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Objectives:  To obtain  a balanced  view  on the role  and  place  of expert  knowledge  and  learning  methods
in building  Bayesian  networks  for medical  image  interpretation.
Methods  and  materials:  The  interpretation  of  mammograms  was selected  as  the  example  medical  image
interpretation  problem.  Medical  image  interpretation  has  its  own  common  standards  and  procedures.
The  impact  of these  on two  complementary  methods  for Bayesian  network  construction  was  explored.
Firstly,  methods  for  the  discretisation  of  continuous  features  were  investigated,  yielding  multinomial
distributions  that  were  compared  to  the  original  Gaussian  probabilistic  parameters  of  the network.  Sec-
ondly, the  structure  of a manually  constructed  Bayesian  network  was  tested  by  structure  learning  from
image  data. The  image  data  used  for the research  came  from  screening  mammographic  examinations  of
795  patients,  of  whom  344  were  cancerous.
Results:  The  experimental  results  show  that  there  is  an  interesting  interplay  of  machine  learning  results
and  background  knowledge  in medical  image  interpretation.  Networks  with  discretised  data  lead  to  better
classification  performance  (increase  in  the  detected  cancers  of  up  to  11.7%),  easier  interpretation,  and  a
better fit  to  the  data  in comparison  to  the  expert-based  Bayesian  network  with  Gaussian  probabilistic
parameters.  Gaussian  probability  distributions  are  often  used  in  medical  image  interpretation  because
of the  continuous  nature  of  many  of  the  image  features.  The  structures  learnt  supported  many  of the
expert-originated  relationships  but also  revealed  some  novel  relationships  between  the  mammographic
features.  Using  discretised  features  and  performing  structure  learning  on  the  mammographic  data  has

further  improved  the  cancer  detection  performance  of  up to  17%  compared  to  the  manually  constructed
Bayesian  network  model.
Conclusion:  Finding  the  right  balance  between  expert  knowledge  and  data-derived  knowledge,  both  at
the  level  of network  structure  and  parameters,  is  key  to  using  Bayesian  networks  for medical  image
interpretation.  A  balanced  approach  to building  Bayesian  networks  for  image  interpretation  yields  more

able  B
accurate  and  understand

. Introduction

Bayesian networks have become the state-of-the-art for the rep-
esentation of and reasoning with uncertain knowledge of a clinical
roblem. They have a sound statistical basis, yet allow exploiting
vailable background knowledge in a way superior to many other

ormalisms for statistical machine learning. Even when no data
t all are available, it is often still possible to develop a Bayesian
etwork, guided by a mixture of expert knowledge and information
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from literature. If data are available, one can also learn the network
structure and parameters from data. As this holds for any medi-
cal domain, it also holds for medical imaging. However, medical
imaging has its own characteristics: methods are applied, ranging
from image segmentation via region detection to lesion determina-
tion, as part of the image processing pipeline. At the very end of this
pipeline we  find image interpretation; methods for image interpre-
tation are, thus, clearly dependent on the previous processing steps.
Some of the characteristics of the image processing steps, such as
that image features are continuous, have particular implications for
image interpretation that has a foundation in medical knowledge of

the structure—histology and anatomy—and function—physiology.
As in the end, medical images need to tell something about the
patient, medical knowledge offers a natural start for computer-
aided detection. However, exploiting explicit representations of
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http://www.elsevier.com/locate/aiim
mailto:marinav@cs.ru.nl
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edical knowledge into medical image interpretation has so far
et  with significant challenges.
These challenges bring us back to the relationship between man-

al construction and learning from data of Bayesian network, a
opic discussed repeatedly in the past, without giving rise to sci-
ntific consensus. New in this paper is that we address this issue
rom the point of view of image interpretation. We  critically exam
he assumptions made in the expert-knowledge-guided develop-

ent of a Bayesian network for medical image interpretation by
he use of image data. Both the assumptions made in choosing the
robabilistic parameters and in designing the graphical structure
re studied.

The research was carried out in a concrete clinical setting: the
nterpretation of breast-cancer screening mammograms. Breast-
ancer detection is a hard medical image interpretation task. With
he digitisation of medical images in the last decade, there has
een considerable progress in computer-aided interpretation of
ammograms where most of the improvement have come from

he development of new pattern-recognition techniques to bet-
er detect potentially suspicious breast regions. However, existing
ystems still exhibit limitations in attaining the required clinical
ccuracy, i.e. with respect to presence or absence of cancer in the
atient. The major reason for this is their failure to explicitly rep-
esent the working principles and knowledge of human experts;
xpert radiologists normally compare image parts and different
mages of the breasts to each other, i.e. they interpret potentially
uspicious regions of the breasts in the context of all other available
mage information. It is only recently that researchers have started
o study ways to incorporate such principles into computer-aided
etection (CAD) systems [1,2].

As part of the research we constructed a Bayesian network that
ncorporated the most important image features and their relation-
hips as used by radiologists to interpret mammograms. Thus, the
esulting Bayesian network can be looked upon as a knowledge
epresentation of mammogram interpretation in terms of breast
issue architecture and signs of abnormality. As image features are
ontinuous variables, we used Gaussian distribution to model their
ncertainty.

In a well-cited paper by Pradhan et al., published in 1996, it
as experimentally established that the network structure is the

ingle most important factor determining the Bayesian network’s
erformance [3].  In time, this insight has become general wisdom
nderlying much of Bayesian network modelling. The results of
his paper were in particular compelling as they were based on
n extensive study of a variety of large, real-world networks. In our
aper, we challenge the conclusions from the paper by Pradhan
t al. and aim at offering a more balanced view on this important
roblem. It is also the right time to reexamine this problem, as
onsiderable progress has been made in Bayesian network tech-
ology since 1996. Other recent research [4] also suggests that the
roblem of the sensitivity of Bayesian networks to imprecision in
heir parameters is domain-dependent and requires more careful
nvestigation.

