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Abstract

Various formal theories have been proposed in the literature to capture the notions of diagnosis
underlying diagnostic programs. Examples of such notions are: heuristic classification, which is
used in systems incorporating empirical knowledge, and model-based diagnosis, which is used
in diagnostic systems based on detailed domain models. Typically, such domain models include
knowledge of causal, structural, and functional interactions among modelled objects. In this paper,
a new set-theoretical framework for the analysis of diagnosis is presented. Basically, the framework
distinguishes between ‘evidence functions’, which characterize the net impact of knowledge bases
for purposes of diagnosis, and ‘notions of diagnosis’, which define how evidence functions are to
be used to map findings observed for a problem case to diagnostic solutions. This set-theoretical
framework offers a simple, yet powerful tool for comparing existing notions of diagnosis, as
well as for proposing new notions of diagnosis. A theory of flexible notions of diagnosis, called
refinement diagnosis, is proposed and defined in terms of this framework. Relationships with notions
of diagnosis known from the literature are investigated. 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Diagnostic computer programs were among the first systems developed in the field
of applied Artificial Intelligence. In the burgeoning field of expert systems in the 1970s
and 1980s, diagnostic applications abound. Although these systems frequently dealt
with similar, or related, problem domains, often their underlying principles differed
considerably. In a sense, this was a consequence of the additional goal of the development
of many of these, now classic, programs: to explore representation and problem-solving
methods. Only after researchers experienced that developing reliable diagnostic systems
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was much more difficult than previously thought, it was recognized that the principles
underlying diagnosis were actually poorly understood.

Starting about halfway through the 1980s, a significant amount of research on conceptual
and formal aspects of diagnosis was undertaken, with the aim of acquiring more
insight into the nature of diagnostic problem solving. For example, Chandrasekaran and
colleagues have analysed the diagnostic process conceptually in terms of a small number
‘generic problem-solving tasks’ [6]. Instead of studying the problem-solving behaviour of
diagnostic systems, other researchers have focussed on representation issues in diagnostic
systems. Where in many early diagnostic systems diagnostic knowledge from experts was
captured in the form of empirical classification rules [4], in later systems model-based
approaches became increasingly popular for building diagnostic systems in both industrial
(cf. [2,14]), and nonindustrial areas, such as medicine (cf. [19,40]). The model-based
approach advocates the construction of knowledge-based systems based on explicit models
of a problem domain. For example, such models describe the structural and functional
interactions among components of a physical system, or the causal interactions among
elements in a domain. Model-based diagnosis was, in fact, already explored in the early
systems INTER [17], SOPHIE [3], CASNET [43], and ABEL [27].

Although the introduction of the model-based approach to building diagnostic applica-
tions had a significant impact on the field of diagnosis, it did not immediately provide deep
insight into the process of diagnosis. Real fundamental understanding of the nature of the
diagnostic process was yielded by subsequent research concerning the formal aspects of
diagnosis.

An early formal theory of diagnosis was proposed by Reggia and colleagues in terms
of set theory, calledset-covering theory, or parsimonious covering theory[35]. Basically,
in the set-covering theory of diagnosis, causal knowledge of abnormality is represented
by means of a binary causal relation, which is employed for computing diagnoses,
essentially by determining whether actually observed findings can be predicted using the
causal relation. Subsequent work has yielded several algorithms to compute set-covering
diagnoses efficiently in practical applications [29,38,44], although this type of diagnostic
reasoning is known to be NP-hard in general [5]. Experimental studies of set-covering
theory and its variants have been performed by several researchers [21,34,41].

The formal aspects of diagnosis employing causal knowledge have also been studied,
using logic as the primary tool [11,13,30,32]. In the logical theory ofabductive diagnosis,
diagnosis is formalized as reasoning from effects to causes, with causal knowledge
represented as logical implications of the form

causes→ effects

where causes are usually abnormalities or faults, but they may also include normal
situations. This abductive type of reasoning is contrasted with deduction, which for
implications of the form above and under certain conditions, like that givencausesand
effectsare conjunctions of positive literals, would amount to reasoning from causes to
effects. Because in set-covering theory causal relations are also exploited to find causes
for certain observed findings, this theory may be viewed as a specific theory of abductive
diagnosis as well. The logical theory of abductive diagnosis is more expressive than set-
covering theory, because it is possible to explicitly represent various types of interaction,
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which is not possible in the original set-covering theory. For example, it is not possible
to express in the original set-covering theory that the simultaneous occurrence of two
or more causes leads to the masking of certain findings. Console and colleagues have
proposed several different versions of abductive diagnosis [9,11], and have also developed
an implementation of the theory as the CHECK system [40]. Poole and colleagues have
investigated abductive diagnosis using Theorist, a theory and system for hypothetical
reasoning [30–32].

Approximately at the same time, Reiter proposed yet another logic-based theory of
diagnosis, aiming at formally capturing diagnosis of abnormal behaviour in a device or
system, using a model of normal structure and behaviour [36]. Nowadays, Reiter’s theory,
which was later extended by de Kleer and colleagues to deal with knowledge of both
normal and abnormal behaviour [18], is usually referred to as the theory ofconsistency-
based diagnosis. Basically, consistency-based diagnosis amounts to finding faulty device
components that account for a discrepancy between predicted normal behaviour of a
device, possibly supplemented with predictions of abnormal behaviour, both according to
a domain model, and actually observed behaviour. The discrepancy is formalized as logical
inconsistency; a diagnosis is established when assuming particular components to be faulty
and others to be normally functioning restores consistency.

The abductive and consistency-based theories of diagnosis are often contrasted with
diagnosis based on empirical associations. When empirical associations are represented as
logical implications, then viewed as a classification relation, establishing a diagnosis can
be accomplished by logical deduction, computing the closure of this classification relation.
The more procedurally oriented termheuristic classificationis frequently employed to
refer to this type of diagnostic reasoning [8].

It has been shown that abductive and consistency-based diagnosis can be mapped to
each other [36]. Furthermore, both types of diagnosis can be defined, in slightly different
ways, in terms of the logical entailment relation [12,33]. Hence, although it was once
thought that diagnostic systems could be classified as being either based on consistency
checking, abductive reasoning, deductive reasoning, or on a combination of these three
types of reasoning, it appears that characterizing diagnostic systems is more complicated
than that [26].

The conclusion that there is not a unique way to characterize a particular type of
diagnosis raises questions concerning the assumptions underlying abductive diagnosis,
consistency-based diagnosis and heuristic classification. Does the logical notion of
consistency provide an appropriate basis for formalizing various notions of diagnosis, and
similarly, is logical implication the proper way to formalize relationships between causes
and effects in abductive diagnosis, and to formalize empirical associations in heuristic
classification? In this paper, it is argued that the formalization of diagnosis will benefit from
the modelling of interactions at two levels of specification: (1) the modelling of interactions
between the presence or absence of defects or faults, expressed by a mapping from defects
to observable findings, and (2) the modelling of an interpretation of observed findings
in the context of such a mapping. A set-theoretical semantic framework to express these
aspects of diagnosis is proposed in Sections 2 and 3, and examined in detail in Section 4
using known theories of diagnosis from the literature. Medicine and simple logic circuits
are taken as example domains.
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As in many other theories of diagnosis, diagnostic problem solving is viewed as a
special instance ofhypothetical reasoning[31], possibly producing multiple, competing
diagnoses. In solving a diagnostic problem, a hypothesis concerning the presence or
absence of faults or abnormal processes, such as disorders in medicine, is first generated
and next tested with respect to diagnostic knowledge and observed findings, yielding
diagnoses that are best in a particular sense. However, since the result of this paper
is a mathematical framework, no particular problem-solving order is enforced. The set-
theoretical framework is expressive enough to go beyond common notions of diagnosis.
This point is illustrated by the development of a theory of flexible diagnosis in Section 5,
called refinement diagnosis, which is defined in terms of this framework. Relationships
with notions of diagnosis known from the literature are investigated.

2. Interactions among defects and observables

There exists a strong relationship between the suitability of a particular type of
knowledge for building a diagnostic system and the nature of the underlying problem
domain. For example, for the construction of medical diagnostic systems, knowledge of
the pathophysiology of disease processes can be used, but in other medical domains, like
neurology, diagnostic problem solving mainly relies on the description of normal function,
in combination with knowledge of the anatomical structure of the human body [24].
Similarly, in technical domains, knowledge of the structure of a device, supplemented with
knowledge of how particular components are expected to behave normally or abnormally,
can be used for the purpose of diagnosis [15]. Despite such differences, any knowledge
base of a diagnostic system incorporates representations of meaningful interactions among
defects (faults or disorders) and observable findings. We shall examine a number of typical
examples of diagnostic knowledge bases to illustrate these points.

2.1. Motivating examples

Frequently employed types of knowledge encoded in diagnostic systems are causal
knowledge, knowledge of structure and functional behaviour, and empirical associations.
A small, but typical, example of each of these types of knowledge is presented
below.

Causal interactions. Consider the following piece of medical knowledge: “influenza
causes fever and infection of the trachea and bronchial tree (tracheobronchitis), which
causes a sore throat; if the patient suffers from asthma, shortness of breath (dyspnoea)
will occur as well”. In Fig. 1(a), the directed-graph representation of the causal knowledge
embodied in this medical description is depicted, where an arc denotes a cause-effect
relationship. The medical meaning ascribed to the elements in the causal graph is indicated
in Fig. 1(b). Using logic as our representation language, the figure may be assumed to
correspond to acausal specificationC = (∆,Φ,R), where∆= {d1, d2, d3} denotes a set
of disorders,Φ = {f1, f2, f3} denotes a set of observable findings, andR is a collection of
rules in propositional logic:
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Fig. 1. Causal net.

d1→ d2

d1→ f1

d2→ f2

d2∧ d3→ f3.

Such a causal specification is typically used inabductive diagnosisbased on logic [9,32].
Note that the disordersd1 and d2 are causally related to each other; causal interaction
is expressed by logical implication. A causal specification can be used for predicting
observable findings. Assuming the presence of certain disorders, e.g., influenza (d1),
R ∪ {d1} � {f1, f2} expresses that a patient with influenza will have symptoms and
signs of fever (f1) and sore throat (f2) via a causal mechanism, where� denotes
standard logical entailment. Here, the interaction between disorders, and between disorders
and observable findings, is monotonic, due to the monotonic nature of ordinary logical
entailment: by assuming more disorders, more observable findings will be predicted.
Below, we shall consider various desirable nonmonotonic interactions, and also the
qualitative representation of uncertain relationships between a cause and its associated
effects.

Functional behaviour. Knowledge of normal and abnormal functional behaviour can be
effective for diagnosing device problems, where the behaviour of the device is described in
terms of relationships between input and output signals. These relationships are obtained
from knowledge of the behaviour of the device’s components and of the way in which
these components are interconnected, i.e., the structure of the device. Consider a logic
circuit consisting of anXOR (exclusiveOR) gateX and anAND gateA, as shown in Fig. 2.
The three input signals to the circuit are indicated byI1, I2 andI3; O1 andO2 denote the
two output signals.

Following the approach in [18], the normal behaviour of the two components can be
described by the following two logical implications:

∀x((XORG(x)∧¬Abnormal(x)
)→ out(x)= xor

(
in1(x), in2(x)

))
∀x((ANDG(x)∧¬Abnormal(x)

)→ out(x)= and
(
in1(x), in2(x)

))
supplemented with the atoms XORG(X) and ANDG(A), which represent theXOR gate
X and theAND gateA, respectively (uppercase symbols likeX andA indicate constant
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Fig. 2. Logic circuit.

symbols). If we assume that a defective gate always produces an output signal that is
different from the correct output signal, the following logical specification of abnormal
behaviour is obtained:

∀x((XORG(x)∧Abnormal(x)
)→ out(x) 6= xor

(
in1(x), in2(x)

))
∀x((ANDG(x)∧Abnormal(x)

)→ out(x) 6= and
(
in1(x), in2(x)

))
.

