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A B S T R A C T

Background: Recently, mobile devices, such as smartphones, have been introduced into healthcare research to
substitute paper diaries as data-collection tools in the home environment. Such devices support collecting patient
data at different time points over a long period, resulting in clinical time-series data with high temporal com-
plexity, such as time irregularities. Analysis of such time series poses new challenges for machine-learning
techniques. The clinical context for the research discussed in this paper is home monitoring in chronic ob-
structive pulmonary disease (COPD).
Objective: The goal of the present research is to find out which properties of temporal Bayesian network models
allow to cope best with irregularly spaced multivariate clinical time-series data.
Methods: Two mainstream temporal Bayesian network models of multivariate clinical time series are studied: dy-
namic Bayesian networks, where the system is described as a snapshot at discrete time points, and continuous time
Bayesian networks, where transitions between states are modeled in continuous time. Their capability of learning
from clinical time series that vary in nature are extensively studied. In order to compare the two temporal Bayesian
network types for regularly and irregularly spaced time-series data, three typical ways of observing time-series data
were investigated: (1) regularly spaced in time with a fixed rate; (2) irregularly spaced and missing completely at
random at discrete time points; (3) irregularly spaced and missing at random at discrete time points. In addition,
similar experiments were carried out using real-world COPD patient data where observations are unevenly spaced.
Results: For regularly spaced time series, the dynamic Bayesian network models outperform the continuous time
Bayesian networks. Similarly, if the data is missing completely at random, discrete-time models outperform
continuous time models in most situations. For more realistic settings where data is not missing completely at
random, the situation is more complicated. In simulation experiments, both models perform similarly if there is
strong prior knowledge available about the missing data distribution. Otherwise, continuous time Bayesian
networks perform better. In experiments with unevenly spaced real-world data, we surprisingly found that a
dynamic Bayesian network where time is ignored performs similar to a continuous time Bayesian network.
Conclusion: The results confirm conventional wisdom that discrete-time Bayesian networks are appropriate when
learning from regularly spaced clinical time series. Similarly, we found that time series where the missingness occurs
completely at random, dynamic Bayesian networks are an appropriate choice. However, for complex clinical time-series
data that motivated this research, the continuous-time models are at least competitive and sometimes better than their
discrete-time counterparts. Furthermore, continuous-time models provide additional benefits of being able to provide
more fine-grained predictions than discrete-time models, which will be of practical relevance in clinical applications.
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1. Introduction

The aging of the population is pushing governments and health-care
organizations towards improving health-care quality, yet within the
boundaries of strict budgetary constraints. At the same time, many
governments and health-care organizations are increasingly investing
into the use of electronic health technology, often referred as eHealth,
with the expectation that it will make health-care delivery cheaper,
while offering greater control by patients (patient empowerment) [1,2].
The general trend in most parts of the world is that health-care costs are
increasing, sometimes quite steeply, and eHealth is seen as a way to
move part of the health care burden from expensive institutional or-
ganizations, such as hospitals, to the home environment, thus con-
tributing to the reduction in health-care costs.

It is now becoming clear that eHealth is shifting the health-care field
to an increasingly data-driven way of working, yielding substantial
quantities of patient data. However, the data-driven paradigm also
renders the quality of the collected data of paramount importance to
build and deploy sufficiently accurate models that support both patients
and doctors. A common means to collect data in many clinical studies
are paper diary cards [3,4]. Patients are encouraged to fill out diary
cards, thereby documenting the status of their symptoms in the form of
their responses to a questionnaire. Major drawbacks associated with
using paper diary cards, in general, are that the dates and times of paper
diary entries are often missing, due to the patient's poor compliance [5].
Therefore, the quality of the data collected from paper diaries has its
limitations.

Another drawback of using paper diaries is the lack of general-
izability. The time points of observations collected by paper diaries can
be viewed as regular random samples from the timeline with a certain
rate, also known as observation rate, e.g., once every day. However,
having a fixed observation rate restricts eHealth studies to shorter
periods and a smaller scale. It is unrealistic to expect that many patients
are willing to collect clinical data on a regular basis as part of a long-
term study. A more realistic assumption is that the regularity of re-
cording an observation by the patient will vary and may be affected by
many factors, such as whether or not the patient feels ill. This implies
that methods to handle different time-regularity patterns are greatly
needed.

Besides differences in time regularity, time irregularity is another
common phenomenon of clinical time series. In clinical trials, the pa-
tient's health status, in terms of physiological data, may be observed
only at irregularly spaced points in time. In addition, it is very unlikely
that different patients are observed at the same points in time. Most of
the current literature is based on statistical analysis of periodic snap-
shots of physiological measurements with a fixed time interval, such as
daily [6,7] or weekly [3]. In this research, we aim to learn accurate and
useful models from irregularly spaced clinical time series using tem-
poral Bayesian networks.

To provide a more concrete clinical context for this research, we pay
attention to chronic obstructive pulmonary disease (COPD) as an ap-
plication area. COPD is a progressive disease where a patient's dete-
rioration manifests itself in worsening symptoms, known as an exacer-
bation. It is of clinical interest to predict whether and when an
exacerbation event will occur for a given patient. However, an exacer-
bation can not be directly observed. It is defined either in terms of
specific worsening symptoms for consecutive days or if there is evi-
dence of a patient's hospital admission due to an exacerbation.
Unfortunately, clinicians have so far not been able to agree on a clinical
definition of an exacerbation [3,8].

Rather than focusing our research on automatically deciding on the
presence or absence of an exacerbation, using multiple definitions, we
aim at trying to understand the dynamic behavior of the symptoms of
COPD. In principle, the probability of having an exacerbation in the
future can be computed based on the presence of the relevant

worsening symptoms in the past, for example by rephrasing an ex-
acerbation as the disjunction of all possible combinations of the
symptoms for a given definition. The advantage is that we do not have
to bother about the lack of a definition of a COPD exacerbation at the
learning stage. The prediction, however, can still incorporate the dif-
ferent definitions of an exacerbation without relearning models. In that
sense, our research can be extended in several directions.

The main contribution of our work consists of two parts. One con-
tribution lies in capturing COPD symptom dynamics, which we see as
representative for many other diseases that are being monitored in the
home environment. So far it is unknown which particular method best
captures disease dynamics using data from home monitoring. The
second contribution lies in the in-depth investigation of two temporal
Bayesian network methods to model the dynamics: dynamic Bayesian
networks (DBNs), where time is assumed to be discrete, and continuous-
time Bayesian networks (CTBNs), where time is assumed to be con-
tinuous. We also believe that this study sheds some light on the prac-
tical requirements of using DBNs and CTBNs in general.