We emphasise that the problem of medical image interpreta-
ion we tackle in this paper is particularly challenging as the input
o the network is based on image features automatically extracted
y a CAD system through image processing, which in itself is a com-
lex task and ongoing research. Even though the continuous nature
f the features obtained in this way is understandable from a phys-
cal point of view, their relationships to the clinical abnormalities
etected in the image are not straightforward from the radiologist’s
oint of view. In contrast, the features provided by radiologists

fter visual inspection and interpretation are discrete; they have

 specific semantics, although prone to subjective variation [5,6].
urthermore, the manual network contained two features obtained
rom the CAD system’s output, that are assumed to have direct
e in Medicine 57 (2013) 73–86

causal relationships with the variable that indicates whether or
not an abnormality is present. Again, the inclusion of such vari-
ables is novel in comparison to available benchmark datasets for
breast cancer and their relationships have not been studied before.

Hence, the novelty of our research lies in the thorough investi-
gation of both the quantitative part (probability distribution) and
the qualitative part (structure) of the manual network to obtain
insight into the appropriateness of the assumptions made in devel-
oping a Bayesian network for a highly complex task: medical image
interpretation. The selected task of mammogram interpretation is
sufficiently similar to other complex medical image interpretation
tasks to act as an example problem for the research. As breast can-
cer is a major disorder that is associated with enormous research
efforts, techniques for the automated detection of breast cancer
reflect the state of the arts of the field of CAD.

In this study in particular, we build upon our results from the
work presented in [7],  where we discretised the continuous mam-
mographic features automatically extracted from the CAD system
to check whether the probabilistic parameters in the initial expert
network were optimal and correctly reflecting reality. It was  shown
that the parameters play an essential role in the network’s per-
formance. Therefore, after preliminary investigations [8],  in the
current study we  provide an extensive and thorough investigation
of learning Bayesian network structures, both restricted and unres-
tricted, from the discretised image data to gain detailed insight into
the feature dependencies and independencies assumed in the man-
ual model. The performance of the learned networks is compared
with that of the manual network in terms of classification accuracy
and knowledge representation.

The structure of the paper is as follows. We  start with a review
of the theory of Bayesian networks and related work in the areas of
discretisation and structure learning in Section 2. Next, in Section 3,
some background is provided on mammogram interpretation, the
Bayesian network for mammogram interpretation that was devel-
oped by hand is presented, and we  describe the data used for the
experimental part in the research. Our previous work that examines
the assumptions about the probabilistic parameters of the Bayesian
network is shortly summarised in Section 4. This is done to provide
the reader with a good understanding of the choices made about
the discretisation of the data used for the research study on struc-
ture learning presented in Section 5. Finally, in Section 6 we  return
to the questions from which the research started and summarise
what has been achieved.

2. Background

2.1. Bayesian networks

A Bayesian network (BN) is defined as a pair B = (G, P), where G
is a directed acyclic graph (DAG) G = (V, E) and P is a joint proba-
bility distribution of the random variables XV [9–11]. There exists a
1-1 correspondence between the nodes v ∈ V and the random vari-
ables Xv ∈ XV ; the (directed) edges, or arcs, E ⊆ (V × V) correspond to
direct causal relationships between the variables: a node is a parent
of a child, if there is an arc from the former to the latter. We  say that
G is an I-map of P if any independence represented in G, denoted

by , with A, B, C ⊆ V mutually disjoint sets of nodes,
is satisfied by P, i.e.

where A, B and C are sets of nodes of the DAG G and XA, XB and

XC are the corresponding sets of random variables, indexed by A, B
and C. The acyclic directed graphical part of a Bayesian network G is
by definition an I-map of the associated joint probability distribu-
tion P. A Bayesian network B offers a compact representation of the
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oint probability distribution P in terms of local conditional probabil-
ty distributions (CPDs) or conditional probability tables (CPTs), if the
ata are discrete, by taking into account the conditional indepen-
ence information represented by the DAG. In these terms, a useful
oncept is the so-called Markov blanket of a node v ∈ V , consisting
f its parents, children, and the children’s parents. It can be proven
hat a node v is conditionally independent of all other nodes given
ts Markov blanket, which implies that this is the only knowledge
eeded to predict the behaviour of that node [9].

The structure and parameters of a BN can be determined manu-
lly using expert knowledge or learnt automatically from a dataset.
ybrid approaches are also common practice, as done in the cur-

ent study, aiming to combine the knowledge acquired from human
xperience, on the one hand, and from the factual quantitative
nformation, on the other hand. We  next briefly discuss the fields of
iscretisation and structure learning methods, and review related
tudies of such methods for biomedical problems.

.2. Discretisation

Discretisation of data has been studied for more than 20 years
s one of the major preprocessing steps in data analysis. Its goal
omprises the transformation of continuous variables into a finite
umber of discrete values, or ranges, to facilitate: (i) the improve-
ent in classification performance, (ii) the induction process of a

lassifier, or (iii) the interpretability of the models learnt. In the
ontext of Bayesian networks, automatic discretisation is used as
ethod to reexamine the probabilistic parameters.
Two simple and often applied methods for discretisation are

qual frequency binning and equal width binning,  which determine
he bin boundaries by first sorting the data on ascending values and
ubsequently divides the sorted data in n equally sized or ranged
ins, respectively. Both methods are unsupervised as they do not
se class information.

A well-known supervised discretisation technique is the
ethod of Fayyad and Irani [12], which uses the class entropy to

acilitate the induction of better decision trees. This method selects
 bin boundary based on the minimisation of the class information
ntropy. The class entropy of a (sub)set S is defined as

nt(S) = −
k∑

i=1

P(Ci, S) log P(Ci, S),

here P(Ci, S) represents the proportion of instances in S with class
i and k stands for the number of classes. For each candidate cut
oint T of an attribute A, a weighted average is calculated of the
ntropy of the two subsets S1 and S2 created by the cut point:

(A, T; S) = |S1|
|S| Ent(S1) + |S2|

|S| Ent(S2),

here | · | represents the cardinality of a set. The candidate cut point
or which this function is minimal is selected. This process can be
epeated on the subclasses to create multiple bins, but the minimal
escription length criterion is used as a stopping criterion to avoid
nding up with too many bins.