The structure of the circuit can be described by a collection of equalities, which also
indicates how components influence each other, as follows:

out(X)= in1(A) in2(A)= I3
in1(X)= I1 out(X)=O1

in2(X)= I2 out(A)=O2.

Now, asystemS is defined as a pairS = (SD,COMPS), consisting of a system description
SD, such as the logical specification of the structure and behaviour of the circuit given
above, with a set of components COMPS, with COMPS= {X,A} in the present case.
Such a specification is typically used inconsistency-based diagnosis.

Suppose that the input to the circuit is as follows:I1 = 1, I2 = 0 andI3 = 1. Using
standard logical entailment, the following output can be predicted, assuming that the circuit
is functioning correctly:

SD∪ {I1= 1, I2= 0, I3= 1,¬Abnormal(X),¬Abnormal(A)}
� {O1= 1,O2= 1}.

Similarly, partially abnormal behaviour, assuming part of the components to be abnormal,
or completely abnormal behaviour can be predicted.

Empirical associations. Empirical associations represent knowledge derived from expe-
rience, and usually have the intended meaning of classification rules. LetB = (∆,Φ,R′)
denote anassociational specificationcorresponding to the causal medical knowledge de-
picted in Fig. 1; the corresponding set of associational logical rulesR′ is defined as follows:

f1→ d1

f2→ d2

f2∧ f3→ d3
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Fig. 3. Associations.

which can also be depicted as a directed graph, as shown in Fig. 3. Here, logical implication
is interpreted as a classification relation; e.g.,R′ ∪ {f2, f3} � {d2, d3}, i.e., sore throat and
dyspnoea are classified as being due to the presence of tracheobronchitis together with
asthma. Logical classification relations are typically used in heuristic classification.

Above, both the terms ‘disorder’ and ‘fault’ were used to refer to malfunction. Since
the term ‘disorder’ is not used in technical domains, and the term ‘fault’ is not used in the
biomedical domain, the term ‘defect’ will be used henceforth to denote both disorders in
medicine and faults in technical devices.

2.2. The interpretation of knowledge as evidence

As has been illustrated above, diagnostic systems may incorporate a wide variety of
knowledge. In fact, in addition to the types of knowledge explored in the examples above,
many other types of knowledge that are useful in a diagnostic setting can be distinguished.
When building a particular diagnostic system, decisions concerning the type of knowledge
to be included are clearly important. However, diagnostic systems also have a number of
features in common; these features are particularly relevant when comparing systems. It
appears that all diagnostic systems incorporate knowledge of interactions among defects
and observable findings, which can be captured by means of particular mappings. These
mappings, called ‘evidence functions’ in this paper, will be shown to offer a precise
interpretation of the significance of the knowledge available to a system for the purpose
of diagnosis, and will be introduced below.

Let∆ denote a countable set ofassumptionsconcerning defects and possibly also con-
cerning observable findings, as sometimes necessary for the representation of functional
behaviour. LetΦ be a countable set of findings. To be able to make a distinction between
present and absent defects and findings, respectively, a negation function¬ is introduced.
Positive defectsd (findingsf ) and negative defects¬d (findings¬f ) denotepresentde-
fects (findings) andabsentdefects (findings), respectively. It is assumed that the law of
double negation holds, i.e.,¬(¬x)= x, for a defect or findingx. If a defect or finding is
not included in a set, it is assumed to beunknown. Let∆P (ΦP ) denote a set of positive
defects (findings), and let∆N (ΦN ) denote a set of negative defects (findings), such that
∆P (ΦP ) and∆N (ΦN ) are disjoint. It is assumed that∆=∆N ∪∆P andΦ =ΦP ∪ΦN .
Often a set of assumptions∆ and a set of findingsΦ will be disjoint, in which case∆
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merely consists of defects. To ease the exposition, this will be assumed in the following,
unless stated otherwise. The power set of a setS is denoted by℘(S). As a matter of conve-
nience, members of∆N are frequently denoted by¬d , where¬(¬d)= d ∈∆P . Similarly,
members of the setΦN are denoted by¬f , where again¬(¬f )= f ∈ΦP .

The intended diagnostic meaning of a knowledge base of a diagnostic system in terms
of defects and findings is called a diagnostic specification. It is formally introduced
below.

Definition 1 (Diagnostic specification). A diagnostic specificationΣ is a tripleΣ =
(∆,Φ,e), wheree is a function

e : ℘(∆)→ ℘(Φ)∪ {⊥}
called anevidence function, such that:

(1) for eachf ∈Φ there exists a setD ⊆∆ with f ∈ e(D) or¬f ∈ e(D) (and possibly
both);

(2) for eachD ⊆∆: if d,¬d ∈D thene(D)=⊥;
(3) for eachD,D′ ⊆∆: if e(D) 6= ⊥ andD′ ⊆D thene(D′) 6= ⊥.

If e(D) 6= ⊥, it is said thate(D) is the set ofobservable findingsforD, andD is consistent;
otherwise, it is said thatD is inconsistent.

The sete(D) stands for the set of observable findings for a setD of simultaneously
occurring (present or absent) defects. In terms of diagnostic problem solving, the sete(D)

consists of findings that may be interpreted in some way as ‘evidence’ for the occurrence
of the set of defectsD, depending on the findings actually observed. How an evidence
function may be used for diagnosing a problem is discussed in Section 3; in this section,
we confine ourselves to investigating the meaning of evidence functions.

According to the definition above, we may have that bothf ∈ e(D) and¬f ∈ e(D),
which simply means that these findings may alternatively occur given the combined
occurrence of the defects in the setD, i.e., bothf and¬f are associated withD. In
some domains it might hold that ife({d})= e({d ′}), it follows thatd = d ′, i.e., the defects
d andd ′ are taken as synonyms for the same defect. For example, if the defects stand for
disorders in medicine, then two different namesd andd ′ for which the equality holds,
would normally be taken as different names for the same disorder. This situation is quite
common in medicine. In general, sets of observable findings associated with defects may
have several findings in common; thus, the setse(D) and e(D′), D 6= D′, need not be
disjoint.

As indicated in Definition 1, a set of defects may be inconsistent just because it holds
that d,¬d ∈ D. This is a form of inconsistency that is evident for syntactic reasons.
However, it is also possible thatD is inconsistent for other than syntactic reasons, for
example, becauseD contains defectsd andd ′ that are incompatible. In this situation, the
inconsistency is a consequence of a semantic relationship between the defectsd andd ′. In
several definitions, it will be convenient to consider only sets of defects that are consistent
for syntactic reasons; hence, the following definition:



P.J.F. Lucas / Artificial Intelligence 105 (1998) 295–343 303

Definition 2 (Syntactic consistency). LetΣ = (∆,Φ,e) be a diagnostic specification, then
the set of defectsD ⊆∆ is calledsyntactically consistentif for each defectd ∈D: ¬d /∈
D; otherwise,D is calledsyntactically inconsistent.

Next, the notion of maximal syntactic consistency is introduced; it is employed in the
following to define particular evidence functions.

Definition 3 (Maximal syntactic consistency). LetΣ = (∆,Φ,e) be a diagnostic specifi-
cation, then the set of defectsD ⊆∆ is calledmaximally syntactically consistentif D is
syntactically consistent and there exists nod ∈∆, d /∈D, such thatD∪{d} is syntactically
consistent.

Sometimes, a knowledge base is only examined with respect to ahypothesisH , a subset
of the entire set of defects∆. For this purpose, the following definition is introduced.

Definition 4 (Restricted evidence function). LetΣ = (∆,Φ,e) be a diagnostic specifica-
tion. A restricted evidence functionof e with respect to a setH ⊆∆, denoted bye|H , is a
function

e|H : ℘(H)→℘(Φ)∪ {⊥}
such that for eachD ⊆H : e|H(D)= e(D).

From a general point of view, the expressive power of evidence functions is as large
as infinite propositional logic; the functione may be viewed as similar to the conjunctive
normal form of propositional formulae with defects and findings as literals. For example,
the evidence-function representation of an implication(d1 ∧ d2) → (f1 ∨ f2) would
yield, among other function values,e({d1, d2,¬f1}) = {f2}. (Note that the argument
{d1, d2,¬f1} is allowed, because∆ andΦ need not be disjoint.) Hence, an evidence
function is expressive enough to capture the sort of knowledge as represented in the logic
theories of diagnosis, as introduced in Section 2.1. Consider the following example:

Example 5. Reconsider Fig. 1 and the associated logical specification of causal knowl-
edge in Section 2.1. The following diagnostic specificationΣ = (∆,Φ,e), where∆P =
{d1, d2, d3} andΦP = {f1, f2, f3}, corresponds to this causal specification. The intended
meaning of this causal specification with respect to diagnosis can be captured by means of
an evidence functione for which, among others, the following holds:

e
({d1}

) = {f1, f2} e
({d3}

) = ∅
e
({d2}

) = {f2} e
({d2, d3}

) = {f2, f3}
e
({d1, d2}

) = e({d1}
)

e
({d1, d2, d3}

) = e({d1, d3}
)= {f1, f2, f3}

e
({d1,¬d2, d3}

) =⊥.
The propertye({di}) ⊆ e({d1, d2}), i = 1,2, formally expresses that the interaction
betweend1 and d2 is monotonic; the evidence functione is monotonically increasing.
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The valuee({d1,¬d2, d3})=⊥ indicates an impossible situation, because ifd1 is present,
thend2 cannot be absent (though, it may be unknown);{d1,¬d2, d3} is inconsistent for
semantical reasons. The evidence functione actually extends the logic specification in
Section 2.1, by assuming that the specification is also intended to deal with negative
defects.

The reader has probably noticed that the evidence function above can be specified more
tersely; in Section 2.4 techniques for the partial specification of evidence functions will be
discussed in detail.

For a diagnostic system incorporating knowledge of structure and of normal or abnormal
behaviour, the following diagnostic specification is obtained.

Example 6. Reconsider the logic circuit depicted in Fig. 2, with the associated systemS
provided in Section 2.1. Suppose that presence of a defect inX is denoted byx; absence
of a defect inX is denoted by¬x. A similar notation is employed with respect to gate
A. If Ij = 1, this will be denoted byij ; an input equal toIj = 0 will be denoted by
¬ij . A similar convention is adopted for the output signalsOk . Fixed input signals to the
circuit arei1,¬i2 andi3. Now, the output signals are represented as observable findings,
and a component for which the presence or absence of a defect is unknown, is taken into
account by assuming that the component is either defective or nondefective. The following
evidence function (only values for consistent sets of defects are provided) corresponds to
the description above:

e′
({x,a})= {¬o1, o2}

e′
({¬x,a})= {o1,¬o2}

e′
({x,¬a})= {¬o1,¬o2}

e′
({¬x,¬a})= {o1, o2}

e′
({x})= {¬o1, o2,¬o2}

e′
({¬x})= {o1, o2,¬o2}
e′
({a})= {o1,¬o1, o2,¬o2}

= e′({¬a})
= e′(∅).