The performance of DBNs and CTBNs for modeling the dynamics of
COPD symptoms is investigated given COPD time series in three forms:

• when observations are made regularly at time points but with dif-
ferent observation rates;
• when time points of observations are unevenly spaced over time as a
consequence of two missing data mechanisms, i.e.,
(1) the probability of having variables observed at a time point is

independent from other time points where variables are ob-
served or unobserved, also known as missing completely at
random (MCAR);

(2) the probability of having variables observed at a time point is
dependent on other time points where variables are observed,
also known as missing at random (MAR). More specifically, the
values for variables in the system are missing at time t+1 if the
values at time t+1 are identical to those at time t.

In the rest of the paper, we only focus on the situation where
variables are either fully observed or completely missing at a given time
point. We investigate the performance of DBNs and CTBNs to learn from
regular and irregular COPD time series. Within CTBNs, we also study
the impact of the evidence type, i.e., point and interval evidence, on the
performance of CTBNs. In addition, we also give an analysis of the
impact of hyper-parameters on the performance of CTBNs.

To the best of our knowledge, this is also the first work where hy-
perparameters in CTBNs are taken into consideration in the modeling
process. Within DBNs, we study the performance of DBNs interpreting
time series in three ways, namely, (1) viewing time series as a sequence;
(2) imputing values at discrete time points with the Last-Observation-
Carried-Forward (LOCF) method (See Section 4.4); (3) filling in missing
values at discrete time points by Expectation Maximization (EM). Our
final aim is to gather information about potential factors that practi-
tioners of temporal Bayesian networks need to take into account to
learn a model from unevenly spaced clinical multivariate time series.

The rest of the paper is organized as follows. In the following section,
we devote ourselves to describing the related works about predicting
COPD exacerbation using machine-learning techniques and the state of
the art of continuous-time Bayesian networks. It is followed by the de-
scription of two COPD time series we used to conduct experiments. Then
we provide some theoretical background of temporal Bayesian networks
and evidence type, i.e., point and interval evidence in Section 4. The
experimental setup is described in Section 5.1, the evaluation methods,
and the implementations. Comprehensive results are given in Section 5.2,
where we compare the performance of dynamic Bayesian networks and
continuous-time Bayesian networks both for simulated time series and
for a real-world time series. Finally, we discuss our work's contribution,
limitation, and future work in Section 6.
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2. Related work

2.1. The clinical setting: COPD symptomatology

The availability of a widely accepted definition of an exacerbation
of COPD in the medical community would definitely help to facilitate
public communication and designing guidelines. Unfortunately, as said
above, such a definition is still not available [9,10,8]. There is some
work in the literature that studies the diagnostic impact of various
definitions of an exacerbation [6,3]. So far, clinicians use a variety of
clinical features to describe the COPD-related health status of a patient
[4,11]. Even for the most accepted definition of an exacerbation at this
moment, the Anthonisen criteria (AC) [12], the required major and
minor symptoms are not always available partly due to design of the
clinical study (see [6]). In [13,14], an exacerbation is defined in terms
of a patient's hospital admission, or a non-scheduled visit to the
emergency unit or to the specialists because of respiratory symptoms, or
self-treatment of the patient by antibiotics. Because of their limited
medical knowledge, patients are prone to misuse of antibiotics, i.e.,
they use antibiotics for a viral infection or a bacterial non-pulmonary
infection. Instead, work in [7] chooses the worsening of respiratory
symptoms at two consecutive days as an indicator of an exacerbation. It
is clearly easier to predict an exacerbation for the next day when an
exacerbation is currently observed than when it has not been observed.
However, it seems that the authors provide no clear distinction between
these two situations.

In the context of COPD management, a telehealth system [15] has
been described previously that supports decision making. However, its
decision support is limited to rule-based detection of abnormal values
and to simple trend analysis. In contrast, predicting a COPD exacer-
bation, i.e., when the patient's health condition gets worse, can help to
support the patient and doctor by providing an opportunity for early
intervention before it is too late. To this end, some work has focused on
the development of classifiers, e.g., using K-nearest neighbors (K-NN)
[13] and K-means clustering [14] to predict the onset of an exacerba-
tion given the patient's signs and symptoms. Nevertheless, there is still a
lack of an explicit description of the underlying dynamics of the clinical
symptoms in these models. Capturing temporal dynamics of signs and
symptoms is the main goal of [7], where time and uncertainty are also
considered for the first time. Given a limited amount of temporal
clinical data, the work chooses to use dynamic Bayesian networks to
capture the dynamics of COPD symptoms. As a consequence, the ap-
proach suffers from the need of finding the finest time interval. Usually
this is undesirable both from a modeling and inference perspective.
Thus, the models described above are unable to capture the dynamics of
symptoms [13,14], or they do not take time as a parameter [7].

We conclude that a data-driven temporal model capturing the COPD
dynamics is of clinical interest. It would not suffer from the subjective
nature of a definition of an exacerbation, and may yield much more
valuable insight into the nature of COPD in comparison to what can be
achieved by a classifier model.

2.2. Model development: temporal Bayesian networks

In the previous section, we have already mentioned the related work
by Van der Heijden et al. [7], which uses dynamic Bayesian networks
(DBNs) for the detection of exacerbations of COPD. Another way to
model the dynamics of symptoms using Bayesian networks is offered by
continuous time Bayesian networks, i.e., time is used as a continuous
parameter. The states of the symptoms satisfy a multinomial distribu-
tion, whereas the time when a transition occurs, e.g., a symptom change
from one state to another, is modeled as an exponentially distributed
parameter. Early work has demonstrated the powerful expressiveness of
CTBNs to model the dynamics of systems where variables are observed
at time points that are unevenly spaced over time [16–18]. In the
specific domain of medical applications, CTBNs have been used to

diagnose cardiogenic heart failure and have been shown to anticipate
its likely evolution [19,20]. They have also been used to construct gene
networks [21] to generate hypotheses for biological experiments [22].
Nevertheless, the current clinical applications significantly suffer from
the unavailability of temporal patient data. The quantitative component
of the CTBN model in [19], i.e. the parameters, are so far mainly eli-
cited on the basis of clinical expertise. In our work, however, CTBNs are
both applied to clinical synthetic data and real-world data.

Like standard Bayesian networks, evidence in CTBNs is also asso-
ciated with a probability to incorporate the uncertainty nature of ob-
servations [23]. In addition, evidence entails the amount of time that a
variable stays in a state. While point evidence claims that a variable
holds a value for an infinitely small amount of time Δt→0, interval
evidence states that a variable in the system can hold on a certain state
throughout an interval of time. The concept of interval evidence is
firstly introduced in [24], where it is originally called negative evi-
dence.