In [13] the authors investigated the reduction of the variance
ntroduced by various discretisation techniques for decision tree
nduction. The results demonstrated that this reduction facilitates
he interpretability and stability of the models learnt. In [14], a cat-
gorisation of 8 types of discretisation methods is provided such as
upervised vs. unsupervised, parametric vs. non-parametric, global
s. local. In the same study, the authors propose a novel discretisa-

ion method based on the so-called wrapper approach where the
ccuracy of a naïve Bayes classifier is taken into account in the dis-
retisation process in order to guide the search for the best ranges
f all variables to improve the classification accuracy.
e in Medicine 57 (2013) 73–86 75

Comparative studies of various discretisation techniques on the
performance of naïve Bayes classifiers are provided in [15–17],
showing improvement in the results compared to the continu-
ous baseline. In addition, in [18] the effectiveness of a number of
discretisation methods is evaluated to provide a heuristic for the
selection of the best discretisation method.

2.3. Structure learning

While the probabilistic parameters are one side of the coin, the
independence relationships expressed by the graphical structure
are clearly the other side. We  will not review all work on structure
learning but restrict ourselves to the basics; for a general overview,
the reader is referred to the standard textbooks [9–11]. Structure
learning is an optimisation problem that aims at finding the best
graph representing the conditional independence relationships in
the data. Use of exhaustive search for the optimal graph is, however,
infeasible for most problems due to the explosive number of graphs
for datasets with 5 or more variables [19]. More common is the use
of greedy search, which searches the space of DAGs, or the space of
Markov equivalent classes of structures, i.e. structures that encode
the same conditional independence assumptions, called essential
graphs (EG) [20]. The latter implies greedy search in EG space.

There are three main types of methods used for solving this
problem: (i) constrained-based,  where conditional independence
tests are applied to determine relationship constraints, (ii) score-
and-search, where a score is used to judge the fitness of the model,
and a search method allows exploring the search space of acyclic
directed graphs, and (iii) hybrid,  which are a combination of the
previous two. Markov blanket discovery of a variable is another
typical problem, which aims to identify the minimal set of features
that is needed for feature selection pre-processing or classification
tasks; a number of efficient algorithms have been recently pro-
posed in the literature [21–23].  The score measure always includes
some measure of the likelihood of the data given the graph and
its probabilistic parameters, Pr(D|G, P), where D are the data and
the probabilistic parameters P are fixed. If only the fitness of the
graph with respect to the data is investigated, the marginalised
likelihood, Pr(D|G), is used. Here the parameters P are marginalised
out. In addition, the score measures typically include the possi-
bility to include a prior on the structure, Pr(G), and a penalty for
unwanted complexity of graph structure. The score measure used in
this research is the Bayesian Dirichlet equivalent (BDe) score, which
is applicable only to discrete data [24]. This measure takes Markov
equivalence into account.

2.4. Related work on discretisation and structure learning for
biomedical problems

Quite a number of previous studies have been carried out that
focussed on structure learning of BNs, discretisation of data, or
both for biomedical problems. In [25] the authors proposed a
search-and-score approach using the mutual information among
all pairs of variables as a guide to restrict the creation of nonsignifi-
cant connections in the network structures. Constraints and causal
grouping of variables are explored in a non-parametric, hierarchi-
cal approach proposed in [26] to facilitate the structure learning
of BNs for small, sparse datasets. Based on medical knowledge, for
example, the variables can be grouped into two classes—diseases
and symptoms—and the influence from diseases to symptoms can
be imposed as a constraint for the learner to reduce considerably
the hypothesis space of structures. A recent study [27] presents

a methodology for combining expert knowledge and structure
learning to model heart failure using BNs. This combination is
achieved by pre-classifying the available data as background, past
and current health. To a large extent the data used in this study is
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ased on discrete features with clearly defined values, which makes
he network modelling step easier.

In [28], the authors compare different algorithms for struc-
ure learning of BNs in order to build a model for facilitating an
mergency hospital service. The study was based on a real dataset
ontaining manually collected patient data, where some of the
ariables were manually discretised based on meaningful context.
nother method using discretisation as a data-preprocessing step

o structure learning of a BN is proposed in [29] where the authors
uild a model to predict local failure in lung cancer. The discreti-
ation boundaries are determined using a three-bin strategy based
n mutual information. Three-valued unsupervised discretisation
sing minimum, maximum and mean value of image functional
RI  features is used in [30] to learn the connectivity between

rain regions as dynamic Bayesian networks. In [31] another recent
pproach is described where binary threshold-based discretisation
f continuous electrocardiogram features is used prior to learn-
ng Bayesian network classifiers for distinguishing between various
atient age risk groups.

Some commonalities can be noticed in these previous works.
irst, they all apply discretisation as a data pre-processing step
ased on one simple unsupervised strategy but they do not

nvestigate the effect of various discretisation schemes on the clas-
ification performance and data fitting capabilities of the networks.
econd, the approaches mostly aim to learn and compare vari-
us Bayesian network structures in terms of prediction accuracy
f a particular variable of interest and not in terms of dependence
elationships between all features in general. In contrast, in this
tudy we first compare automated supervised and unsupervised
iscretisation methods to reexamine the probabilistic parameters
f the manual network for the problem at hand. Based on the data
btained from the best-performing discretisation method, we next
xamine the (in)direct dependencies between the image features,
ssumed by expert knowledge, by learning various network struc-
ures.

. Mammography, the Bayesian network model and data

We start by reviewing the problem domain of screening mam-
ography and describe in detail the Bayesian network that was

onstructed for the purpose of mammogram interpretation.

.1. Mammographic analysis

The early detection of breast cancer is crucial for the effective
anagement of the disease as it increases the survival chance and

mproves the quality of life for the patient. Currently, the most
ost-effective early detection method is screening mammography,
hich is based on regular X-ray examinations of asymptomatic
omen. Every patient’s examination is analysed independently by

wo radiologists, yielding cancer detection rates up to 15% higher
han for examinations done by one radiologists only [32].