For example,e′({x}) = {¬o1, o2,¬o2} indicates that when theXOR gateX is defective,
and it is unknown whether or not theAND gateA is defective, then the first output signal
O1 = 0 and the second output signalO2 may be either 0 or 1, depending on whether
the AND gate is defective or not. Hence,e′({x}) is defined with respect to the output of
the entire circuit in Fig. 2, not merely the output produced by the output channel directly
connected to theXOR gate, i.e.,O1. For this circuit in general, the observable findings
for e′(D) always includeo1, ¬o1, or both, ando2, ¬o2, or both. In contrast with the
assumptions underlying the evidence function given in Example 5, the behaviour of the
system is described with respect to all elements of the entire system, and not in terms of
isolated (defective) components.
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The two examples above were meant to convey some intuition concerning the expressive
power of evidence functions for capturing the semantical significance of knowledge for
the purpose of diagnosis. One of the attractive features of evidence functions is that they
provide an easy means for describing properties of diagnostic interpretations of knowledge
bases in a precise, formal way.

2.3. Properties of evidence functions

As has been argued above, an evidence functione may possess certain properties,
determined by the (diagnostic) knowledge incorporated in the knowledge base on which it
is based. In this section, an overview is provided of properties of evidence functions that
will be useful for characterizing diagnostic knowledge. Some of these properties will be
required in the analysis of the various formal theories of diagnosis in Section 4.

The various properties can be distinguished intoglobal properties, i.e., properties that
hold for the entire evidence functione, andlocal properties, i.e., properties that hold only
for some sets of defectsD.

2.3.1. Global properties
In descriptions of many problem domains, only positive findings, or positive findings

and a few negative findings, are employed to characterize sets of defects. This situation
has already been encountered in Example 5. By the definition of an evidence function
(cf. Definition 1), any finding that is included in the set of findingsΦ must appear either
positively, negatively, or both, in some function valuee(D), D ⊆ ∆. This explains why
from Definition 1 it follows that⋃

D⊆∆,D consistent

e(D)=Φ

need not hold, because for some findingf ∈ Φ, we may have that¬f /∈ e(D), for each
D ⊆ ∆. Nevertheless, sometimes every positiveand negative finding inΦ is covered by
the evidence functione. The consequence is that such an evidence function is, in principle,
dependent on the notion of diagnosis employed, capable of producing a diagnosis for any
set of findings observed (cf. Section 3).

Monotonicity of an evidence function is a property that will be encountered several times
in the analysis of theories of diagnosis in Section 4. It is defined as follows:

Definition 7 (Monotonicity). Let Σ = (∆,Φ,e) be a diagnostic specification. The
evidence functione is calledmonotonically increasingif

∀D,D′ ⊆∆: D ⊆D′ ⇒ e(D)⊆ e(D′)
ande is calledmonotonically decreasingif

∀D,D′ ⊆∆: D ⊆D′ ⇒ e(D)⊇ e(D′)
with D andD′ consistent. Ife is either monotonically increasing or decreasing, it is called
monotonic; otherwise,e is callednonmonotonic.
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If an evidence function is monotonically increasing, this means that the more defects
are considered, the more (new) findings must be taken into account. The evidence
function in Example 5, which was the result of the translation of causal knowledge into
evidence-function representation, was monotonically increasing. If an evidence function
is monotonically decreasing, this means that if more defects are considered, information
concerning the observable findings of sets of defects will be more specific. We have
encountered an example of such a function in Example 6, where knowledge concerning the
normal and abnormal behaviour of a circuit was encoded. Note that what is often referred
to as the ‘nonmonotonicity of diagnosis’ (cf. [36]) actually concerns the interpretation of
observed findings in the process of diagnosis. This is an aspect completely different from
the one considered in this section, but will be considered in Section 3.

Of special interest in the previous section was the representation of interactions among
defects and findings in terms of an evidence function. If no interactions among defects and
findings exist (except inconsistency among syntactically inconsistent defects), the evidence
function conforms to the following definition:

Definition 8 (Interaction freeness). A set of defects∆ of a diagnostic specificationΣ =
(∆,Φ,e) is calledinteraction free with respect toe if

e(D)=
⋃
d∈D

e
({d})

for each syntactically consistent set of defectsD ⊆∆. If in addition for eachd ∈∆: e({d})
is nonempty, and for eachd,d ′ ∈∆, d 6= d ′, it holds that

e
({d})∩ e({d ′})= ∅

the set∆ is calledstrongly interaction free; otherwise,∆ is calledweakly interaction free.

We will sometimes simply say that the evidence functione is interaction free. Interaction
freeness means that the observable findings associated with a collection of defectsD are
the same as the collected observable findings associated with each individual defectd ∈D.
Thus, by combining the observable findings for individual defects, the observable findings
for combinations of defects are obtained. Although interaction freeness is presented here
as a global property, we shall occasionally employ the phrase in alocal sense, to express
that two or more defects do not interact with each other, e.g.,e({d,d ′})= e({d})∪ e({d ′}).
It is easy to show that an evidence function that is interaction free is also monotonically
increasing.

Proposition 9. If Σ = (∆,Φ,e) is a diagnostic specification, such that∆ is interaction
free, thene is monotonically increasing.

Proof. Simply note that ifD ⊆D′, with consistent setsD,D′ ⊆∆, then

e
(
D′
)= e(D ∪D′)= ⋃

d∈D∪D′
e
({d})=⋃

d∈D
e
({d})∪ ⋃

d∈D′
e
({d})= e(D)∪ e(D′).

From this, it follows thate(D)⊆ e(D′). 2
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As a matter of convenience, function valuese({d}) of an evidence function that defines∆
to be interaction free, are sometimes simply denoted bye(d). If a set of defects is strongly
interaction free with respect to some evidence functione, this does not necessarily imply
that the defects do not influence each other in one way or the other; it only means that
these influences have not been captured in the functione explicitly, because the meaning
attached toe does make these influences irrelevant with respect to diagnosis.

In some domains in which defects are interaction free, it holds that each defect is
described in unique terms, i.e., for each defectd ∈∆, the set of observable findingse(d)
is not contained in the sete(D), if d is not included inD. It is shown that the evidence
function restricted to consistent sets of defects is injective (the notationV \W stands for
the difference between the two setsV andW ).

Proposition 10. LetΣ = (∆,Φ,e) be a diagnostic specification such that∆ is interaction
free with respect toe. Then, if for eachd ∈∆, and each consistent setD ⊆∆\{d}, it holds
thate({d}) 6⊆ e(D), then the restriction of the evidence functionse to consistent subsets of
∆ is injective.

Proof. It has to be proven that for consistentD,D′ ⊆ ∆, with D 6= D′, it holds that
e(D) 6= e(D′). If D 6= D′, then there exists a defectd ∈ D (or d ∈ D′ if D ⊂ D′, but
reversingD andD′ does not matter), such thatd /∈D′. Hence, according to the assumption
of the proposition:e(d) 6⊆ e(D′). Since it holds by interaction freeness thate(d)⊆ e(D),
it follows, also from interaction freeness, thate(D) 6⊆ e(D′). From this, the result follows
immediately. 2

Given this proposition, the following corollary holds:

Corollary 11. If Σ = (∆,Φ,e) is a diagnostic specification such that∆ is strongly
interaction free, then the restriction of the evidence functione to syntactically consistent
sets of defects is injective.

Proof. Simply note that if∆ is strongly interaction free, it holds thate({d}) 6⊆ e(D\{d})
for eachD ⊆∆. 2

Proposition 10 is also satisfied if for eachd ∈ ∆, e(d) includes a unique observable
finding (called apathognomonicfinding in medicine). Note that it is now possible to
uniquely identify a set of defectsD by its associated set of observable findingsF = e(D),
due to the injective nature ofe (but the set of defects may also be undefined). This yields a
very simple form of diagnosis.

2.3.2. Local properties
There are a number of local properties of evidence functions that are the result of

mapping a semantic relationship among defects to relationships among sets of observable
findings. A typical example of such a relationship is causality. For example, if the defectd

is known to cause the defectd ′, it is, in terms of the associated evidence function, known
that the set of observable findings ford contains all observable findings associated withd ′,
i.e.,
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e
({d ′})⊆ e({d}). (1)

In a monotonic theory of causality (cf. [9,10]), the following would hold as well:

e
({d})= e({d,d ′}) (2)

expressing that asd causesd ′, whend andd ′ are present together, precisely the same set
of observable findings would be obtained as if onlyd was present andd ′ is unknown. From
(1) and (2) it follows that

e
({d,d ′})= e({d})∪ e({d ′}).

Hence,d andd ′ are assumed to be interaction free in the local sense; note thatd andd ′
are only weakly interaction free. This is not a global property of causality as employed in
abductive diagnosis, because interaction freeness will not hold in general (cf. Example 5).

Note that a causal specificationC with a set of logical rules equal to

R= {d1→ d2, d2→ f }
is not distinguishable in terms of evidence functions from

R′ = {d1↔ d2, d2↔ f }
because in both cases an interaction-free evidence functione with e({di}) = {f }, i =
1,2, results. This means thatR and R′ are similar with respect to their diagnostic
interpretation.

Starting with causality in a more general sense, a number of local properties of evidence
functions will be examined.

(a) Influence interactions: the occurrence of some defects influences the occurrence of
other defects, as reflected by the observable findings. The following two types of
local interaction are distinguished:
• Causality: if the combination of defectsD causes the set of findingsF , then
F = e(D). The diagnostic view of knowledge of the sort ‘the set of defectsD

causes the set of defectsD′ ’ as, for example, used in abductive diagnosis can be
made precise in terms of an evidence function as follows:

e
(
D′
)⊆ e(D)

for some consistentD,D′ ⊆∆, i.e., any finding that may be observed for the set
of defectsD′ may also be observed for the set of defectsD. Furthermore, in this
case it holds that

e(D)= e(D ∪D′).
In Example 5 above, simple causal relationships between three individual defects
were examined.
Various other types of causal relations can be expressed in terms of evidence
functions. For example, the values of the evidence function

e
({d1}

)= e({¬di})= ∅
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Fig. 4. Nondeterministic causality.

for i = 1, . . . ,3, and

e
({d2}

)= e({d1,¬d3}
)= {f1}

e
({d3}

)= e({d1,¬d2}
)= {f2}

expressnondeterministic causalitybetween the defectd1 on the one hand, andd2
andd3, on the other hand, as depicted in Fig. 4.
• Correlation: if the defectsd andd ′, d 6= d ′, are correlated, then ifd has occurred

thend ′ occurs as well, and vice versa, whereas ifd is absent (¬d), d ′ is also
absent (¬d ′), and vice versa. Correlation of defects can be described by means of
an evidence function as follows:

e
({d}) = e({d ′}) = e({d,d ′})
e
({¬d}) = e({¬d ′}) = e({¬d,¬d ′})
e
({d,¬d ′})= e({¬d,d ′}) =⊥.

The conditions above are satisfied for positive correlation; negative correlation
can be described by means of the conditions

e
({d}) = e({¬d ′}) = e({d,¬d ′})
e
({¬d}) = e({d ′}) = e({¬d,d ′})
e
({d,d ′}) =⊥.

(b) Synonyms: if the defectsd ∈∆ andd ′ ∈∆ are synonymous, thene({d})= e({d ′}).
This is commonly applied in medicine, as has been discussed above. If for each
d,d ′ ∈∆, d 6= d ′, it holds thate({d}) 6= e({d ′}), there are no synonymous defects. It
is said that∆ (alsoe) is synonym free.

(c) Synergic interactions: these are interactions that augment, cancel, preclude, exclude,
or complement local interactions among defects. The following types of interaction
are distinguished:
• Augmentation(also referred to aspotentiation): the combined occurrence of two

or more defects in the setD gives rise to new observable findings in addition to
those associated with the individual elements, or proper subsets ofD, i.e.,

e(D)⊃
⋃
D′⊂D

e
(
D′
)

(3)
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for some consistentD ⊆ ∆. It is interesting to note that (3) is yielded for
monotonically increasing evidence functions, using the weaker condition:

e(D) 6⊆
⋃
D′⊂D

e
(
D′
)
.