Another relevant extension of Bayesian networks are irregular-time
Bayesian networks [25]; they aim to increase the expressiveness of the
temporal dynamics to handle irregular time series, with variables
having a continuous state space. In the present work, however, we focus
on discrete state spaces, which are typical for CTBNs and DBNs. Acerbi
et al.[21] attempt to study the difference in performance between DBNs
and CTBNs in a specific problem in the realm of molecular biology,
where gene expressions are unevenly distributed over time. In their
work, the focus is on the reconstruction of a gene network using DBNs
and CTBNs, where solely simulated gene data are used. In addition, it
still remains unclear whether there is a difference in the performance of
CTBNs by using point and interval. Our work, however, clarifies this
difference in the practical use of CTBNs.

Algorithm 1. Generating regular time series DREG.

2.3. Data: irregular longitudinal clinical data

The temporal representation of clinical data has been extensively
investigated by researchers in Artificial Intelligence in Medicine for
more than two decades [26–29]. Most of this research deals with the
use of time in clinical reasoning, e.g., for treatment planning and de-
cision support, which is not of immediate relevance for our research.
However, the reason why there is so much research on temporal rea-
soning in medicine is due to the significance of time in medical deci-
sion-making. In the context of the current research, we are dealing with
a special kind of clinical temporal data, i.e., data that are being re-
corded by patients at home.

In many longitudinal clinical trials, patients are followed over a
period of time and are scheduled to be assessed at a prespecified visit
time after being enrolled in the study. However, patients often selec-
tively miss their visits or return at non-scheduled points in time. As a
result, the times of measurement are irregular, yielding a highly
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imbalanced time series. Some medical examples of this phenomenon
are given by studies on the incident rate of sexual maturation [30] and
by homeless people with mental illness [31].

Advances in computer technology have turned mobile devices into
efficient data collecting tools in many scientific disciplines. One ad-
vantage of a mobile, network-linked digital tool is that patients are less
likely to miss the time window of taking a measurement. However, the
novel tools also create new mechanisms for obtaining irregular time
series. One characteristic of the new mechanism is that all measured
variables are either fully observed or fully missing at a give time point.
The apparent irregularity pattern can be, in part, due to patients being
instructed to report their symptoms only when abnormal symptoms are
detected.

3. Materials

In this section, the time-series datasets used in the research are
described.

3.1. Synthetic datasets

Data of a COPD patient cohort in London, which we obtained from
the research group of Wedzicha et al. [4], were employed to generate
time series with variables observed at equally and unequally spaced
time points. The symptoms and signs in the original dataset were re-
corded by the patients on a daily basis. The methodology of the data
collection process was previously extensively discussed in [32]. The
dataset, denoted as DL (where ‘L’ stands for ‘London’), consists of time
series of thirteen COPD patients; each of them had at least one ex-
acerbation. The data contains a total of 2849 data entries with values
for the variables dyspnea (D), sputum volume (SV) and purulence (SC),
wheeze (W), cough (C), temperature (Temp), and oxygen saturation (O).
The number of observations and time difference between consecutive
observations for thirteen patients in the dataset DL are presented in
Tables 1 and 2, respectively.

To study the behavior of CTBNs and DBNs for time series {xt ∣ t ∈ T},
where xt denotes a vector of values for the variables (symptoms and
signs of COPD) at time point t, we generated time series from the da-
taset DL given an observation rate r: the time interval between two
successive observations. Ten time series were generated according to
Algorithm 1, collectively denoted as DREG, with the observation rate
ranging from 1–6 day(s) to 1–4 week(s). Concerning modeling these
variables, an earlier attempt to capture their temporal interactions was
made by Heijden et al. [7]. For illustrative purpose, a dataset DREG is
generated from the fragment given in Fig. 1a by Algorithm 1 where
r=2, consisting time series S1 and S2 given in Fig. 1b and c.

Algorithm 2. Generating irregular time series DMCAR.

Algorithm 3. Generating irregular time series DMAR.

Similarly, we investigate the capability of CTBNs and DBNs to
handle time irregularities by generating irregular time series. First, we
generated time series {xt ∣ t ∈ T}, where observations are made at dis-
crete-time points that are completely randomly and irregularly sampled
in time. Nine datasets, collectively denoted as DMCAR, were generated
by randomly removing entries with percentage of 5, 10, 30, 50, 60, 70,
80, 90, and 95 from the dataset DL, as shown in Algorithm 2. An il-
lustrative dataset DMCAR as shown in Fig. 2a is generated from the
fragment given in Fig. 1a with p=50. Second, we generated one time

Table 1
The number of observations in the dataset DL for thirteen patients.

Patient identifier
1 2 3 4 5 6 7 8 9 10 11 12 13

111 209 173 145 257 189 145 155 147 203 152 198 137

Table 2
The time difference in days between consecutive observations for each of the
thirteen patients in the database DL.

Patient identifier
1 2 3 4 5 6 7 8 9 10 11 12 13

Min 1 1 1 1 1 1 1 1 1 1 1 1 1
Mean 1 2 1 1 1 1 1 1 1 1 1 1 1
Max 22 130 1 6 3 2 14 1 25 9 2 8 25

Fig. 1. A fragment of dataset DL over ten consecutive days (a); a dataset DREG

consists of time series S1 (b) and S2 (c) generated from the fragment given in (a)
according to the Algorithm 1 where r=2. For an explanation of the meaning of the
mentioned variables: see text. The value ‘0’ stands for normal and ‘1’ for abnormal.
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series where the missingness is dependent on the observations. We re-
moved consecutive identical entries in the dataset DL (see Algorithm 3),
resulting in an irregular time series DMAR. The corresponding DMAR for
the fragment described earlier in this section is given in Fig. 2b.

3.2. ACCESS dataset

A real clinical dataset, independent of the London dataset discussed
in the previous section, was subsequently used to study the behavior of
DBNs and CTBNs on real-world irregular time-series. The dataset was
collected using the recently developed “Adaptive Computerized COPD
Exacerbation Self-management Support (ACCESS)” 2 system by Radboud
University. The data were collected over two years for 40 patients, aged

between 46 and 89 years (mean (sd): 69.5 (8.9)), from June 2015 to Feb
2017. All patients were recruited from those attending Radboud Uni-
versity Medical Centre based on their willingness to participate in a
long-term study. The patients had at least 2 self-reported exacerbations
in the previous 12 months of the time of recruitment and had no severe
co-morbidity. Inclusion criterion were: post-bronchodilator FEV1/
FVC<0.70. Diseases such as diabetes, kidney diseases, and smoking
habits were also recorded.

