86)| 145| |IPBC— 3 (20) 65 (39) 68
ucC 2 (13.3) 22 (13) 24 UucC 0 (0) 100 (60)| 100
Total 15 (100) 166 (100)| 181]| | Total 15 (100) 166 (100)| 181
(c) (d)
Results of HEPAR-BN for (e) 699 IFF and (f) 181 DH patients.
Patients Patients
H-BN|PBC+ (%) PBC— (%)|Total||[H-BN|PBC+ (%) PBC— (%)|Total
PBC+ 170 (60.7) 2 (2.9)] 182(|PBC+ 14 (93) 57 (34.3) 71
PBC— 9 (3.2) 76 (18.1) 85||PBC— 1 (7 71 (42.8) 72
UC 101 (36.1) 331 (79)| 432|] UC 0 (0) 38 (22.9) 38
Total 280 (100) 419 (100)| 699|| Total 15 (100) 166 (100)| 181
© ®

5 Discussion

It seems that building the models in each of the two approaches has its advan-
tages and disadvantages. One feature of the rule-based approach that we found
particularly useful is that it allows testing models by following the trace of the
system’s reasoning. A valuable property of Bayesian network-based systems is
that models can be trained on existing data sets. Exploiting available statistics
and patient data in a Bayesian network is fairly straightforward. Fine-tuning a
rule-based system to a given dataset is much more elaborate.

Rule-based systems capture heuristic knowledge from the experts and allow
for a direct construction of a classification relation, while probabilistic systems
capture causal dependencies, based on knowledge of pathophysiology, and en-
hance them with statistical relations. Hence, the modelling is more indirect,
although in domains where capturing causal knowledge is easy, the resulting
diagnostic performance may be good. Rule-based systems may be expected to
perform well for problems that cannot be modelled using causality as a guid-
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ing principle, or when a problem is too complicated to be modelled as a causal
graph.

Our experiments have confirmed that a rule-based system can have difficulty
with dealing with missing values: around 35% of the IFF patients remained un-
classified by HEPAR-RB, while in HEPAR-BN only 2% of IFF patients remained
unclassified. Note that this behaviour is due to the semantics of negation by
absence, and in fact a deliberate design choice in rule-based systems. Refraining
from classifying is better than classifying incorrectly, although it will be at the
cost, of leaving certain cases unclassified. In all cases, the true positive rate for
HEPAR-BN was higher than for HEPAR-RB, although sometimes combined with
a lower true negative rate.

Both systems were in general more accurate when dealing with their original
datasets. The reason is that the systems were using then all available data, not
only the common variables. We have noticed some indications of overfitting in
case of HEPAR-BN, visible especially in those results, where the system was
trained and tested on different data sets.
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