• Cancellation(also referred to asfault masking[15] or antagonism): the combined
occurrence of two or more defects in the setD yields fewer observable finding
when compared to the findings associated with the individual elements, or proper
subsets ofD, i.e.,

e(D)⊂
⋃
D′⊂D

e
(
D′
)

for some consistentD ⊆∆.
• Augmented cancellation: this notion combines the notions of augmentation and

cancellation mentioned above, after weakening both conditions. The following
holds:

e(D) 6⊆
⋃
D′⊂D

e
(
D′
)∧ e(D) 6⊇ ⋃

D′⊂D
e
(
D′
)

for some consistentD ⊆∆. For example,e({d1})= {f1}, e({d2})= {f2, f3}, but
e({d1, d2}) = {f3, f4}; hence, the findingsf1 andf2 are cancelled, and a new
finding (f4) is observable. Note thate({d1, d2}) ◦ e(di), i = 1,2, fails to hold for
◦ ∈ {⊂,⊃}. This is a consequence of the dependence between augmentation and
cancellation. The cancellation of findings causes augmentation to fail, and vice
versa. Hence, the weakening of the two conditions in the notion of augmented
cancellation.
• Preclusion: the presence of one or more defects in a combination implies that

each element in some other combination of defects is assumed to be absent. This
can be expressed by:

e
({d1, . . . , dn}

)⊇ e({¬d ′1, . . . ,¬d ′m}).
This means that a set of present defects contains information pertaining to a set
of absent defects. Note that if∆ is interaction free, it follows that

e
({d1, . . . , dn}

)⊇ e({¬d ′i})
for eachi, 16 i 6m, m> 1. This yields a preclusion relation that is more easy
to grasp, namely that a combination of defectsD precludes some defectd :

e(D)⊇ e(¬d).
• Exclusion: some combination of defectsD cannot occur:

e(D)=⊥.
• Complementation: the observable findings associated with the absent defects
¬d1, . . . ,¬dn, are the complements of those associated with the presence of
those, i.e., ife({d1, . . . , dn})= {f1, . . . , fm} thene({¬d1, . . . ,¬dn})= {¬f1, . . . ,

¬fm}.
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(d) Empirical associations: when the defects in the setD are simultaneously present,
the findings in the setF may be observed, givenF = e(D). Knowledge based
on empirical associations is often structured according to individual defects and
families (categories) of defects; a defectd can be calledmore specificthan a defect
d ′ if e({d})⊂ e({d ′}); if this relation holds for more than one defectd , then defect
d ′ may be taken as acategory(it includes a number of different defects).

The evidence-function representations of causal knowledge and of empirical associ-
ations have much in common, but there are a few differences. Firstly, the condition
e(d) = e(d ′) fails to hold for empirical associations ifd and d ′ are not synonymous.
Secondly, a defectd for which e(d) ⊃ e(d ′), for more than one defectd ′ ∈ ∆, will be
a category if the evidence functione stands for empirical associations, but,d will not be a
category in general ife represents causal knowledge.

This concludes our list of various interactions among defects, and their expression in
terms of evidence functions.

2.4. Partial specification

When a domain satisfies certain properties, it may be sufficient to provide a partial
specification of an evidence function. Partial specification has the virtue that it is not always
necessary to explicitly specify, or compute, the exponential number of function values of
an evidence functione; it suffices to provide only part of them explicitly. Any algorithm
for diagnosis using an evidence function of the form discussed in the previous section,
without simplifying assumptions, will be intractable. In [5], in which the complexity of
algorithms for abductive diagnosis is analysed, it is therefore assumed that the specification
of a domain theory is polynomial in the sum of the cardinalities of the sets∆ andΦ.
A partial specificationof an evidence functione consists of a restriction ofe, denoted bỹe,
which is defined on a nonempty subsetV ⊆℘(∆), together with a number of computation
rules expressing how function valuese(D) must be determined. If an evidence function is
defined by means of a partial specification, it is calledpartially specified.

In domains for which not all function valuese(D) can be provided explicitly, such as
in medicine, the condition that the specification of an evidence function is polynomial
in size is usually fulfilled, be it for pragmatic reasons. In biomedical applications there
is usually insufficient knowledge available to explicitly capture all interactions among
defects, because the medical literature provides little information about the observable
features of specific disorder combinations. In technical applications, the situation is less
unfavourable, in the sense that often precise technical descriptions of the domain are
available.

In several diagnostic theories, for example, the set-covering theory of diagnosis [29],
partial specification includes a restriction of an evidence function to singleton sets, i.e., it
suffices to define an evidence function in terms of the individual defects distinguished in
the domain. If the associated computation rule expresses that the observable findings for
nonsingleton sets of defects can be taken as the union of the observable findings associated
with their elements, the evidence function is interaction free. This limitation is enforced
by some formal theories of diagnosis; it may not be sanctioned by the characteristics of a
problem domain, as we have seen in the previous section.
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Although the extension of a partial specification to an evidence function is thus
dependent on known evidence-function properties, expressed by means of computation
rules, there are two extremes that deserve attention. The first useful way of partially
specifying an evidence function is based on the assumption that when no explicit
knowledge concerning the findings associated with a set of defectsD is available,
implicitly the largest proper subsetsD′ of D for which ẽ(D′) is given, are taken to yield
sufficient information concerning the interactions among the elements ofD. This form of
partial specification is called bottom-up partial specification.

Definition 12 (Bottom-up partial specification). Let Σ = (∆,Φ,e) be a diagnostic
specification, and letV ⊆ ℘(∆)\{∅} be a set, such that for eachd ∈∆: {d} ∈ V . Then, a
function

ẽ : V →℘(Φ)∪ {⊥}
is called abottom-up partial specificationof e if:

(1) for eachD ∈ V : e(D)= ẽ(D);
(2) for eachD ∈ ℘(∆)\V :

e(D)=
⋃

D′⊂D, D′∈V
∀D′′∈V, D′′⊂D: D′′ 6⊃D′

e
(
D′
)
.

Hence, by a bottom-up partial specificationẽ we mean a restriction of an evidence
function e with appropriate computation rules to generate the functione from ẽ. The
principal idea of condition (2) is illustrated in Fig. 5, where a node in the graph represents
a set and an edge represents proper set inclusion; all nodes below the node labelledD

in the graph are proper subsets ofD. Note that a restrictioñe need not be unique; one
can freely include subsetsD of ∆ in the domain of the restrictioñe for which e(D)
could also be determined using condition (2) in the definition above. The intuitive idea
of a bottom-up partial specification is that information concerning the interaction among
defects is derived from the largest (with respect to⊂) proper subsetsD′ of a set of defects
D, for which function values̃e(D′) have explicitly been given; the function valuee(D),
when not explicitly given bỹe, is obtained as the union of all suchẽ(D′). In the examples
below this choice will be further clarified. For convenience, in the following, function
values for syntactically inconsistent sets will be left out from the definition of bottom-up

Fig. 5. Part of a lattice used for bottom-up specification of an evidence function.
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partial specifications̃e. From the definition of a bottom-up partial specification it follows
that e(∅) = ∅, i.e., there are no observable findings if there is no knowledge concerning
defects. If the problem domain concerns the (faulty) behaviour of a device, a bottom-up
partial specification amounts to specifying the isolated behaviours of parts of the device.
Hence, a bottom-up partial specification is in line with a specification of causal knowledge
as in the abductive theory of diagnosis, i.e., any diagnostic specification obtained from this
theory can be described as a bottom-up partial specification.

Often, the causal relation, such as represented by standard logical entailment, is taken
to be monotonic. Bottom-up partial specifications, however, also allow for representing
nonmonotonic interactions and complementary findings representing alternative observ-
able findings, e.g.,f and¬f , thus extending the repertoire of the types of knowledge that
can be used for diagnosis.

Example 13. Consider a medical diagnostic problem, where a patient may have Cushing’s
disease—a disease caused by a brain tumour producing hyperfunctioning of the adrenal
glands—pulmonary infection and iron-deficiency anaemia. We shall not enumerate all
signs and symptoms causally associated with these medical problems; it suffices to note
that moon face is a sign associated with Cushing’s disease, fever and dyspnoea (shortness
of breath) are associated with pulmonary infection, and low levels of serum iron are
characteristic for iron-deficiency anaemia. However, in a patient in whom Cushing’s
disease and pulmonary infection coexist there usually is no fever. This indicates that
there exists an interaction between the two disorders, Cushing’s disease and pulmonary
infection, that is nonmonotonic, i.e., the co-occurrence of the two disorders produces fewer
findings than the union of their associated observable findings. Fig. 6(a) depicts this simple
problem as a directed graph; the meaning of the nodes in the graph is indicated in Fig. 6(b).

Consider a diagnostic specificationΣ = (∆,Φ,e), where e is bottom-up partially
specified by means of the functionẽ, which is defined as follows:

ẽ(D)=


{f1, f2} if D = {d1},
{f3} if D = {d2},
{f2, f4} if D = {d3},
{f2, f3} if D = {d1, d2},
∅ if D = {¬di}, i = 1, . . . ,3.

From this specification, it follows thate({d1}) 6⊆ e({d1, d2}); e is nonmonotonic. Note the
difference between Fig. 6, which is a representation of the functionẽ, and does not assume
monotonicity, and the evidence-function interpretation of Fig. 1. Here, it does not hold that
e({d1, d2})= {f1, f2, f3}.

As a prerequisite for bottom-up partial specification, it is assumed that at least
knowledge concerning individual defects (i.e., singleton sets of defects) is available
in a given diagnostic domain. This is not an unrealistic assumption, because in many
problem domains knowledge concerning the possible abnormal behaviour resulting from
an individual defect is the kind of knowledge most readily available.

Example 14. Consider again the evidence function from the example above (Example 13).
From this partial specification it follows that, for example,e(∆P )= ẽ({d1, d2})∪ ẽ({d3})=
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Fig. 6. Partial evidence functioñe.

{f2, f3, f4}, where∆P = {d1, d2, d3}. Note that neither̃e({d1}) nor ẽ({d2}) play a role in
determininge(∆P ), because there is information available about the interaction between
the defectsd1 and d2 by the function valueẽ({d1, d2}). This function value provides
partial information about the mutual influences among the defects in∆P ; more precise
information about the possible interactions between the members of∆P is unavailable;
hence,{d1, d2} and{d3} are assumed to be free of interaction, but the defectsd1 andd2 are
not.

It follows that a bottom-up partial specification may provide information about the
interaction between defects. In the extreme situation that no interaction between defects
exists, it suffices to define a partial specification in terms of individual defects only.

Proposition 15. If Σ = (∆,Φ,e) is a diagnostic specification, such that∆ is interaction
free, then there exists a bottom-up partial specificationẽ of e with domain

V = {{d} | d ∈∆}.
Proof. Note that if the domain of̃e, V , is defined as above, conditions (1) and (2) in
Definition 12 simplify to the definition of interaction freeness; hence, the evidence function
can be defined as follows

e(D)=
⋃
d∈D

ẽ
({d})

for each syntactically consistent setD ⊆∆. 2

The second typical form of a partial specification of an evidence function is obtained
by providing at least explicit function values for maximally syntactically consistent sets
D ⊂∆, and describing other combinations of defectsD′ by taking associated observable
findings of defectsd /∈ D into account. In the following example, this particular partial
specification technique is introduced, using a diagnostic description of a logic circuit taken
from [18].