The ACCESS dataset, denoted as DA, consists of a total of 1138 data
entries with the same variables as in DL. The number of observations
and time difference between two consecutive observations for in-
dividual patient in DA are given in Tables 3 and 4 , respectively. As part
of the training, the patients were instructed to daily self-report using
the ACCESS system for the first two weeks. As a consequence, the ob-
servations at the beginning of the study are relatively regularly spaced
over time with a time interval of a day. Later in the study, most patients
were reluctant to comply to the registration of their health status on a
daily basis over a period of many months. To deal with this problem,
after the two-weeks initial registration, the patients were instructed to
take the initiative to make a registration of symptoms and signs when
they detected something abnormal in their symptomatology. However,
not all patients followed exactly the instruction, in particular, three
patients randomly registered their respiratory symptoms in the entire
study period. As a consequence, the time intervals between two con-
secutive observations (mean (sd): 7.4 (21.5) days) varied considerably
from patient to patient.

Algorithm 4. Generating irregular time series DL2A.

Fig. 2. Illustrative examples of generated datasets from the fragment of DL

given in Fig. 1a according to Algorithm 2, Algorithm 3 and Algorithm 4 re-
spectively: (a) DMCAR where p=50 and selected time indices S={3, 4, 6, 7,
10}; (b) DMAR; (c) DL2A with duplicated entries at time 2 and 8 removed.

Table 3
The number of observations in the dataset DA for forty patients. ‘ID’ stands for patient identifier and ‘Nob’ for the number of observations.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nob 24 13 21 47 11 17 14 13 11 15 43 217 20 27 17 42 47 7 7 10
ID 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Nob 17 22 40 23 20 18 21 4 105 25 29 25 18 19 22 31 22 20 18 16

Table 4
The time difference in days between consecutive observations for each of the forty patients in the dataset DA. ‘ID’ stands for patient identifier.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Min 1 1 2 4 1 1 1 1 1 1 4 1 1 1 1 1 1 3 1 2
Mean 5 8 7 7 1 10 1 9 1 1 9 2 1 5 13 9 7 16 7 18
Max 55 80 47 101 3 38 1 57 1 1 137 90 3 91 175 44 35 39 31 63
ID 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Min 1 1 2 4 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1
Mean 6 9 9 13 15 14 15 4 3 6 12 6 5 7 1 1 9 5 6 9
Max 66 77 95 155 199 166 285 7 15 89 65 29 52 53 2 2 81 57 89 65

2 see https://clinicaltrials.gov/ct2/∼show/NCT02553096

M. Liu et al. Artificial Intelligence In Medicine 95 (2019) 104–117

108



Given an irregular time series for a specific medical problem,
adopting an appropriate temporal technique requires a better under-
standing of the cause of the time irregularity. For the irregular time
series DA from the ACCESS study, it is reasonable to assume that the
patients did not encounter any worsening symptoms for the days when
no values were filled out for the variables. This is in accordance with
the instructions they received at the beginning of the study which stated
that symptoms only had to be recorded when something abnormal
occured. To have a better understanding of the behavior of CTBNs and
DBNs to handle such time irregularity, we generated another irregular
time series in accordance to time series DA. More specifically, we re-
moved the same amount of entries if symptoms were normal from DL in
comparison to time series DA, resulting in a time series denoted as DL2A

(‘London to ACCESS’, see Algorithm 4). An illustrative DL2A shown in
Fig. 2c is generated from the fragment given in Fig. 1a where the du-
plicated entries at time 2 and 8 are removed.

Note that variables in all synthetic and real-time series, namely, DL,
DREG, DMCAR, DMAR, DL2A, and DA, are either fully observed or fully
missing at a given time point.

4. Methods

In this section, a brief introduction to the techniques used in the
remainder of the paper is given. We cover the technical background of
Bayesian networks, their temporal variants, i.e., dynamic Bayesian
networks (DBNs) and continuous time Bayesian networks (CTBNs), the
interpretation of unevenly spaced time series using the temporal
models, and the choice of hyperparameters in CTBNs.

4.1. Bayesian networks

In this paper, upper-case letters, e.g., X, Y, denote random variables.
We denote the values of a variable by lower-case letters, e.g. x or x̄ are
short for X= true and X= false, respectively. Note that all random
variables are assumed to have a finite number of possible values.

A Bayesian network is a probabilistic graphical model which re-
presents a joint probability distribution over a set of random variables.
A Bayesian network is defined as a pair = G P( , ), where G is an
acyclic directed graph with G=(V, E), where V is a set of nodes, and
E⊆V×V a set of directed edges or arcs. The joint probability distribution
P over random variables corresponding 1-1 with the nodes of the graph
G is defined by a product of conditional probabilities of each random
variable X given its immediate parents π(X) in G, formally:

=P P X XV( ) ( ( ))X V

In the following, we do not distinguish between nodes and variables,
and give them the same name.

The standard interpretation of the graph of a Bayesian network is
that when two of its disjoint subsets of nodes U, W⊆V are connected
by a path (ignoring the direction of the edges) that contains nodes v
from a third, disjoint set Z⊆V that only are serial nodes ( v or

v ) or divergent nodes ( v ), and none of the nodes
v or its descendants in Z have two incoming arcs v , the path is
called blocked. If every path between node sets U andW is blocked by Z,
it is said that U and W are d-separated given Z [33]. D-separation im-
plies that the two corresponding variable sets of U and W are con-
ditionally independent given the variables corresponding to Z. If sets of
nodes U andW are not d-separated given Z, they are called d-connected.

Example 1. Consider the Bayesian network shown in Fig. 3, with
nodes and variables V={W, D, C, O} with meaning: W: wheeze, C:
cough, D: dyspnea, and O: oxygen saturation. According to the standard
interpretation of Bayesian networks, the graph tells us that W and D are
independent (d-separated), but they become conditionally dependent
(d-connected) when C is known. In addition, whereas C and O are d-

connected given the empty set ∅, they become d-separated given D,
because D has a divergent connection on the path between C and O.

We obtain the joint probability distribution P over the variables V
by multiplying the conditional distributions according to the structure
of the graph:

=P P C D W P W P O D P DV( ) ( , ) ( ) ( ) ( )

4.2. Temporal Bayesian networks

We use Xt to represent the instantiation of the variable X at time t, as
time becomes an additional parameter in temporal Bayesian networks,
i.e., dynamic (t is discrete) and continuous-time (t is continuous)
Bayesian networks. These are two common methods for modeling
clinical time series using probability theory. Different ways for inter-
preting time-series by these models are discussed, being an important
practical consideration for both modeling and reasoning. In particular,
in CTBNs, observations can be interpreted as point evidence or as in-
terval evidence. In the latter case, an observation is assumed to persist
within a time interval. In DBNs, we will distinguish three possible in-
terpretations of an irregularly collected time series, either by inter-
preting a time series as a sequence only, or imputing the missing values
or other values at discrete time points.