The radiologists judge the presence of cancer on the basis of
wo projections, or views, of the same breast: mediolateral oblique
MLO), taken under 45◦ angle and showing part of the pectoral

uscles, and craniocaudal (CC), taken head to toe; see Fig. 1. If can-
er is present, then it is expected to be observed in both views.
urthermore, abnormalities can appear on the mammograms as
icrocalcifications (tiny deposits of calcium) and masses, defined

s space occupying lesions seen in two different projections [33].
asses are the typical presentations of breast cancer and they are
ifficult to detect due to their similarity with normal breast tis-
ue.

In the past few years, CAD systems have been introduced into
creening to assist radiologists in their interpretation task [34]. The
e in Medicine 57 (2013) 73–86

majority of current CAD systems are mainly meant for analysing
only a single image with the aim to localise and classify an abnor-
mality as being cancerous or not, using imaging techniques and
classifiers such as neural networks. The CAD system used in this
study [35], executes the following four steps: (1) segmentation
of the mammogram into several components, such as breast tis-
sue, background, and the pectoral muscles; (2) initial detection
of suspicious pixel-based locations; (3) extraction of regions and
region-based features, and (4) classification of the extracted regions
as cancerous or normal using a neural network classifier. The sys-
tem is more intended as a prompt system to focus attention of the
radiologists, rather than as a clinical decision-support system. In
screening, breast cancer appears mostly as one or two cancerous
regions in the two  views. The CAD system, however, often yields
false positive regions. The reason is that the CAD system uses only
local information to determine whether a region is suspicious and
ignores the basic working principles of the radiologists, such as
examining complementary information from the other view, or
mammograms made at previous screening examinations. Integrat-
ing such domain knowledge in the modelling scheme of the CAD
system can considerably improve its performance in terms of detec-
tion rate and interpretation of the results and Bayesian networks
(see below) are very suitable for this purpose.

We adopt the following terminology from the breast cancer
domain throughout this paper. We  call a contoured area on a mam-
mogram a region,  marked, for example, manually by a human or
detected automatically by a CAD system. By lesion or finding we
refer to a cancerous region detected in the patient; see Fig. 1. A
region detected by a CAD system is described by a set of continu-
ous (real-valued) single-view features, e.g. size, location, contrast. By
link we  denote established correspondence, between two  regions in
MLO  and CC views, respectively. The term case refers to a woman
who has undergone a mammographic exam. Below we  shall fre-
quently refer to experimental results as corresponding to the link
level, i.e. with respect to two corresponding regions in the CC and
MLO  views, and to the patient level, i.e. the patient case with or
without breast cancer.

Previous research has already demonstrated the potential of
exploring multi-view dependencies to improve the automatic
detection of breast cancer on mammograms. The approaches in
[36–39] focused on improving the lesion-based results, based on
the distinction between true and false positive links of regions in
MLO  and CC views. In most of the previous work mentioned, neu-
ral networks or linear discriminant analysis were explored for the
detection of breast-cancer lesions.

In recent studies of ours we have opted for Bayesian network
methodology as it has the advantage of providing not only strong
predictive power but also explicit modelling of expert knowledge
and insight in the results obtained—properties desired especially
by medical specialists. In particular, we built Bayesian network
models using multi-view information to increase both lesion-based
and case-based performance, i.e. fraction of true positive exams
where an exam is true positive if cancer is found in the MLO  or
CC views, in comparison to a single-view CAD system [1,2]. The
building process of these models was guided by domain knowledge
of how radiologists interpret mammograms with the main goal of
improving the classification performance of the CAD system. The
model structures were manually constructed based on the contin-
uous mammographic features extracted from the images, and the
parameters were learnt from data.

While our previous research showed good results in terms of
better cancer detection, it did not explicitly and thoroughly study

the various modelling principles of automated image interpretation
in terms of graph structure (manually built or learnt from data)
and type of features (discrete or continuous) as done in this study.
Therefore the current research contributes to getting more insight
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Fig. 1. MLO  and CC views of both breasts of a

n the choices to be made when modelling the complex problem of
edical image interpretation.

.2. A Bayesian network model for mammographic analysis

The baseline BN model used in this study was developed using
xpert knowledge and it was first proposed in [40]; it is reproduced
n Fig. 2. The BN incorporates MLO  and CC features, represented
y the white rectangles on the figure, which can be interpreted at
he same time, allowing the integration of information from two
iews. These features are continuous (real-valued) and computed
y the single-view CAD system independently per view. Below we
escribe the most important features, used in the BN model, which
etermine whether or not two regions linked between both views
epresent a finding:

. Observed features extracted from the image in step (3) mentioned
above:
– LocX and LocY: The relative location of the region in terms of

x- and y-coordinates on the mammogram. Some areas of the
breast are more likely to contain cancer, e.g. the upper outer
part, than others.

– D2Skin: The shortest distance of the region to the skin.
– Contrast:  High contrast on the mammogram is often associ-

ated with a malignancy: tumour tissue absorbs more X-rays
than fat and glandular tissue.

– Spic: Indication whether the region margin has a spiky pat-
tern towards the centre of a lesion, called ‘spiculation’; the
higher the degree of spiculation, the higher the likelihood for
malignancy.

– FM: The presence of a circumscribed (well-defined) lesion, the
so-called ‘focal mass’.

– LinText: Linear texture, which represents normal breast
tissue—the higher the linearity, the lower the likelihood of
being malignant.

– Size: Size of the region–very large regions are usually benign
abnormalities.

. Calculated features, computed from classifiers based on pixel- or
region-based features:
–  DLik: The malignancy pixel-based likelihood computed by a

neural-network classifier using pixel-based features
– FPlevel: The false-positive (FP) level of a region computed

by a neural-network classifier using region-based features; it
indicates the average number of normal regions in an image
with the same or higher likelihood scores, so the lower its

value, the higher the likelihood that the region is cancerous.

he simultaneous interpretation of the MLO  and CC features is mod-
lled by the corresponding hidden variables (in light grey ovals in
t. A cancerous lesion is marked by the circle.

the figure), which are not directly observed or measured in the CAD
system, but represent the way as radiologists would evaluate the
mammographic characteristics of a finding. The variable Finding
represents the conclusion whether or not there is cancer in the
breast, i.e. whether or not two linked regions in MLO  and CC views
represent a lesion. Central to the BN model are also the hidden
variables Abnormal Density and Abnormal Structure, indicat-
ing the presence of abnormal density and structure and they have
two states: ‘present’ and ‘absent’. The model was developed for
the purpose of two-view mammographic interpretation where the
main variable of interest is Finding.