Example 16. Consider the logic circuit depicted in Fig. 7, which consists of twoNOT

gates (or inverters) in series. In [18], the problem of diagnosing faulty behaviour of the
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Fig. 7. TwoNOT gates in series.

given logic circuit is described for an input signal fixed toI = 0, denoted here by¬i,
with resulting output signals equal toO = 0, denoted by¬o, or O = 1, denoted by
o, respectively. Again, output signals correspond to observable findings. The following
behavioural assumptions are made in [18]. If aNOT gateNi is defective, denoted byni ,
its output will be either 0, or the input to the gate is shorted (unmodified) to its output;
¬ni designates that theNOT gateNi is not defective. Given this information, the following
restriction ẽ of e of a diagnostic specificationΣ = (∆,Φ,e) can be defined (we have
disregarded the input, because it is assumed to be fixed to 0):

ẽ
({n1, n2}

)= {¬o}
ẽ
({¬n1, n2}

)= {¬o,o}
ẽ
({n1,¬n2}

)= {o}
ẽ
({¬n1,¬n2}

)= {¬o}.
The complementary pair{¬o,o} is the result of the assumption above that there are two
different, nondeterministic types of abnormal behaviour. The functionẽ is taken as a partial
specification to generatee by assuming thate({n1}) = {¬o,o}, etc., meaning that if it is
unknown whether or notN2 is defective, the possible output of the circuit, givenN1 to be
defective, is{¬o,o}. Thus, similar to Example 6, we have that

e
({n1}

)= e({n1, n2}
)∪ e({n1,¬n2}

)
.

Interestingly, this partial specification indicates that if the observed output signal is equal
to o, either{¬n1, n2} or {n1,¬n2} may be the case, which are precisely the diagnostic
alternatives provided by de Kleer et al. However, it is not at all obvious from their example
that for an output equal to¬o, the set of defects{¬n1, n2} is a possibility as well. This
information is immediately available from the evidence functione.

This way of partially specifying an evidence function will be called top-down partial
specification of an evidence function. A top-down partial specification is appropriate when
it is not possible to describe defects with associated observable findings in isolation from
other defects and associated findings, i.e., knowledge of the associated findings of the other
defects, including their interaction, is needed to describe the defects. If the domain is a
device, this assumption means that it is not possible to describe the (normal or abnormal)
behaviour of a component in isolation from its environment. One could view the approach
supported by top-down specification as a ‘holistic approach’, and the approach supported
by bottom-up specification as a ‘reductionistic approach’. Top–down partial specification
is defined below.
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Fig. 8. Part of a lattice used for top-down specification of an evidence function.

Definition 17 (Top–down partial specification). Let Σ = (∆,Φ,e) be a diagnostic
specification, and letV ⊆ ℘(∆)\{∅} be a set, such that for each maximally syntactically
consistent setD ⊆∆: D ∈ V . Then, the function

ẽ : V →℘(Φ)∪ {⊥}
is called atop-down partial specificationof e if:

(1) for eachD ∈ V : e(D)= ẽ(D);
(2) for eachD ∈ ℘(∆)\V :

e(D)=
⋃

D′⊃D, D′consistent, D′∈V
∀D′′∈V, D′′⊃D: D′′ 6⊂D′

e
(
D′
)
.

Note thate(D) is obtained by taking the union of all function valuese(D′), where
D′ ∈ V is a minimal proper superset ofD, and no setD′′ ∈ V is smaller thanD′. The
principal idea is depicted in Fig. 8. In Examples 6 and 16, the behaviour of two logic
circuits was studied using evidence functions that could have been generated by a top-
down partial specificatioñe, with

V = {{a,x}, {¬a,x}, {a,¬x}, {¬a,¬x}}
for Example 6 and

V = {{n1, n2}, {¬n1, n2}, {n1,¬n2}, {¬n1,¬n2}
}

for Example 16. The assumption underlying an evidence function defined in this way is
that it is sufficient to describe a domain in terms of the observable findings associated with
all maximally consistent combinations of defects in the domain. This means that if the
domain is a device consisting of components that may be defective, information about the
isolated behaviour of individual components of the system has not been supplied. If a set
of defects is described in terms of this special case of a top-down partial specification, we
shall say that it is externally described.

Definition 18 (Externally described). Let Σ = (∆,Φ,e) be a diagnostic specification.
The set of defects∆ is calledexternally describedwith respect toe if there exists a top-
down partial specificatioñe for e with domainV , where for eachD ∈ V : D is maximally
syntactically consistent.
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Note that if∆ is externally described with respect toe, the definition of the evidence
function can be simplified as follows. For each consistentD ⊆∆:

e(D)=
⋃

D′⊇D, D′∈V
D′consistent

ẽ
(
D′
)
.

It is easily shown that an evidence function for a set of defects that is externally described
is monotonically decreasing.

Proposition 19. If Σ = (∆,Φ,e) is a diagnostic specification, such that∆ is externally
described, thene is monotonically decreasing.

Proof. If D ⊆D′, with consistentD,D′ ⊆∆, then

e
(
D′
)= e(D ∪D′)= ⋃

D′′⊇(D∪D′), D′′∈V
D′′consistent

e
(
D′′
)⊆ ⋃

D′⊇D, D′∈V
D′consistent

e
(
D′
)= e(D).

From this, it follows thate is monotonically decreasing.2

Observe that top-down partial specification does not result in a significant reduction in
the number of values to be specified for an evidence function, because if|∆P | = n, at least
2n function values have to be specified.

Above, we have introduced two opposite ways to define evidence functions. Bottom-up
partial specification appeared to be particularly suitable for generating evidence functions
for defects among which a limited amount of interaction exists. By contrast, top-down
partial specification is most suitable for generating evidence functions for defects which
are strongly interrelated. As one would expect, there are also evidence functions that lie
somewhere between these two extremes, suitable for representing particular real-world
knowledge.

3. Notions of diagnosis

As has been discussed, an evidence function can be viewed as a semantic interpretation
of a knowledge base, containing, for example, causal or functional knowledge, in terms of
expected evidence for the combined occurrence of (present or absent) defects. To employ
an evidence function for the purpose of diagnosis, it must be interpreted with respect to
theactuallyobserved findings. The interpretation of an evidence function and the observed
findings that is adopted, can be viewed as a notion of diagnosis applied for solving the
diagnostic problem at hand.

More formally, letP = (Σ,E) be a diagnostic problem, whereE ⊆ Φ is a set of
observed findings; it is assumed that iff ∈ E then¬f /∈ E, i.e., contradictory observed
findings are not allowed. The set of observed findingsE denotes findings that are present or
absent at a given time. In contrast, the findings in the set of observable findingsF = e(D),
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D ⊆∆, need not all be observed at the same time. LetRΣ denote anotion of diagnosisR
defined for suitable diagnostic specifications, and here applied toΣ , then a mapping

RΣ,e|H : ℘(Φ)→ ℘(∆)∪ {u}
called adiagnostic function, will either provide a diagnostic solution for a diagnostic
problemP , or indicate that no solution exists, denoted byu (undefined). Recall thatH
denotes ahypothesis, which is taken to be a set of defects (more generally, assumptions
H ⊆∆), ande|H denotes the restricted evidence function ofe. A notion of diagnosisR is
usually a partial function; it is only defined for diagnostic specifications satisfying certain
requirements.

Next, a diagnosis is defined as the result of applying a diagnostic function to a set of
observed findings.

Definition 20 (Diagnostic solution). Let P = (Σ,E) be a diagnostic problem, withE ⊆
Φ a set of observed findings. LetR be a notion of diagnosis. AnR-diagnostic solution, or
R-diagnosisfor short, with respect to the set of defectsH ⊆∆ is defined as follows:

RΣ,e|H (E).

In Fig. 9, the idea underlying the definition of a notion of diagnosisR and diagnostic
solution to a diagnostic problem is illustrated schematically.

The definition above is very unrestrictive; one reasonable restriction on the notion of
diagnosis is obtained by assuming that for each nonemptyE ⊆ Φ, and each nonempty,
consistent setH ⊆∆, for whichRΣ,e|H (E)=H ′, withH ′ 6= u, it holds thate|H(H ′)∩E 6=
∅ if e|H(H ′) 6= ∅, i.e., at least one observed finding inE must be accounted for by the
diagnosisH ′. The set of findingse|H(H ′) ∩ E is called the set of findingsaccounted
for by H ′. The condition that at least one finding must be accounted for simply means
that the resultH ′ obtained by applying a diagnostic function has at least some relevance

Fig. 9. Schema of notion of diagnosis, diagnostic problem and solution.
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with respect to the findings observed. This is a rather weak condition. Other, more precise
constraints will be encountered below for specific notions of diagnosis.

If application of the diagnostic functionRΣ,e|H yields as a resultH ′ = RΣ,e|H (E), it is
said that:

(1) the hypothesisH is acceptedif H ′ =H ;
(2) the hypothesisH is rejectedif H ′ = u;
(3) otherwise, the hypothesisH is said to beadjusted.

Adjustment of a hypothesis indicates that not all defects inH have passed when the
hypothesis was tested againstE, i.e., the resultH ′ is taken as the adjusted version of
the original hypothesisH .

Note that it is possible that

RΣ,e|H (E)=RΣ,e|H ′ (E)
for H 6=H ′.

Example 21. To demonstrate how the definitions above can be employed, consider a
notion of diagnosisU , such thatUΣ,e|H (E) = H ′ if it holds thatH ′ is the largest subset
of H with e|H(H ′) ⊆ E; otherwise,H ′ = u. This notion of diagnosis expresses that a
diagnosis consists of a set of defects which, on the one hand, can account for at least
part of all observed findings, and, on the other hand, every finding associated with the set
of defects that is taken as a diagnosis has been observed. Furthermore, there is only one
such maximal subset of the given hypothesisH . Now, reconsider the medical domain from
Example 13 (Fig. 6) withH = {d1, d2} (pulmonary infection and Cushing’s disease). Some
interesting diagnostic conclusions are:

UΣ,e|H
({f1, f2}

)= {d1},
i.e., a patient with only fever and dyspnoea has pulmonary infection,UΣ,e|H ({f1}) = u,
i.e., there exists no diagnosis accounting for only fever as sign, and finally,

UΣ,e|H
({f2, f3}

)=H.
In the first case, the hypotheses has beenadjusted, in the second case, the hypothesisH is
rejected, and in the last case, the hypothesisH has beenaccepted.

This example demonstrates the flexibility of the approach.
As remarked above, Definition 20 imposes very few constraints with respect to the

properties that must be satisfied by a reasonable notion of diagnosis. One conceivable
property that, however, usually fails to hold, is that a notion of diagnosis respects the
evidence functione.

Definition 22 (R respectse). Let R be a notion of diagnosis defined for the diagnostic
specificationΣ = (∆,Φ,e). It is said thatR respectse if:

(1) for each set of observed findingsE ⊆ Φ, there exists a setH ⊆ ∆ such that
e(RΣ,e|H (E))=E, and

(2) for each consistentD ⊆∆, there exists a setH ⊆∆, such thatRΣ,e|H (e(D))=D
and for eachH ′ 6⊇H : RΣ,e|H ′ (e(D))= u.
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This means that a function that is taken as the inverse of the evidence functione,
which must be bijective (excluding inconsistent sets of defects and setsE ⊆ Φ with
complementary findings), is composed of function valuesRΣ,e|H (E), where the setH ⊆∆
need not be fixed. Of course, the two conditions above will also hold if there exists a
functionRΣ,e|H with fixedH that can be taken as the inverse.