4.2.1. Dynamic Bayesian networks
A dynamic Bayesian network [34], DBN for short, is defined as a pair

( ,0 ) over variables V, where 0 is a Bayesian network over vari-
ables V0 representing the initial distribution over states, and is de-
fined as a conditional distribution for a 2-time-slice Bayesian network (2-
TBN) given by:

=+ + +P P X XV V( ) ( ( ))t t
X

t t
V

1 1 1

for every time-point t.
For any desired time span T≥0, the joint distribution over V0:T is

defined by a product of the conditional probability distributions in the
time 0 model and in the 2-TBN:

= + +P X X P X XVP( ) ( ( )) ( ( ))T
X X t T

t t
V V

0: 0 0
{0: 1}

1 10

where Xt+1 is the random variable X at time t+1. The parent set
π(Xt+1) includes variables from the same or the previous time slice. As
the equation shows, we can obtain a standard Bayesian network by
‘unrolling’ the DBN over T steps. This also clarifies that a DBN is a
homogeneous discrete-time factorized Markov chain.

Example 2. Consider a dynamic Bayesian network over variables V
with V={D, W, C} (see Fig. 4), with the time 0 model and a transition
model as shown in Fig. 4a and b, respectively. Then the joint
distribution for the DBN over time V0:T with the corresponding
Bayesian network as shown in Fig. 4c is:

=

=
+ + + + +

P P D P W P C D W

P D D P W W P C D W C

V( ) ( ) ( ) ( , )

( ) ( ) ( , , )

T

t

T
t t t t t t t t

0: 0 0 0 0 0

0

1
1 1 1 1 1

Fig. 3. A simplified COPD Bayesian network with four variables; W: Wheeze; C:
Cough; D: Dyspnea; O: Oxygen saturation.
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4.2.2. Continuous-time Bayesian networks
A continuous-time Bayesian network, CTBN for short, [35] represents

a temporal stochastic model with variables as a homogeneous con-
tinuous-time factorized Markov chain, parameterized by intensity ma-
trices. Formally, a CTBN over variables V consists of two components:
the first component is an initial distribution specified as a Bayesian
network; the second one is the continuous transition model specified as
a graph and a conditional intensity matrix (CIM) QX|π(X) for each variable
X ∈V:

=Q

q q q
q q q

q q q
X X

n

n

n n

| ( )

11 12 1

21 22 2

1 2 nn

The conditional intensity matrix describes the dependence of a variable
X on the current values of its parents π(X).

An entry qij in a conditional intensity matrix QX|π(X) models the
transition rate from state i to state j, i≠ j. Furthermore, the main di-
agonal qii, i=1, …, n, makes each row sum to zero, i.e., qii =−∑j≠iqij.
Intuitively, the reciprocal of the diagonal elements −1/qii gives the
expected time that variable X will remain in the state i, and once it
transitions, it shifts from state i to state j with probability −qij/qii.

Two Bayesian hyperparameters are used in estimating the ex-
ponential parameter qij in CTBNs from data: (1) α: an imaginary count
of the number of transitions in which a variable transits from one state
to another, and (2) τ: an imaginary count of the amount time for a given
state. Details can be found in [36].

Example 3. Suppose we want to model the dynamics of COPD symptom
cough as the variable C with two possible states, i.e., c and c̄, with an
intensity matrix QC as follows:

For example, the entry (2, 2) indicates that we expect on average a
patient will cough in half hour if we take hours as the time unit.

A full amalgamation product operator * [35] is defined over a set of
CIMs to compute the joint intensity matrix, resulting in a single con-
tinuous-time Markov process for the entire system.

Example 4. Suppose we have a CTBN with graph W→ C with CIMs:

= = =( ) ( )( )Q Q Q1 1
2 2

3 3
4 4

5 5
6 6W C w C w̄

We can compute the joint intensity matrix of variables W and C
using the amalgamation operation on their CIMs, i.e., QW and =QC W w
and =QC W w̄. The resulting joint intensity matrix is shown below:

For a homogeneous Markov process over variables V with an in-
tensity matrix QV and an initial distribution P(V0), we can compute the
distribution over the values of V at a particular time point or the joint
distribution at different time points. The joint distribution at time point
t is given by:

=P P Q tV V( ) ( )expt V0

where exp is the exponential operator that acts on a matrix.

4.3. Interpretation of unevenly-spaced time series

A time series is a set of observations {Xt = x ∣ t ∈ T}, where the ob-
servation of variable X takes the form Xt = x, with x the value at time t.
Unlike sequential data, the actual time stamp t is an important aspect of
a time series. For example, we may have a time series recording whe-
ther or not a patient coughs at discrete time points 9:00, 11:00, 11:30,
12:00 in the morning.

In the statistical literature, there is some recent work on converting
unevenly-spaced time series to equally-spaced data, or to directly
analyze and manipulate the unevenly-spaced time series without an
equally-spaced transformation (see e.g. [37,38]). In this paper, we will
consider some natural choices when employing probabilistic graphical
models for analyzing unevenly spaced clinical time series, in particular
by transformation (e.g. by imputing the last observation) or by directly
analyzing the irregular time series.

4.4. Interpretation of time series by DBNs

For discrete-time models, we consider three ways for interpreting a
time series. An unevenly-spaced time series can be directly viewed as
just a sequence, ignoring time differences between consecutive ob-
servations. Alternatively, the occurrence of a transition can be specified
at discrete time points with a fixed time interval. In this case, two
common methods are considered to handle irregular time series, as
there will be missing data at some of the discrete time-points. These
methods are (1) Expectation Maximization (EM) to learn from time
series with missing data; (2) imputing the last observation (Last
Observation Carried Forward, LOCF): values are filled in for variables at
discrete time points where there is missing data.

Example 5. Consider a time series of observations for coughing at time
points 9:00, 11:00, 11:30 and 12:00. The time series can be interpreted
as a sequence by discarding the time stamps as shown in Fig. 5a, i.e., we
assume we have complete data for this sequence of observations. If we
select a half hour as the fixed time interval, the time series then
contains a number of missing data points as shown in Fig. 5b. Using this

Fig. 4. A highly simplified DBN for COPD problem: (a) the time 0 model; (b) the 2-TBN; (3) the resulting unrolled DBN over T steps.
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data, EM can be applied to learn from this time series directly. Imputing
the last observation in the time series, which again leads to complete
data (see Fig. 5c).