In the following sections, we explore various assumptions con-
cerning both graphical structure and parameters of the BN in depth
in order to get more insight in the network modelling by means of
experiments with mammographic data. First, in the original model
with continuous variables, the assumption was that all view fea-
tures can be described by Gaussian distributions. We  discretised the
MLO  and CC features to see what changes in the performance and
knowledge representation of the model are achieved. Although pre-
vious research suggests that performance increase can be expected,
there is no literature telling how the improved performance can be
interpreted in the context of available domain knowledge, and this
is what we  intend to investigate. Second, the difficulty in the mam-
mographic analysis task implies also complex interactions between
the mammographic features, which might not be easily determined
a priori. Hence, by learning graphical structures from data we aimed
to discover typical relationships between the mammographic fea-
tures per view and per breast, again in the context of available
knowledge. We  next describe the characteristics of the data used
in this study.

3.3. Data description

Data were obtained from the Dutch breast cancer screening
practice and includes the mammographic examinations of 795
patients, of which 344 were cancerous. All cancerous breasts had
one visible lesion in at least one view, which was verified by pathol-
ogy reports to be cancerous. Lesion contours were marked by a
mammogram reader.

For each image (mammogram) we have a number of regions
detected by the single-view CAD system. We  selected the three
most suspicious regions per image (view). Every region is described
by continuous features (see Section 3.2). Based on the ground-truth
data, for each region we  assign a class value of ‘cancerous’ if the
detected region hits a cancerous abnormality and ‘normal’ other-

wise. Since a region in one view cannot always be coupled to the
corresponding area in the other view due to the compression and
the rotation of the view, for every breast we linked every region
from MLO  view with every region in the corresponding CC view.
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Fig. 2. Bayesian network model 

or every link we added the class values of ‘cancerous’ (‘true’) if at
east one of the linked regions is cancerous; otherwise the class is
non-cancerous’ (‘false’). This forms the data for the variable Find-
ng in the BN model. We  assign analogous classes for the patient
ased on the ground-truth information. This results in a database
here for each breast multiple instances are added, and each

nstance reflects a link between a CC and a MLO  region. The final
ataset consists of 14,129 links. For the experiments with structure

earning algorithms, we also created two datasets containing only
LO  regions (4707 in total) and CC regions (4710 in total), where

he class variable is based on the ground-truth of the respective
egion.

Although this dataset is based on the mammographic examina-
ions from a specific national breast cancer screening program, we
ote that it represents typical mammographic data obtained from
utomated image analysis including standard image processing
teps such as breast segmentation, region segmentation and feature
xtraction. In this sense, we believe that the scope of the results and
onclusions from this study are to be considered more broadly and
pplicable generally to the problem of modelling complex medical
asks.

. Reappraisal of the probabilistic parameters

As most of the variables modelled by the manual Bayesian
etwork were continuous features, they were represented using

onditional Gaussian distributions. A limitation of Gaussian distri-
utions is that they are symmetric, which will not allow capturing
symmetries available in the data. Rather than using other con-
inuous probability distributions, that would allow representing
o-view mammographic analysis.

asymmetries, however again with particular assumptions, discreti-
sation of the continuous data offers a way to fit the probability
distribution to the data with no assumptions about the shape of
the distributions. Discretisation is studied in two  different ways,
namely with regard to (i) classification performance and (ii) good-
ness of fit of the resulting probability distribution to the data.

4.1. Experimental set-up

The following discretisation methods, discussed in Section 2.2,
were investigated and compared, as implemented in the software
package WEKA [41]:

• Equal frequency binning with ten bins (EFB-10)
• Equal width binning with ten bins (EWB-10)
• The method of Fayyad and Irani (FI)

To build and evaluate the data-driven BN models with discrete
data, we used a two-fold cross validation procedure: the dataset
is randomly split into two  subsets with approximately equal num-
ber of observations and proportion of cancerous cases. The data
for a whole case belonged to only one of the folds. Each fold was
used as a training set and as a test set. We  built, trained and tested
the networks by using the Bayesian Network Toolbox in Matlab
[42]. The learning of the probability parameters was  done using
the expectation-maximisation algorithm, which is typically used

to approximate a probability function given incomplete samples,
as the network contains hidden variables [43]. The performance of
the BN models learnt with discretised data were compared with
the benchmark model, described in Section 3.2, learnt from the
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Table  1
AUC and log-likelihood test results obtained from the continuous baseline and the
discretisation methods.

Method AUC LogLik

Link Patient Link Patient

Continuous baseline 0.707 0.628 0.466 0.760
FI  0.790 0.755 0.382 0.633
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EFB-10 0.754 0.733 0.394 0.617
EWB-10 0.720 0.654 0.407 0.661

ontinuous data, for short called the continuous baseline. The com-
arison analysis is done using the receiver operating characteristic
ROC) curve and the area under the curve (AUC), a standard per-
ormance measure in the medical image research [44]. We  also
valuated the data fitting capabilities of the models learnt by means
f the log-likelihood, LogLik for short, of the class predictions C given
he dataset D, L(C|D):

(C|D) = 1
N

N∑

i=1

− log P(Ci|Ei), (1)

here N = |D| is the number of observations, Ci and Ei are the class
alue and the feature vector of the ith observation in D, respectively.
hus, the value of L(C|D) indicates how close the posterior probabil-
ty distribution is to reality: when P(Ci|Ei) = 1 then log P(Ci|Ei) = 0
no extra information); otherwise − log P(Ci|Ei) > 0.

.2. Results

The discretisation obtained from the supervised FI method led to
arious number of bins for each variable. They range from one bin
or the variables MLO-FM, MLO-LinText and CC-Contrast to five
ins for MLO-LocY—clearly less than the ten bins obtained from the
lternative discretisation methods. Table 1 presents the AUC and
og-likelihood test results at a link and patient level for the three
iscretisation methods and the continuous baseline. In terms of

ccuracy at a link level, the FI method performs best, followed by
he EFB-10 and EWB-10 methods. Although the results at a link level
re an indicator for the model performance, from a clinical point
t is interesting to consider the results at the patient level. The FI

Fig. 3. ROC curves for the best performing discretisation methods agai
e in Medicine 57 (2013) 73–86 79

method again achieves the best discrimination between cancerous
and normal cases, followed by EFB and EWB  with ten bins.