If a notion of diagnosis respects an evidence function, and, in addition, an evidence
function is interaction free, the following proposition holds:

Proposition 23. If R is a notion of diagnosis defined for the diagnostic specification
Σ = (∆,Φ,e), wheree is interaction free, andR respectse, then

RΣ,e|H (E)=RΣ,e|H
(
E′
)∪RΣ,e|H (E′′)

for each set of observed findingsE,E′ andE′′, withE,E′,E′′ ⊆Φ andE =E′ ∪E′′, and
H ⊆∆.

Proof. Sincee is bijective if restricted to consistent sets of defectsD, we know that there
exist setsD, D′ andD′′ such thatE = e(D), E′ = e(D′) andE′′ = e(D′′), with E =
E′∪E′′. Then, using the fact thate is interaction free:e(D)= e(D′)∪e(D′′)= e(D′∪D′′).
Therefore,D =D′ ∪D′′, becausee is injective. From the fact thatR respectse it follows
that

RΣ,e|H ′
(
E′
)∪RΣ,e|H ′′ (E′′)=RΣ,e|H ′ (e(D′))∪RΣ,e|H ′′ (e(D′′))

=D′ ∪D′′
=RΣ,e|H

(
e(D′ ∪D′′))

=RΣ,e|H (E)
for some consistentH,H ′,H ′′ ⊆∆. Furthermore, sinceR respectse andRΣ,e|H (E)=D
it follows that e|H (D) = E (D ⊆ H holds by definition). Similarly, fromRΣ,e|H ′ (E

′) =
D′ we have e|H ′(D′) = E′. Moreover, becauseD′ ⊆ D it follows that D′ ⊆ H ,
hencee|H (D′)= E′. Therefore,RΣ,e|H ′ (E

′) = RΣ,e|H (E′). Analogously,RΣ,e|H ′′ (E
′′) =

RΣ,e|H (E
′′). 2

Hence, it turns out that if a notion of diagnosisR respects an interaction-free evidence
function e, the set of observed findings can be partitioned, such that each subset can be
accounted for separately by the same functionRΣ,e|H . Note that if we have an evidence
function e for which f,¬f ∈ e(D), for someD ⊆ ∆, thenR cannot respecte, due to
the fact thatE cannot contain complementary findings, at least, ifRΣ,e|H (E) is to be
interpreted as a diagnosis.

A notion of diagnosisR provides the possibility to express interactions among defects
and observed findings at the level of diagnosis, which we call dependencies. We may
also have that a hypothesis can be split up into two subhypotheses, that can be examined
independently, yielding a form of compositionality. More formally, we have the following
definition:

Definition 24 (Independence assumption). Let R be a notion of diagnosis. It is said that
R fulfills the independence assumptionif for each diagnostic specificationΣ for which
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RΣ is defined, and for each pair of consistent sets of defectsH,H ′ ⊆ ∆ and each set of
observed findingsE ⊆Φ it holds that

RΣ,e|H∪H ′ (E)=RΣ,e|H (E)∪RΣ,e|H ′ (E)
with RΣ,e|H∪H ′ (E) 6= u.

This means that the diagnostic solution with respect to the hypothesisH ∪H ′ is obtained
as the union of the solutions for the two separately examined hypothesesH andH ′. As
we shall see, for many notions of diagnosis described in the literature, in particular for
abductive diagnosis and consistency-based diagnosis, the independence assumption fails
to hold.

Example 25. The following notion of diagnosisS is defined for diagnostic specifications
Σ = (∆,Φ,e), where the evidence functione is interaction-free. LetE ⊆ Φ be a set of
observed findings, then

SΣ,e|H (E)=
⋃

H ′ ⊆H,e|H (H ′)⊆E
H ′

for each consistentH ⊆ ∆. The intuitive idea underlying this notion of diagnosis is
that only defects in a hypothesisH that have all their associated findings included as
observed findings are admitted as part of a diagnosis; the least upper bound of accepted
subhypotheses is taken as the most likely diagnosis. The independence assumption is
satisfied forS, because any interaction-free evidence function is monotonically increasing,
therefore, ife(D)⊆E, thene(D′)⊆E,D′ ⊆D.

Next, diagnostic monotonicity is defined for a notion ofR-diagnosis; it is a property in
line with the independence assumption.

Definition 26 (Diagnostic monotonicity). A notion of diagnosisR is calleddiagnostically
monotonicif for each diagnostic specificationΣ for whichRΣ is defined, each consistent
set of defectsH ⊆H ′, withH,H ′ ⊆∆, and each set of observed findingsE ⊆Φ, it holds
that ifRΣ,e|H (E) 6= u, thenRΣ,e|H (E)⊆RΣ,e|H ′ (E); otherwise,R is calleddiagnostically
nonmonotonic.

Diagnostic monotonicity of a notion of diagnosis means: the larger (with respect to⊆)
the hypothesis investigated, the larger the diagnostic solution. Note that from diagnostic
monotonicity, it follows that ifH ⊆ H ′, then e(RΣ,e|H (E)) ⊆ e(RΣ,e|H ′ (E)) if e is
monotonically increasing.

The following proposition states that any notion of diagnosis satisfying the independence
assumption is diagnostically monotonic.

Proposition 27. A notion of diagnosisR is diagnostically monotonic if the independence
assumption is satisfied.
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Proof. Let R be a notion of diagnosis, then for every diagnostic specificationΣ : if
H ⊆H ′, with consistentH,H ′ ⊆∆, andRΣ,e|H (E) 6= u, thenRΣ,e|H (E)⊆ RΣ,e|H ′ (E),
becauseRΣ,e|H ′ (E)=RΣ,e|H (E)∪RΣ,e|H ′\H (E). 2

Independence and diagnostic monotonicity were introduced as properties of abductive
diagnosis for the first time in [5].

In the next two sections, various notions of diagnosis are compared, and their diagnostic
characteristics are explored. The two orderings defined below, will be employed frequently
in such comparisons.

Definition 28 (Restriction). LetR andR′ be two notions of diagnosis. Then,R is called a
restrictionof R′, denoted by

R vR′
if for eachΣ , and for eachH ⊆ ∆, and set of observed findingsE ⊆ Φ it holds that: if
RΣ,e|H (E)=H ′, H ′ 6= u, thenR′Σ,e|H (E)=H ′.

Thus, if the restriction relation between two notions of diagnosisR andR′ holds, then
the diagnoses resulting from the notion of diagnosisR are a subset of those resulting from
R′ (for any legal diagnostic specificationΣ).

The notion of subdiagnostic relation is useful for characterizing the relative strictness in
admitting defects to a diagnostic solution from notions of diagnosis.

Definition 29 (Subdiagnostic relation). Let R andR′ be two notions of diagnosis. The
notion of diagnosisR is calledsubdiagnostictoR′, denoted by

R �R′

if RΣ,e|H (E)⊆R′Σ,e|H (E) given thatRΣ,e|H (E),R
′
Σ,e|H (E) 6= u, for eachΣ , and for each

H ⊆∆ and set of observed findingsE ⊆Φ.

We shall occasionally employ the same symbol� to denote that the diagnostic solutions
of some diagnostic function are a subset of those of another diagnostic function applied to
the same diagnostic specification, i.e.,

RΣ,e|H �R
′
Σ,e|H ′

iff RΣ,e|H (E)⊆ R′Σ,e|H ′ (E), for each set of observed findingsE, given that the diagnoses

are defined.

4. Analysis of notions of diagnosis from the literature

Because the diagnostic formalism introduced above is meant to act as a framework,
various notions of diagnosis known from the literature should be expressible in it. In this
section, the expressive power of the framework is examined with respect to abductive and
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consistency-based diagnosis. Notions of diagnosis related to heuristic classification will
be examined in the next section. Some obvious properties of notions of diagnosis shall be
stated without proof (cf. [25] for complete proofs).

4.1. Abductive diagnosis

The formalization of diagnosis using causal domain models, usually referred to as
abductive diagnosis, has been studied by several researchers [9,12,22,30–32]. A typical
example is the work by Console and colleagues [9,12]. In their theory of abductive
diagnosis, the abnormal or normal behaviour of a system is modelled in terms of causal
knowledge with abnormal or normal states (called defects in this paper) and predicted
findings as basic ingredients. Two different types of causal knowledge are distinguished in
this theory. In the first type of causal knowledge, it is assumed that when a collection of
defects is present, all causally associated findingsmustbe present as well. This notion of
causality will be calledstrong causality. In the second type of causal knowledge, causally
related findingsmaybe present, but need not be, when the associated defects are present.
This less strict notion of causality will be calledweak causality; it represents an imprecise
uncertain relationship between cause and effect. We start by analysing diagnostic problem
solving based on strongly causal knowledge, and next consider the usage of weakly causal
knowledge and the consequences of combining both types of knowledge.

Strongly causal relationships among defects, and between defects and observable
findings, are denoted in the theory of abductive diagnosis by logical implications of the
form

d1∧ · · · ∧ dn→ d

and

d1∧ · · · ∧ dn→ f

expressing that the combined occurrence of defectsd1, . . . , dn causesdefectd and finding
f , respectively, to occur; findingsf and defectsd are represented as ground literals
in predicate logic. Acausal specificationC = (∆,Φ,R), which was already informally
introduced in Section 2.1, is defined as a set of defect literals∆, finding literalsΦ, and
a collection of logical implicationsR concerning defect and finding literals of the form
above. The logical implications inR are often referred to asabnormality axioms, since
they usually represent causal knowledge of abnormality only.

Now, letA= (C,E) be anabductive diagnostic problem, with C a causal specification,
and letE be a set of observed findings. Then, a set of defectsH ⊆∆ is called adiagnosis
of A iff [9]:

(1) ∀f ∈E: R∪H � f (covering condition), and
(2) ∀f ∈Ec: R∪H 2¬f (consistency condition)

whereEc, the set of observable findings assumed to be absent, is defined in terms ofE as
follows:

Ec = {¬f ∈Φ | f /∈E,f is a positive literal}.
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This means that a diagnosisH must predict all findings observed, but may not predict
findings assumed to be absent.

Example 30. Reconsider the causal specificationC = (∆,Φ,R) from Section 2.1, as
depicted in Fig. 1. Suppose thatE = {f1, f2} (fever and sore throat) is a given set
of observed findings, then we have thatEc = {¬f3} (dyspnoea is absent), and, thus,
H = {d1, d2} is a diagnosis forA, because the covering and consistency conditions are
satisfied.

This form of abductive diagnosis can be translated into our framework in a straight-
forward fashion. LetP represent the diagnostic problem corresponding to the abductive
problem, such thatP = τ(A), whereτ maps an abductive diagnostic problemA to a di-
agnostic problemP in our framework. To distinguish between elements of an abductive
diagnostic problemA and a diagnostic problemP , subscriptsA andP will be attached to
elements. The meaning of a causal specificationC of an abductive diagnostic problemA is
captured by an evidence functione with domain℘(∆P ) as follows. For eachDA ⊆∆A:

(1) if R∪DA is satisfiable, thene(DP )= {τ(f ) |R∪DA � f,f ∈ΦA};
(2) otherwise,e(DP )=⊥,

whereDP = τ(DA). Condition (1) interprets causal knowledge in terms of predicting
observable findings.

For ease of exposition, in the following, defectsτ(d) ∈∆P and defect literalsd ∈∆A
will not explicitly be distinguished; similarly, no difference is made between findings
τ(f ) ∈ΦP and finding literalsf ∈ΦA.

Example 31. For the axiomsR in the example above, the evidence functione of the
corresponding diagnostic specificationΣ = (∆,Φ,e) is given in Example 5.