4.5. Interpretation of time series by CTBNs

In continuous-time models, there are two natural choices for inter-
preting time series. An observation is interpreted as point evidence when
it only describes momentary behavior of a variable or system. For ex-
ample, a patient is observed to have a cough at a certain point of time
during the day. The counterpart of point evidence, interval evidence, on
the other hand, states that a variable stays in a state for a given period
of time. Formally, interval evidence on a right-open interval [t1, t2),
t1 < t2, can be denoted by =X xt t[ , )1 2 , asserting that X stays in state x
during the given time interval [t1, t2).

Example 6. Reconsider the time series from Example 5. The
observations can be interpreted as point evidence (see Fig. 6a) or as
interval evidence (see Fig. 6b). In the former, the interpretation states
that the patient only coughs at time point 9:00, 11:00, 11:30 and 12:00.
In the latter, however, the interpretation states that the patient keeps
coughing in the time intervals [9 : 00, 9 : 30) and [11 : 00, 11 : 30) and
does not stop in the time interval [11 : 30, 12 : 00).

4.6. Choice of hyperparameters in CTBNs

An issue that arises when learning CTBNs from clinical time series is
choosing values for the associated hyperparameters. CTBN behavior is
characterized by hyperparameters that are distinct from those of other
temporal probabilistic models; together they gives a prior estimate of
the time that a variable stays in a given state. When a time series is
sufficiently large to capture all possible transitions, in particular for
variables which change at a very slow rate, the hyperparameter τ has
little impact on the learned models. However, this appears to be a rare

situation for clinical time series. For chronic diseases, such as COPD in
our case, a change of relevant symptoms can take so much time that it
will never be observed in the limited clinical datasets that normally are
available. This shortcoming of clinical time series is, in part, due to the
difficulty of collecting data for many patients with sufficient temporal
detail during a long period of time.

While some search algorithms have been devised to optimize hy-
perparameters (see e.g. [39,40]), they often come at the expense of high
computational costs. Instead, a more cost-efficient approach can be
used to constrain the state space of hyperparameters by the utilization
of domain knowledge. In the present research, we use such an approach
to select an appropriate hyperparameter for CTBNs to model the dy-
namics of COPD symptoms. Theoretically speaking, one symptom might
have a hyperparameter configuration that differs from that of the other
ones. In the paper, however, it is assumed that all COPD symptoms have
the same configuration.

For COPD, we hypothesized that it is reasonable to assume that a
change of symptoms expressed by the hyperparameter τ (See Section
4.2.2) takes less than 100 days but no less than 0.1 day. Therefore, we
considered six possible values, i.e., τ ∈ {0.1, 1, 10, 20, 50, 100}.
Irrespective of the difference in value of the hyperparameter τ, the other
hyperparameter α is set to 1. In Fig. 7, we present the result of this
experiment where we subtract the log-likelihood from CTBNs with the
hyperparameter having the value of 10 by those having one of the other
five values. The results also show the impact of time granularity on the
subtracted log-likehood. The results suggest that there is a relatively
smaller difference in terms of log-likelihood for CTBNs using the values
between 1 and 20. The results indicate that CTBNs in general achieve
the best performance using the value of 20 for the hyperparameter τ in
the given five choices. Nevertheless, they are still outperformed by
those learned by using τ =10. Thus, in the following experiments in
which CTBNs are compared to DBNs, the hyperparameter τ is fixed to
10, both when learning CTBNs from regular and irregular clinical time
series.

5. Experiments

In this section we describe the experimental setup for learning and
evaluating temporal probabilistic models, CTBNs and DBNs, of the
evolution of COPD symptoms and signs.

5.1. Experimental settings

The purpose of the experiments is, firstly, to obtain insight into the

Fig. 5. Three DBN interpretations of clinical time series for the COPD symptom
cough at time points 9:00, 11:00, 11:30 and 12:00. (a): just as a sequence with
time stamps discarded; (b) missing data at some of the discrete time points; (c)
with imputing the last observation at some of the discrete time points with
missing data.

Fig. 6. Two CTBN interpretations of clinical time series for cough at time points
9:00, 11:00, 11:30 and 12:00. The observations are interpreted as point evi-
dence in (a) and as interval evidence in (b).

M. Liu et al. Artificial Intelligence In Medicine 95 (2019) 104–117

111



behavior of CTBNs and DBNs for synthetic data, where observations are
made at time points that are (1) equally spaced, and (2) unevenly
spaced; secondly, the model types were also studied for their capability
to handle time irregularity in a real-world situation. For this purpose,
we generated several synthetic datasets, as described in Section 3.1,
from an existing dataset that contained daily data, and consider one
real-world time-series dataset, described in Section 3.2, for which pa-
tients entered data in an irregular way.

A number of software packages and tools were used in the experi-
ments. With respect to learning DBNs, tools needed to learn from reg-
ular and irregular clinical time series were different. For the former, we
first used Banjo3 to learn a structure from regular time series DREG, and
subsequently used bnlearn4 package in R to learn its parameters. For the
latter, a choice to learn both structure and parameters using EM may
seem reasonable. However, such an approach has been shown to offer
limited capability to recover the underlying dependences between
random variables [7,41]. In this paper, we chose to predefine a unique
structure for the remaining irregular time series. We chose to learn the
structure from the regular time series DL, which ensures that differences
in performance between models are not due to a poor structure ob-
tained from using the EM algorithm. Given the learned structure, we
used BNT tools5 with the implementation of EM to learn parameters
from irregular time series, i.e., DMCAR, DMAR, DA, DL2A. Furthermore, the
R interface6 for “Continuous Time Bayesian Network Reasoning and
Learning Engine (CTBN-RLE)” was used to learn both structure and
parameters for CTBNs.

To prevent overfitting, a K-fold cross-validation procedure was used
where the data was randomly split into K partitions, with K−1 par-
titions for learning and one partition for testing. The data for testing did
not contribute to the learning of models. The number of folds K was set
to 13 (the number of patients in the London data cohort) for time-series

DREG, DMCAR, DMAR, DL2A and to 10 for the time series DA, respectively.
For each fold, the performance of DBNs and CTBNs was evaluated in
terms of log-likelihood. However, the evaluation of CTBNs with point
evidence was slightly different as the CTBN learning algorithm using
point evidence led to a significant variation in the quality of the learned
models. For this reason, we used an additional validation set to select a
good-quality CTBN model when using point evidence.

5.2. Results

In this subsection, we will investigate and discuss the performance
of DBNs and CTBNs when learned from regular and irregular time
series. More specifically, their learning performance in terms of log-
likelihood will be studied using a number of both synthetic and real-
world time-series datasets. In the following, we will use the notation
iCTBN and pCTBN for a learned CTBNs using interval and point evi-
dence, respectively, and sDBN, iDBN and emDBN for DBNs learned from
a sequence, from an imputed dataset, and using the EM algorithm, re-
spectively.