To obtain better insight into the improvement of the clas-
sification performance, we  plotted the ROC curves for the best
performing methods at both link and patient level, as shown in
Fig. 3.

It is interesting to observe that for the supervised FI method the
bigger improvement in the model’s performance is in the lower FP
range (<0.5)—a desired result in the screening practice where the
number of normal cases is considerably larger than those of the
cancerous ones. Furthermore, we note that the curves (and respec-
tive AUCs) for all methods are lower at the patient level than at the
link level, as for the former the number of false positives is much
smaller leading to a bigger penalty for a misclassified cancerous
case.

We further evaluated the data fitting capabilities of the mod-
els with the discrete and continuous data using the log-likelihood
measures reported in Table 1. Clearly the FI method fits best to the
data at a link level as it achieves the lowest LogLik value, and it
is followed by EFB-10. At a patient level, the performance of both
methods has the opposite pattern. The BN model with continu-
ous features fits considerably worse to the data in comparison to
the models with discretised data, indicating a mismatch between
the model and the data. These results confirm our expectation
that discretisation can facilitate the knowledge representation and
modelling of the problem of automated mammographic analysis.

Finally, Fig. 4 illustrates the behaviour of the BN model with
discrete MLO  and CC features obtained from the FI method for
one cancerous link (true finding) from the data. The evidence has
been set on the observable nodes, and thereafter the posterior
probability of the finding being cancerous has been updated. The
model clearly succeeds in the correct classification of the link.
Furthermore this model is easier to work with and interpret in
comparison to the model with continuous features as the former
yields a representation that is closer to the knowledge of the radi-
ologist.
5. Network structure reappraisal by learning

In this section we  investigate the structures learnt from vari-
ous algorithms and compare them with the continuous baseline

nst the continuous baseline at (a) link level and (b) patient level.
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ig. 4. Bayesian network with evidence set (represented by bold and underlined na
sing  the FI method.

etwork. For this purpose, we used the discretised data obtained
rom the best performing FI method as reported in the previous
ection.

.1. Experimental set-up

In the following experiments, we use two main structure learn-
ng algorithms: the Max-Min Hill Climbing (MMHC) algorithm
45]—a recent hybrid algorithm that has been extensively tested
ver a wide variety of data sets and showed good performance, and
he constrained-based Grow-Shrink (GS) algorithm [46]. In addi-
ion to structure learning, we also explored simpler reference BN
tructures for comparison:

aïve Bayes:  This model consists of only one parent node—the
fixed class node Finding—and assumes that all the fea-
ture variables are conditionally independent given the
class.

AN: Tree-Augmented Bayesian Network (TAN) algorithm—a

simple classifier and an extended version of Naïve Bayes,
allowing for more dependencies between the features.

ndependent:  All variables are considered independent, i.e. there
are no arcs in the model.
f the states) for one cancerous link and posterior probabilities with discretised data

Fully connected: All variables are considered dependent,  i.e. the
network is fully connected.

The aim of the experiments was  to investigate the dependence
relationships between the observed and calculated features, and
the class variable Finding. In particular,

(i) We  investigated the assumptions for dependencies and inde-
pendencies between Finding, the calculated and observed
features modelled in the manual network based on a subset of
the combined-view data containing 4 MLO  and 4 CC features
(FPLevel, DLik, LocX and D2Skin), and the Finding variable.
We compared the manual network with the structures learnt
from MMHC, GS and the reference BN models.

(ii) We  studied the presence of persistent direct dependen-
cies between the mammographic features across structures
obtained from MMHC  and GS applied to datasets with and
without the calculated features.

(iii) Using the same two-fold cross-validation setup as described
in Section 4.1, we  compared the classification performance in

terms of AUC and fitting capabilities of MMHC  and TAN, applied
to the discrete data, and MMHC  applied to the original contin-
uous data (MMHC-Gaussian). The comparison was  done for
the MLO, CC and combined view (breast-image) data. We  also
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Fig. 5. Structures based on the expert sub-m

compared the structures learnt from each of the two folds in
order to see whether or not they differ considerably in terms

of feature dependencies.

or the structure learning experiments we used the algorithms
mplemented in the freely available bnlearn package in R [47].

Fig. 6. Structures learnt from the MMHC  and GS methods applied to th
, and learnt by the MMHC  and GS methods.

5.2. Results
5.2.1. Learning structures based on an expert sub-model
The resulting expert sub-model and the structures learnt

using MMHC  and GS based on the data subset are shown in
Fig. 5.

e discrete combined-view data without the calculated features.
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The structures learnt by MMHC  and GS are very similar in terms
f dependence relationships: the graph learnt by MMHC  includes

 bit more independence information with respect to the variable
inding and the calculated features MLO-FPlevel,  CC-FPlevel,
LO-DLik and CC-DLik, whereas there is an even smaller differ-
nce in the dependence information of the observed features below
he variable Finding in the networks. For example, where there is a

nconditional dependence Finding Gb CC-LocX |∅  in the graph

f Fig. 5(b), this dependence is conditional, e.g. Finding Gc CC-

ocX| MLO-LocX,  in the graph of Fig. 5(c). Furthermore, the model
btained by the constrained-based algorithm contains one undi-

ected arc between D2Skin and LocX in the MLO  view, implying
hat the direction does not matter. Another major observation for
he learnt structures is that the observed features are conditionally

ig. 7. Structures learnt from the MMHC  and GS methods applied to the discrete com
ependencies in comparison to the graphs in Fig. 6, while the double dashed edges are un
e in Medicine 57 (2013) 73–86

independent of the calculated features given knowledge of Find-
ing. This property also holds for the expert sub-model. However,
the models learnt clearly contain a larger number of dependence
relationships between the observed and the calculated features
than the manually constructed model. While the direct depend-
encies between the respective MLO-CC features are partially rep-
resented via the hidden variables in the original network in Fig. 2,
the dependencies between the distance to skin and size, as well as
between both calculated features are clearly missing in the manual
network.