Abductive diagnosis as defined above in terms of the covering and consistency
conditions can now be defined as a notion of diagnosis. The corresponding notion of
diagnosis is called the notion ofstrong-causality diagnosis(SC). It is defined as follows:

SCΣ,e|H (E)=
{
H if e|H(H)=E,
u otherwise,

i.e., it is necessary that all observable findingse(H) are observed (consistency condition),
and vice versa (covering condition), to accept an hypothesisH as a diagnosis. This is just
expressed by means of equality in our framework.

Example 32. For the diagnostic problemP = (Σ,E), with diagnostic specificationΣ as
in Example 31 and set of observed findingsE = {f1, f2}, it is concluded that the patient
has influenza and tracheobronchitis:

SCΣ,e|{d1,d2}
({f1, f2}

)= {d1, d2}
which is exactly the same result as obtained by abductive diagnosis in Example 30. Note
that forE′ = {f1} no abductive diagnosis exists. Similarly, it holds that SCΣ,e|H (E

′)= u
for E′ = {f1} and every consistentH ⊆∆.
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The notion of strong-causality diagnosis is not diagnostically monotonic, because it may
hold that SCΣ,e|H (E)=H , but SCΣ,e|H ′ (E) = u, for H ⊂ H ′ (which is easily shown by
means of a counterexample). The independence assumption also fails to hold for strong-
causality diagnosis (just takeH ′ ⊂H , withH = {d1, d2} in the example above).

A notion ofweakcausality [9] is arrived at by the addition ofassumption literalsα to the
individual abnormality axioms. These literals are employed to express that a causal relation
is uncertain. Hence, the abnormality axiomsR of an abductive diagnostic problemA are
of one of the following two forms:

d1∧ · · · ∧ dn ∧ αd→ d

d1∧ · · · ∧ dn ∧ αf → f

expressing that the combined occurrence of defectsd1, . . . , dn may cause defectd and
findingf , respectively, to occur. The transformationτ introduced above must be extended
in order to deal with the assumption literals expressing weak causality. There are two
possibilities. First, the abnormality axiomsR could be translated to an evidence functione,
where the assumption literals in a solutionH are taken as defects, i.e., if forf ∈E

R∪H � f
andR ∪H is satisfiable, thenf ∈ e(H), whereH is a set of defects, possibly including
assumption literalsα, i.e.,d = τ ′(α), with transformationτ ′ extendingτ , andd a defect.
Next, the notion of diagnosis SC introduced above for strong causality could be employed
as diagnostic interpretation of the resulting evidence functione. Obviously, weak causality
is then expressed at the level of the knowledge base, i.e., at the object-level. The second
possibility amounts to lifting the notion of weak causality to the meta-level: a notion of
diagnosis is designed that interprets a knowledge base containing causal knowledge as
being weakly causal in nature. LetA denote the set of assumption literals in∆A. Then,R′
is a set of abnormality axioms obtained by removing each assumption literalα ∈ A from
the axioms inR. The transformationτ ′′ is then defined in the same way asτ , except that
R′ replacesR.

The theory of abductive diagnosis adopts the first approach, because the same covering
and consistency conditions are employed to define diagnosis for weakly causal knowledge
as for strongly causal knowledge. Here, the second approach may also be adopted, i.e.,
uncertainty in causal knowledge is lifted to the level of diagnostic interpretation.

To study the difference in diagnostic interpretation of evidence functions with respect
to weak and strong causality, a distinction is made between an abductivesolution—a set
of defects and assumption literals for which the covering and consistency conditions are
satisfied—and an (abductive)diagnosis, the set of all defects included in an abductive
solution.

The notion of diagnosis that corresponds to abductive diagnosis, with weakly causal
relations as introduced above, is called the notion ofweak-causality diagnosis, denoted by
WC. It is defined as follows:

WCΣ,e|H (E)=
{
H if e|H (H)⊇E,
u otherwise.

A weak-causality diagnosis accounts for all observed findings, although not every
(predicted) observable finding need be observed.
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Note that for the notions of diagnosis SC and WC, it holds that

e(RΣ,e|H (E))⊇E
if RΣ,e|H (E) 6= u, whereR ∈ {SC,WC}, i.e., all findings that have actually been observed
must have been predicted as being observable for the associated set of defects. This is a
consequence of the fact that for any abductive diagnosis the covering condition must be
satisfied.

We examine the correspondence between abductive diagnosis and the notion of weak-
causality diagnosis by an example.

Example 33. Reconsider the abductive diagnostic problemA = (C,E) with the causal
specificationC from Section 2.1, andE = {f1, f2}. Assumption literals are added to the
individual axioms inR, yielding the causal specificationC ′ = (∆′,Φ,R′), with R′ equal
to:

d1∧ α1→ d2

d1∧ α2→ f1

d2∧ α3→ f2

d2∧ d3∧ α4→ f3.

The resulting evidence function is again equal toe as defined in Example 5.
Now, the setH = {d1, α1, α2, α3} is an abductive solution toA′ = (C′,E), because the

covering and consistency conditions are satisfied; the associated diagnosis isD = {d1}. We
also have that WCΣ,e|{d1}(E)= {d1}.

If we restrict the notion of weak-causality diagnosis to monotonically increasing
evidence functions, which is similar to restricting to standard logic in the theory of
abductive diagnosis, the notion of diagnosis WC is diagnostically monotonic. This can
be shown by noting that if WCΣ,e|H (E) = H andH ′ ⊃ H then WCΣ,e|H ′ (E) = H ′,
because ife|H (H) ⊇ E thene|H ′(H ′) ⊇ E, due to the fact that the evidence functione
is monotonically increasing. Since only part of all observed findings may be accounted
for by a subset of a set of defectsH , whereH accounts for all observed findings, the
independence assumption, however, fails to hold.

Weak-causality diagnosis can be viewed as a much generalized version of set-covering
diagnosis as defined in [29]; when an evidence function is assumed to be interaction-free,
the two notions coincide.

Until now, weakly and strongly causal knowledge and their use in abductive diagnosis
have been studied separately. Weak and strong causality diagnosis, however, can also be
combined to obtain a notion of diagnosis that combines these two different interpretations
of causal knowledge. Firstly, the evidence functione in a diagnostic specification is split
up into two evidence functions:

ν : ℘(∆)→℘(Φ)∪ {⊥}
called thestrong evidence function, and

α : ℘(∆)→ ℘(Φ)∪ {⊥}
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called theweak evidence function, and the functionsν andα are defined such that

e(D)=
{
ν(D) ∪ α(D) if ν(D),α(D) 6= ⊥,
⊥ otherwise,

for eachD ⊆ ∆. The set of abnormality axioms with incompleteness assumption literals
is interpreted by a weak evidence function, again by discarding assumption literals;
abnormality axioms without assumption literals are interpreted by a strong evidence
function.

To capture the joint effect of strong and weak causality on diagnostic problem solving,
the results of two separate diagnostic functions must be combined. However, diagnostic
functions capturing abductive diagnosis using strongly causal knowledge or weakly causal
knowledge each operate on parts of a diagnostic specification. To describe a diagnostic
specification as consisting of a collection of diagnostic specifications, the notion of
modularization appears to be convenient.

Definition 34 (Modularization). A modularizationMΣ of a diagnostic specification
Σ = (∆,Φ,e) is a finite set of diagnostic specificationsMΣ = {Σ1, . . . ,Σn}, where
Σi = (∆,Φ,ei), 16 i 6 n, n> 1, such that for eachD ⊆∆:

e(D)=
{⋃n

i=1 ei(D) if ei(D) 6= ⊥, 16 i 6 n,
⊥ otherwise.

Modularization of a diagnostic specification is now employed to define the composition
of two diagnostic functions.

Definition 35 (Composition of diagnostic functions). LetP , Q andR be three notions of
diagnosis, and letMΣ = {Σ ′,Σ ′′} be a modularization of the diagnostic specificationΣ .
Then, the diagnostic functionPΣ,e|H is called thecompositionof QΣ ′,e′|H andRΣ ′′,e′′|H ,
denoted by

PΣ,e|H =QΣ ′,e′|H ‖RΣ ′′,e′′|H
if it holds that

PΣ,e|H (E)=QΣ ′,e′|H
(
E′
)∪RΣ ′′,e′′|H (E′′)

for each set of observed findingsE ⊆Φ, and each decompositionE =E′ ∪E′′ for which
QΣ ′,e′|H (E

′), RΣ ′′,e′′|H (E
′′) 6= u; otherwisePΣ,e|H (E)= u.

Observe that the setsE′ andE′′ resulting from a decomposition of the set of observed
findingsE are neither necessarily disjoint nor unique. Note also that the hypothesisH

is the same for all diagnostic functions in a composition. This prerequisite ensures that
possible dependencies among the respective evidence functionse′ ande′′ are dealt with
adequately.

Using the translation scheme and the composition of diagnostic functions, the following
notion of diagnosis fully captures the theory of abductive diagnosis. The resulting notion
of diagnosis is called weak-and-strong causality diagnosis, abbreviated to WSC. Let
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Fig. 10. Causal net corresponding toC.

MΣ = {Σν,Σα} be a modularization of a diagnostic specificationΣ = (∆,Φ,e), where
Σν = (∆,Φ,ν) andΣα = (∆,Φ,α). The notion ofweak-and-strong causality diagnosis,
denoted by WSC, is defined as follows:

WSCΣ,e|H = SCΣν,ν|H ‖WCΣα,α|H

where SC is the notion of strong-causality diagnosis, and WC is the notion of weak-
causality diagnosis.

Example 36. Consider the following abductive diagnostic problemA = (C,E), with
causal specificationC = (∆,Φ,R), whereR is equal to:

d1∧ α1→ f1

d2∧ d3∧ α2→ f2

d2→ f1

d4→ f2

∆P = {d1, d2, d3, d4}, andΦP =E = {f1, f2}. The causal specificationC = (∆,Φ,R) is
graphically depicted in Fig. 10. The following modularizationMΣ = {Σν,Σα} can be
constructed:Σν = (∆,Φ,ν), where the bottom-up partial specificationν̃ of ν is defined as
follows:

ν̃(D)=
{ {f1} if D = {d2},
{f2} if D = {d4},
∅ if D = {di}, i = 1,3, orD = {¬di}, i = 1, . . . ,4.

Furthermore,Σα = (∆,Φ,α), where the bottom-up partial specificationα̃ is defined as
follows:

α̃(D)=
{ {f1} if D = {d1},
{f2} if D = {d2, d3},
∅ if D = {di}, i = 2,3,4, orD = {¬di}, i = 1, . . . ,4.

Since every observable finding ine(D) is positive, only positive findings will be dealt with.
An example of a diagnostic function comprising the notion of weak-and-strong causality
diagnosis WSC is

WSCΣ,e|{d1,d2} =WCΣα,α|{d1,d2}‖SCΣν,ν|{d1,d2} .
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Note that, for example, WSCΣ,e|{d1,d2}(∅) = u, because SCΣν,ν|{d1,d2}(∅) = u, although
WCΣα,α|{d1,d2}(∅) = {d1, d2}. Observe also that a set of observed findingsE may be
decomposed among diagnostic functions of WC and SC in several ways. For example,

WSCΣ,e|{d2,d3,d4}
({f1, f2}

) =WCΣα,α|{d2,d3,d4}(∅)∪SCΣν,ν|{d2,d3,d4}
({f1, f2}

)
=WCΣα,α|{d2,d3,d4}

({f2}
)∪SCΣν,ν|{d2,d3,d4}

({f1, f2}
)

=WCΣα,α|{d2,d3,d4}
({f1}

)∪SCΣν,ν|{d2,d3,d4}
({f1, f2}

)
=WCΣα,α|{d2,d3,d4}

({f1, f2}
)∪

SCΣν,ν|{d2,d3,d4}
({f1, f2}

)
.