5.2.1. Results for synthetic data
Synthetic time series are valuable for obtaining an understanding of

how well CTBNs or DBNs can capture temporal knowledge when
learned from a regular or irregular time series, as it is clearly impossible
to obtain real-world time series that conform to any possible temporal
pattern. In that sense, learning DBNs and CTBNs from synthetic data
can act as a benchmark. The results were obtained by using the clinical
time series previously described in Section 3.1.

Regular data with different observation rates. Given regular time
series, we first study the impact of variations in observation rate on the
performance of both DBNs and CTBNs. We learned both the structures
and parameters from the data; the learned DBN and CTBN network
structures, with the observation rate set to one day, are shown in Fig. 8.
The results for the various models are shown in Fig. 9. A decrease in the
number of observations from the time series DREG accounts for an in-
crease in the log-likelihood if the observation rate is higher than 14

Fig. 7. Log-likelihood difference of CTBNs with interval evidence
between a value of τ =10 and other values of τ ∈ {0.1, 1, 20, 50,
100} for various time granularities (1–7 days and 2–4 weeks). A
higher positive value in log-likelihood indicates a performance for
a CTBN with a value for τ ≠10 that is worse in comparison that
that for τ =10.

3 https://users.cs.duke.edu/∼amink/software/banjo
4 http://www.bnlearn.com
5 https://www.cs.utah.edu/∼tch/notes/matlab/bnt/docs/bnt_pre_sf.html
6 http://rlair.cs.ucr.edu/ctbnrle/Rinterface

M. Liu et al. Artificial Intelligence In Medicine 95 (2019) 104–117

112



days. Overall, it is not surprising that the results show a declining
performance for both DBNs and CTBNs when the observation rate in-
creases. Irrespective of the observation rate, the results also show that
DBNs have a higher performance than CTBNs in terms of log-likelihood,
although the differences do not always reach statistical significance (see
Fig. 9b).

Observations made completely at random. Given irregular time
series with observations made completely at random in time, we study
the impact of the data removal on the performance of DBNs and CTBNs.
The log-likelihood of these models learned from a number of time series
with a wide range of data removals is summarized in Fig. 10. Data
removal is represented by a given percentage of removal of entries from
the regular time series DL.

Overall, the results suggest a positive correlation between the per-
formance of DBNs and CTBNs with the data removal. When we take a
closer look, the results indicate that it is significantly more difficult for
emDBNs to capture the underlying dynamics when more than half of
the entries are removed from DL (see the p-value for emDBNs in
Fig. 10b). In particular, when 60% of the entries are removed, the drop
in the performance of emDBNs also indicates that it is most likely that
the EM search does not reach a global optimum. In addition, DBNs
using the imputation method have a significantly higher performance
than CTBNs for the most of the removal percentages, irrespective of the
evidence type.

When studying the behavior of DBNs alone, we also find significant
differences of the performance of DBNs using the three distinct ways of
interpreting time series. In particular, we find that the performance of
DBNs using the EM algorithm declines at an increasing speed, while the
performance of the other two DBNs declines relatively slowly. In DBNs,
a consistent higher performance is also achieved by exploiting the im-
putation technique rather than simply discarding time stamps in irre-
gular time series, although the difference is statistically insignificant
based on the results on our synthetic datasets.

Now we switch our attention to the behavior of CTBNs. The results

Fig. 8. Learned structures of a DBN and a CTBN from the London dataset with
seven variables: O) Oxygen saturation; SC) sputum purulence; W) Wheeze; D)
Dyspnea; C) Cough; SV) sputum volume; Temp) temperature. (a): A DBN; (b): A
CTBN, where the value of hyperparameter τ is set to 20. Solid arcs indicate
atemporal dependence and dashed arcs temporal dependence.

Fig. 9. Performance of CTBNs and DBNs for regular time series DREG where observations are made at different rates. (a) log-likelihood of CTBNs and DBNs; (b) p-
values based on the paired t-test with bold text indicating a higher log-likelihood and with underline indicating a significant difference.
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indicate that the learned CTBNs using interval evidence are better at
capturing the underlying dynamics than these learned using point
evidence, while the difference is not statistically significant.

Observations made at random. For irregular time series where
observations are made at random in time, the performance of DBNs and
CTBNs learned from the reduced irregular time series DMAR is shown in
Fig. 11. Unlike the previous two cases, the results from time series DMAR

are presented at the patient level. In general, the iDBNs learned by
filling in missing values at discrete time points and CTBNs learned using
interval evidence perform best. For the other two DBNs, however, the

CTBNs with point evidence perform significantly better. When the focus
is on the performance of iDBNs, the performance of these models ap-
pear to be rather vulnerable to the reduction of non-transition entries,
i.e., when there is no transition between two consecutive entries. This is
illustrated by their significantly worse performance on the time series
DMAR than on the time series DREG with the observation rate set to one
day. Moving to the performance at patient level, we also find that the
performance of modeling individual patient using all the temporal
models is similar, whereas the log-likelihood is much lower when
evaluating on patient with index 5 and 12.

Fig. 10. Performance of CTBNs and DBNs for irregular time series DMCAR where observations are made completely at random in time. (a) log-likelihood of CTBNs and
DBNs; (b) p-values based on the paired t-test with bold text indicating a higher overall log-likelihood and with underline indicating a significant difference.
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5.2.2. Results for the ACCESS dataset
Next, we investigate the performance of DBNs and CTBNs on the

real-world irregular clinical time-series DA; the results are summarized
in Fig. 12. In general, the results show that sDBNs and pCTBNs have the
best performance. By contrast, learning sDBNs performs poorly on the
irregular time series DMAR, as shown in Fig. 11. The difference can be
explained by noting that the time series DA differs from the time series
DMAR mainly in the number of non-transition entries. More specifically,
the number of non-transitions in DMAR is zero since it is generated by
removing all the transitions from the time series DL.

To further validate that the difference in the number of non-tran-
sitions may be the explanation for the better performance of sDBNS on
the time series DMAR, we considered its performance on the irregular
time series DL2A. Indeed, we do see an improved performance of sDBNs
with an increasing number of non-transition entries in the time series
DL2A (see the increased log-likelihood of sDBNs in Fig. 13).

Therefore, the results from the two irregular time series DL2A and DA

suggest that treating irregular time series as a sequence by leaving out
time stamps may be sufficient to capture the transition probabilities of
COPD symptoms. However, the pCTBNs provide a competitive and at-
tractive alternative to these simple DBN models.