The lacking dependence relationships are also confirmed by the

fitness BDe scores for the manual and learnt structures reported
in Table 2, where we also report the scores for the reference BN
models, which do not consider any knowledge incorporated in the
expert model:

bined-view data with the calculated features. The dashed arcs present different
directed dependencies yielded by the GS algorithm.
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Table  2
BDe scores obtained from the expert model, the structure learning algorithms, and
the reference models applied to the combined MLO  and CC subset data.

Model BDe score (×104)

Expert −7.6579
MMHC −7.3173
GS −7.3318
Naïve Bayes −7.6543
Independent −7.7068

M
t
t
t
f

work, where Finding is the parent node to the observed features.

F
a

Fully connected −7.5731

The models with the highest scores are the ones obtained from
MHC  and GS, followed by the fully connected model. Note that

he expert model fits to the data comparably to the Naïve Bayes and

he independent model. This implies that the expert sub-model fails
o capture dependences between the observed and the calculated
eatures.

ig. 8. Structures learnt by MMHC  and TAN for MLO  and CC views from different data s
ddition, and crosses indication deletion in the structure.
e in Medicine 57 (2013) 73–86 83

5.2.2. Direct dependencies between the mammographic features
Fig. 6 presents the structures learnt from MMHC and GS algo-

rithm applied to the discrete combined-view data without the
calculated features.

We observe that the structure learning finds the direct depend-
encies between the respective observed features in MLO and CC
views, showing that they are strongly present even after the feature
discretisation. This confirms our modelling assumptions used in the
manual network, where these dependencies are modelled via the
hidden nodes for each feature. Furthermore, in the structures learnt
by both methods Finding appears as a direct effect of CC-Size
and CC-LocY—but the constrained-based method finds two more
parent nodes of the class variable—MLO-Size and CC-D2Skin. This
finding is opposite to the relationships modelled in the manual net-
Another interesting result is that both structure learning meth-
ods uncover two clusters of features that exhibit strong direct
within-cluster relationships and relatively little between-cluster

ubsets. Dashed graph elements correspond to changes: arcs and nodes indicating
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Table 3
BDe scores (×104) and AUC obtained from structure learning applied to the discretised and the continuous MLO, CC and combined-view data.

Method MLO  CC MLO  &CC

BDe score AUC BDe score AUC BDe score AUC
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depicted in Fig. 8(a) and (b). Analogous results were obtained from
the combined view data.

Table 4
Arcs per breast view with average strength and direction larger than 0.5 obtained
from MMHC  learning with bootstrapping on 200 samples of each subset A and B.
The  ‘*’ sign indicates an opposite arc direction.

From To Strength Direction

A B A B

(a) MMHC(MLO)
LocX Contrast 1.00 1.00 0.87 0.90
FM  LocX 1.00 1.00 0.76 0.88
LocY Finding 1.00 1.00 0.74 0.89
FPlevel Spic 1.00 1.00 0.63 0.70
D2Skin Size 1.00 1.00 0.58 0.73*
Spic  FM 0.98 1.00 0.73 0.87
LocX  LocY 0.95 1.00 0.75 0.88
Spic DLik 0.91 1.00 0.61 0.60
FM  D2Skin 0.80 0.87 0.92 0.97
LocX  Size 0.74 – 0.67 –
FPlevel DLik 0.69 1.00 0.81 0.80
D2Skin Contrast 0.68 – 0.73 –
Spic  Size – 0.89 – 0.77
DLik FM – 0.57 – 0.99

(b)  MMHC(CC)
D2Skin Size 1.00 1.00 1.00 0.98
LocX  Contrast 1.00 1.00 0.92 0.71
FM  D2Skin 1.00 1.00 0.85 0.83
D2Skin Contrast 1.00 1.00 0.83 0.58*
LocY Finding 1.00 1.00 0.68 0.52
FM  LocX 1.00 1.00 0.50 0.51
LinText D2Skin 0.90 – 0.64 –
FPlevel LocY 0.90 – 0.61 –
LocX Size 0.90 – 1.00 –
MMHC-Gaussian – 0.680 

MMHC  −1.326 0.845 

TAN −1.462  0.829 

elationships (in the figure this is represented by the grey colour-
ng of the nodes). The first cluster reveals that spiculation and focal

ass are directly dependent, which is expected given that these
eatures are pixel-based. The strong dependence of these features
ith the region size, however, is novel. One explanation may  be

hat spiculated cancerous regions are relatively smaller than non-
ancerous abnormalities or false positive detections made by the
AD system. The second cluster contains the region-based features
elated to the region location, linear texture and contrast. While
n the manual network we model some expected dependencies
etween the spiculation of a region and its linear structure via
he hidden variable Abnormal Structure, in the structures learnt
uch dependence is not observed given the other features.

We next checked to what extent these direct dependencies are
till present when adding the calculated features to the data. The
tructures learnt are shown in Fig. 7. We  observe that the two clus-
ers of dependencies between the observed features are overall
reserved, which indicates their strength. Furthermore, the cal-
ulated features tend to have higher dependence with the cluster
here the pixel-based features and the region size are present. For

Lik this finding is not surprising as this feature is computed by
he CAD system using only the pixel-based features. However, for
Plevel it is interesting to see that most of the dependencies are
ostly based on the pixel-based suspiciousness, while this feature

s computed by the CAD system using also the other region-based
eatures. While in the MMHC  structure FPlevel and DLik are par-
nt nodes for the observed features, in the GS structure the former
eatures appear also as effect variables.

One of the most striking finding, however, is that in these struc-
ures FPlevel and DLik are not parent nodes of Finding, or
irectly dependent, as modelled in the original manual network
nd as we observed in the experiments with the expert sub-model.
imilarly to the structure in Fig. 6a, the MMHC  network in Fig. 7a
reserves the dependence of Finding on the size and Y-location
f the region in the CC view, but it also adds the former as a par-
nt of the region X-location in the MLO  view. For the GS network
ith added calculated features, the direct dependencies of Find-

ng changed to the spiculation and pixel-based suspiciousness of
he region in the MLO  view.

In summary, these results show that there existed more
irect dependencies between the observed mammographic fea-
ures than were originally represented in the manual network.
urthermore, the dependences between the calculated features
nd Finding are not revealed in the structure learning, indicat-
ng that the assumptions made in the manual modelling needed
econsideration.

.2.3. Classification performance and structure sensitivity on
ata size

We  next apply structure learning on the two folds of each dataset
discrete and continuous), where each fold was used once as a train-
ng set to fit the model structure and the parameters and once as

 test to compute the fitting BDe score (for the discrete data) and

he classification performance in terms of AUC. The average results
rom both test folds are presented in Table 3 and they show that
he hybrid algorithm is capable of finding structures that better fit
o the data and tend to distinguish better between cancerous and
 0.827 – 0.748
.143 0.863 −6.857 0.827
.364 0.844 −8.187 0.819

non-cancerous regions/links than the TAN algorithm. The Gaussian
models perform worse in terms of classification accuracy and con-
tain nearly twice as many arcs than the MMHC  models obtained
from the discrete data (21 vs. 12 for MLO, 18 vs. 11 for CC, and 56
vs. 27 for the combined views), showing that the latter leads to
more parsimonious and interpretable models.

We also compare the structures learnt from each of the non-
overlapping data subsets used as a training (A) and test (B) set in
the evaluation in order to see whether there is a large difference.
Fig. 8 shows the resulting structures obtained from MMHC  and TAN
for the MLO  and CC views, where the independent nodes have been
omitted. Clearly the structures learnt from the two data subsets
are similar with only a few differences. This result is not surprising
given the relatively large size of the data, consisting of thousands of
observations. To check whether these relationships are preserved
for different samples from the data, we  performed bootstrapping
together with structure learning using MMHC  as algorithm. Two
hundred samples from the subsets A and B of the MLO  and CC data
were generated, respectively. The results summarised in Table 4
present the arcs per breast view with average strength and direc-
tion larger than 0.5. These results clearly agree with the structures
LocX LocY 0.81 0.73 0.73 0.63
Finding LinText 0.70 – 0.82 –
FM FPlevel 0.56 0.81 0.57 0.58
LocY LinText – 0.80 – 0.74
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Table  5
Markov blankets of the variable Finding for subsets A, B of the dataset and for both
subsets.

Method Subset MarkovBanket(Finding)

MMHC-Gaussian In both CC-FPlevel, MLO-DLik,  CC-DLik,
MLO-Spic, CC-Spic, CC-FM

MLO-Size,  CC-Size, CC-LinText, CC-D2Skin

Only in A MLO-LocY, MLO-FPlevel
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Only in B MLO-LocX CC-LocX

MMHC  In both CC-Size, MLO-LocY

The network structures obtained from MMHC-Gaussian applied
o both data subsets tend to vary more than MMHC  on the discrete
ata, as observed, for example, by the different Markov blankets of
he Finding variable for the combined data given in Table 5. We
bserve again that the calculated features are parents of Finding
n the Gaussian networks, whereas in the discrete network these
eatures do not have direct dependencies with the class variable.

. Discussion and conclusions

Our aim was to obtain insight into the validity of the modelling
ssumptions made when developing a BN for complex medi-
al image interpretation problems based on expert knowledge,
ith the interpretation of mammograms as a real-world example.
here in other problem domains it might be easier to construct

uch manual models using knowledge engineering methods, in the
omain of image interpretation it is not unlikely that modelling
istakes are made. We  carried out this study to find out whether

ata discretisation and structure learning can be used to scrutinise
he modelling assumptions to improve the quality of a manually
eveloped BN model.

The decision whether or not to discretise data is not straight-
orward and it highly depends on the nature of the data and the
roblem at hand. As mentioned in the introduction, based on the AI

ournal paper by Pradhan et al. the general wisdom in at least a sig-
ificant part of the field is that the probabilistic parameters are only
f secondary importance [3].  However, our research results show
therwise, namely that discretisation can improve the representa-
ion and the accuracy of the models in comparison to the model
ith continuous variables. First, the discrete data better capture

he way radiologists analyse mammograms and evaluate abnor-
alities. This allows for easy interpretation and usability of the

ayesian network model. Second, appropriate discretisation pro-
ides better approximation of the true probability distribution of
he data used and avoids the strong Gaussian assumption imposed
n the continuous variables, leading to better accuracy and data
tting capabilities of the models, as shown in this study.

The purpose of the structure learning used in this study was  to
ee whether it could be effectively used as a source for critiquing

 manually constructed BN and as a means to complement knowl-
dge representation by hand. Such an approach may  not always
e useful, for example in cases where there is an easy conceptu-
lisation of the problem domain available, or when data are not
vailable. In addition, often representations obtained by machine
earning are hard to understand, and structure learning of Bayesian
etworks is no exception to this general rule. However, this makes
he combination of techniques from manual and automatic con-
truction of Bayesian networks even more interesting. The results
e achieved clearly show that structure learning results can be

onceptually clear and of help in designing a medical BN. First,
ocal interactions between variables in the structures learnt were

evealed; some of them were as expected according to the domain
nowledge, whereas others were novel and not obvious a priori.
econd, the results indicate that manual construction based on
xpert knowledge offers a good start to build a medical BN, as it

[
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guides the selection of important domain factors and such a model
will act as point of reference in structure learning.

Finally, we  investigated whether learning structures from the
discrete data can have an added value to improve the performance
of the mammographic analysis modelling. Our results turned out
to be positive here as well, strongly indicating the necessity to
restructure and re-evaluate the parameters of the originally built
manual Bayesian network. The newly revealed graph structure and
variables’ values provide the basis for the next step in the design
process.

In summary, the lessons learnt from this study are that develop-
ing a BN for a complex medical problem requires a well-balanced
exploration of expert knowledge and data. The development pro-
cess that results is much more complicated than suggested in
previous research, but given the improvement in performance and
insight that comes with it, it is also worth the effort.
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