5.3. Discussion

Regular data with different observation rates. Given a regular time
series, the performance of DBNs and CTBNs deteriorates when the
number of transitions in the time series DREG decreases. The time series
DREG were generated from the time series DL by removing all transitions

that occur within the amount time of a given observation rate. With
fewer transitions, the task of learning DBNs becomes more difficult, and
restoring the underlying transition probabilities degradates. In addi-
tion, it negatively affects the performance of CTBNs using interval
evidence, as long time intervals can overestimate the length that a
symptom stays in a particular state.

Conversely, increasing the observation rate can be expected to have
a less negative impact on learning CTBNs with point evidence, thanks to

Fig. 11. Performance of CTBNs and DBNs for irregular time series DMAR where
observations are made at random in time. (a) log-likelihood of CTBNs and
DBNs; (b) p-values based on paired t-test with bold text indicating a higher
overall log-likelihood and with underline indicating a significant difference.

Fig. 12. Performance of CTBNs and DBNs for a real-world irregular time series
DA. (a) log-likelihood of CTBNs and DBNs; (b) p-values based on the paired t-test
with bold text indicating a higher overall log-likelihood and with underline
indicating a significant difference.

Fig. 13. Performance of DBNs and CTBNs on a synthetic time series DL2A, de-
rived from DL based on DA.
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the presence of intact information at discrete time points in the time
series DREG. This is confirmed by the results as shown in Fig. 9b: the
underlined numbers indicate that CTBNs with point evidence can
achieve a significantly higher performance than interval evidence given
a sufficiently high observation rate.

The performance difference between DBNs and CTBNs may be due
to the ability of DBNs to represent atemporal dependence relative to a
given observation rate. In particular, an atemporal dependence can be
exploited by DBNs to represent correlations between symptoms that are
not evolving over a long time span. For example, in the context of
COPD, symptoms may influence each other within days. For a regular
time series with larger time granularity (e.g. a week), the correlations
within a week can not be captured by temporal dependences. Given
that CTBNs do not contain atemporal dependences, we speculate that
CTBNs using interval evidence may suffer most from this limitation in
expressiveness for regular time series with a large time granularity.

Observations made completely at random. The iDBNs gain their
advantage over sDBNs and emDBNs by imputing correctly most values
of the symptoms at discrete time points. Discarding time stamps, sDBNs
may suffer more from removing entries from the time series DL, which
results in a different probability distribution in the time series DMCAR.

The lower performance of CTBNs with point evidence compared to
interval evidence indicates that they may be more vulnerable to in-
formation loss than their counterpart with interval evidence. More
specifically, the decrease in the number of observations in a time series
can significantly increase the learning search space for CTBNs with
point evidence. In contrast, this decrease has a less negative impact on
CTBNs with interval evidence. This may attributed to a better approx-
imation of the duration of the presence and absence of a symptom using
interval evidence.

Observations made at random. The much lower log-likehood for
patient 5 and 12 is partly because there are significant more observa-
tions for these patients in comparison to the others. More observations
implies a higher log-likelihood. Moreover, patient 12 also differs from
the other patients by experiencing a fever and having more often an
abnormal level of oxygen saturation. Such a variance may not be cap-
tured by a model that was also learned from data of the other patients,
leading to a model that fitting less well. Combined with the small study
patient population, the results also indicate that there is a need for the
development of personalized clinical models, which can be flexibly
adapted to each individual patient's behavior.

6. Conclusion

The main motivation for this research was the wish to provide an
alternative to the medically common way of managing symptom wor-
sening of a chronic disease in terms of the static occurrence of particular
symptoms. As an example we used COPD, a very worldwide common
chronic disease that is increasingly managed in the home environment
through eHealth technology [6,2]. Methods to capture symptom dy-
namics with their associated uncertainty were seen as a way to make
progress here. However, as we discussed, there are significant chal-
lenges with respect to learning from clinical data that is collected in a
home environment. In order to gain more insight into the most ap-
propriate modeling technique for clinical time series with observations
that are unevenly spaced over time, we have studied the performance of
dynamic Bayesian networks and continuous-time Bayesian networks on
both synthetic and real-world datasets with the final goal to build a
predictive model for COPD. For simple cases, such as regularly-spaced
time series, discrete-time Bayesian-network models are appropriate, as
one might expect. However, for complex clinical time-series data that
motivated this research, the continuous-time models are at least com-
petitive and sometimes better than their discrete-time counterparts.
Given that CTBNs also provide more fine-grained predictions over time,
they are an attractive alternative to discrete time probabilistic models.

Besides this general conclusion, we also studied the usage of DBNs

and CTBNs in more detail. Firstly, we have studied different manners to
interpret data with temporal Bayesian networks. We showed that the
evidence type has a significant impact on the results in different si-
tuations. Secondly, we have considered the impact of the hyperpara-
meters (i.e. imaginary counts) in CTBNs. To the best of our knowledge,
we are the first to explore the impact of hyperparameters on the learned
models, which again has a significant impact on the results that one can
obtain with CTBNs.

Our work also has some limitations. First, we only investigate one
possible missingness case where variables are either all missing or all
observed at each time point. If some random variables are missing and
some others are observed at particular points in time, then this would
create an additional complexity for learning and reasoning with tem-
poral Bayesian networks.

Besides other types of missing data, we believe that there are a
number of other interesting questions to investigate in the future. First
of all, choosing the length of the interval when using interval evidence
could have a significant impact on the results, as a larger interval
provides a stronger bias. While in this paper we have chosen a fairly
arbitrary interval determined by the time granularity of the data, it
might be more sensible to assist the learning process with domain
knowledge about the maximum length of the interval, e.g. a week.
Second, it is an intriguing but challenging task to provide theoretical
evidence to support the superiority of one method over the other under
certain missingness conditions. Third, inspired by data with different
time granularities, there is still some room to study the difference be-
tween short-term and long-term dynamics for COPD symptoms. Models
with multiple time scales, such as provided by continuous-time models,
can provide information about the evolution of symptoms from a dif-
ferent perspective. For the final purpose of COPD prediction, this is one
of the attractive aspects of CTBNs compared to discrete-time models
with a single time granularity.

To conclude, in this paper, the capability of DBNs and CTBNs to
handle time series data was studied with a specific medical problem in
mind, i.e., COPD patient management. However, the principles con-
cerning their use in practice also apply to other real-world problems
where multivariate time series are involved. For example, having an
appropriate interpretation of time series is crucial for choosing between
DBNs and CTBNs for a given problem. In particular for irregular time-
series data it will be advantageous to use CTBNs as learning methods. In
the medical domain, it will be of clinical interest to have a more fine-
grained prediction for the evolution of a disease. In that case, CTBNs are
a powerful modeling tool to deal with such predictions. In addition, it is
better to use domain knowledge to choose between point and interval
evidence where CTBNs are employed. The domain knowledge regarding
the time that a variable stays in a state at most can assist the model
learning process.
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