4.2. Consistency-based diagnosis

In consistency-based diagnosis, as proposed in [36] and [18] and introduced in
Section 2.1, knowledge concerning structure and behaviour of a device is represented as
a pairS = (SD,COMPS), called asystem; when observed findings OBS are included, we
arrive at what is called anobserved systemOS= (S,OBS), where
• SD denotes a finite set of formulae in first-order predicate logic, specifying normal

structure and behaviour, called asystem description, or sometimes alsonormality
axioms;
• COMPS denotes a finite set of constants in first-order logic, denoting thecomponents

(elements) of the system;
• OBS denotes a finite set of formulae in first-order predicate logic, denoting

observations, i.e., observed findings.
It is, in principle, possible to specify normal as well as abnormal (faulty) behaviour within
a system description SD. Adding knowledge of abnormal behaviour can be an effective
means to reduce the number of alternative diagnoses produced [18].

A consistency-based diagnosis is defined as an assignment of either a positive literal
Abnormal(c) or a negative literal¬Abnormal(c) to eachc ∈COMPS, i.e.,

D = {Abnormal(c) | c ∈C}∪ {¬Abnormal(c) | c ∈COMPS\C}
whereC ⊆COMPS, such that

SD∪OBS∪D 2⊥
(SD∪ OBS∪ D is satisfiable); this condition is called theconsistency condition. In the
formalization by de Kleer et al., each literal Abnormal(c) ∈ D is interpreted as being
defective; a literals¬Abnormal(c) ∈ D indicates componentc to be nondefective [18].
In the original theory by Reiter, the setC above is taken as a diagnosis, with the extra
requirement thatC is minimal with respect to set inclusion [36], but note that for each
componentc ∈ C, it holds that Abnormal(c) is true, i.e., c is defective. According to the
definition of consistency-based diagnosis, takingC =COMPS leads to the trivial diagnosis
that all components are defective (or the defective components are among the set of all
components). This explains why Reiter incorporated in the original theory the requirement
that the setC must be a minimal set with respect to set inclusion, fulfilling the consistency
condition. However, later it was recognized that minimality according to set inclusion
is merely a measure of plausibility, which may not be appropriate when knowledge of



330 P.J.F. Lucas / Artificial Intelligence 105 (1998) 295–343

abnormal behaviour is also included in the system description SD, and the minimality
criterion was left out of the basic definition.

Example 37. Consider the systemS = (SD,COMPS) from Section 2.1 (Fig. 2). Now, let
OBS= {I1= 1, I2= 0, I3= 1,O1= 1,O2= 0}, then

D = {¬Abnormal(X),Abnormal(A)}
is a diagnosis, because

SD∪OBS∪D 2⊥,
i.e., consistency has been regained by assuming theAND gateA to be faulty, whereas
assuming bothX andA to be normally functioning, i.e.,

D′ = {¬Abnormal(X),¬Abnormal(A)
}

yields an inconsistency (SD∪OBS∪D′ �⊥), indicating thatD′ is no diagnosis.

In [18] the notion ofpartial diagnosisis introduced, which is a satisfiable setD
of Abnormal(c) and ¬Abnormal(c) assignments to part of all the components (the
abnormality of the remaining components is thus assumed to be unknown), such that the
consistency condition is fulfilled for every satisfiable superset ofD. A kernel diagnosis
is a partial diagnosis that is minimal with respect to set inclusion, and can be viewed as
denoting a common diagnostic pattern.

This notion of diagnosis can be defined in terms of our framework. The resulting notion
of consistency-based diagnosis, denoted by CB, is defined as follows:

CBΣ,e|H (E)=
{
H if ∀f ∈E: f ∈ e|H(H) ∨¬f /∈ e|H(H),
u otherwise.

A hypothesisH may also include observable findings as inputs to a system, in which case
H is a set of assumptions concerning findings and defects.

Example 38. For the logic circuit in Fig. 2 we have that

CBΣ,e′|{¬x,a}
({o1,¬o2}

)= {¬x,a},
where¬x means that theXOR gateX is normal anda means that theAND gateA is
abnormal or faulty (cf. Example 6 for the evidence functione′). This result is analogous
to the diagnosis in Example 37, obtained by the corresponding logical definition of
consistency-based diagnosis.

Without further restrictions with regard to the evidence functionse, the notion of CB di-
agnosis is neither diagnostically monotonic nor is the independence assumption satisfied.
However, the independence assumption is satisfied if CB diagnosis is restricted to diagnos-
tic specifications that are monotonically increasing. As discussed in Section 2, evidence
functions representing system descriptions are typically monotonically decreasing. If the
notion of diagnosis CB is defined for such functions, the independence assumption fails to
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hold, as can be shown by a simple counterexample. The following useful proposition holds
in case the evidence function is monotonically decreasing.

Proposition 39. LetP = (Σ,E),Σ = (∆,Φ,e), be a diagnostic problem with monoton-
ically decreasing evidence functione, and let H ⊇ H ′, with H,H ′ ⊆ ∆, then if
CBΣ,e|H (E)=D, thenCBΣ,e|H ′ (E)=D′ withD′ ⊆D.

Proof. If CBΣ,e|H (E)=D then for eachf ∈ E: (1) f ∈ e|H(H) or (2)¬f /∈ e|H (H). If
condition (1) holds thenf ∈ e|H ′(H ′), becausee|H(H) ⊆ e|H ′(H ′); for the same reason
from condition (2) it follows that¬f /∈ e|H ′(H ′). 2

In terms of the approach by de Kleer et al. [18], from this proposition the existence of a
partial diagnosis can be derived.

Corollary 40. Let P = (Σ,E) be a diagnostic problem, with monotonically decreasing
evidence functione, then ifCBΣ,e|H∪{d} (E)=H ∪ {d} andCBΣ,e|H∪{¬d}(E)=H ∪ {¬d},
then alsoCBΣ,e|H (E)=H .

In [18], the notion of partial diagnosis is provided as a basic definition; it is not derived
from the notion of diagnosis, as done above.

4.3. Comparison

It is informative to relate the notions of diagnosis introduced above to each other in
terms of the restriction relationv (cf. Definition 28). It is easily seen that the following
proposition holds.

Proposition 41. Let SC, WC and CB be the notions of strong-causality, weak-causality
and consistency-based diagnosis, respectively, then

SCvWCvCB.

Proof. Let P = (Σ,E) be a diagnostic problem. Simply observe that if WCΣ,e|H (E) =
H , then e|H(H) = E, therefore,e|H (H) ⊇ E, and WCΣ,e|H (E) = H . Furthermore,
if WCΣ,e|H (E) = H , then e|H(H) ⊇ E, so for eachf ∈ E: f ∈ e|H(H). Hence,
CBΣ,e|H (E)=H holds. 2

This reveals that consistency-based diagnosis is a very weak form of diagnosis,
potentially producing many alternative diagnoses, a well known fact in the diagnosis
community.

5. Refinement diagnosis

Although the diagnostic theories mentioned above differ in several respects, diagnostic
problem solving can be viewed in all of them as a special instance of hypothetical reasoning
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[31]. In solving a diagnostic problem, a hypothesis is first generated and next tested with
respect to diagnostic knowledge and observed findings. If it passes the tests, it is accepted
and called a diagnosis; when it fails to pass the tests, it is rejected.

This view of diagnosis is quite general, but it is still unnecessarily restrictive. Instead of
simply rejecting a hypothesis that does not comply with all requirements, it seems more
natural to adjust or refine it, when possible. Then, a diagnosis obtained after refinement of
a hypothesis may be viewed as the best possible solution in a particular sense, given the
domain knowledge, the set of observed findings and the hypothesis at hand. It therefore
seems attractive to incorporate a principle of refinement into the basic definition of
diagnosis, yielding notions ofrefinement diagnosis. The study of these notions of diagnosis
demonstrates the flexibility of the framework of diagnosis defined in Sections 2 and 3.

There are various reasons why refinement diagnosis may be a more appropriate basis for
diagnostic problem solving than the more rigorous notions of diagnosis mentioned above:
• Real-world knowledge bases are, almost without exception, incomplete, i.e., the

modelled problem domain has not been fully described. For example, knowledge of
certain interactions among defects may be missing.
• Real-world knowledge bases are not completely accurate, e.g., the meaning of the

domain knowledge may not have been captured precisely.
• The findings that may be observed, and interpreted by a diagnostic system, are only

part of what might have been collected without limitations, such as available time and
money.
• Part of the observed findings may be unreliable, due to impediments to the observation

process, such as limited available time.
In many domains, in particular medicine, it is usually better to arrive at a diagnosis that
does not account for all observed findings, or that suggests findings that have not been
observed, than to establish no diagnosis at all. It is sometimes said that such a diagnosis
underaccountsor overaccountsfor the set of observed findings.

The following question now arises: what can be taken as a basis for notions of diagnosis
which incorporate certain principles of refinement? Obviously, there exists a wide range
of possibilities. Which of the possible choices yields the most natural result depends, to
a large extent, on the nature of the problem domain, which is partially expressed by the
characteristics of the evidence functionse. Dependencies between a notion of diagnosis
R, on the one hand, i.e., the interpretation of the set of observed findings given a specific
knowledge base, and properties of a given evidence functione, on the other hand, are of
importance in this respect.

Two classes of refinement diagnosis will be studied here. Firstly, the class of notions of
refinement diagnosis, calledmost general diagnosis, is examined, where the least upper
bound of accepted hypotheses (with respect to set inclusion) is taken as a diagnostic
solution. Secondly, the class of notions of refinement diagnosis, calledmost specific
diagnosis, based on taking the greatest lower bound of accepted hypotheses is studied.
In most general diagnosis, the smallest set of defects that includes every accepted
subhypothesis is considered most plausible; in contrast, in most specific diagnosis, the
largest set of defects that is included in every accepted subhypothesis is considered most
plausible.
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5.1. Most general diagnosis

Notions of most general diagnosis capture the idea that if a specific diagnostic hypothesis
is not accepted, then the ‘nearest’ subhypothesis should be taken instead. The least upper
bound with respect to set inclusion of the set of accepted subhypotheses is an example of
such a ‘nearest’ subhypothesis.

The notion ofmost general subset diagnosis, denoted by GS, is defined as follows:

GSΣ,e|H (E)=


⋃
H ′⊆H

e|H (H ′)⊆E

H ′ if H is consistent, and∃H ′ ⊆H : e|H(H ′)⊆E,

u otherwise.

Intuitively, a most general subset diagnosis is the smallest set of defects that includes all
accepted subhypotheses of a given hypothesis, where an accepted subhypothesis concerns
observable findings that all have been observed.

Example 42. Reconsider the causal specificationC in Fig. 1 and the corresponding
evidence functione in Example 5, withE = {f1, f2} (fever and sore throat), we
have that GSΣ,e|{d1,d2}(E) = {d1, d2}, which is also an abductive diagnosis, because
SCΣ,e|{d1,d2}(E) = {d1, d2}. However, it holds that GSΣ,e|{d1,d2}({f2}) = {d2}, where
SCΣ,e|{d1,d2}({f2})= u. Hence,e({d1, d2}) predicts a finding that cannot be accounted for,
causing the defectd1 to be ignored. This may be a suitable approach to domains in which
neglecting a particular defect may be dangerous.

In Fig. 11, the relationship between diagnostic hypothesisH , the set of observed findings
E and the resulting diagnosis GSΣ,e|H (E) is summarized by schematically depicting
these sets as if they were real numbers and by taking set inclusion as the6 total order
on the real numbers. If most general subset diagnosis is applied to a monotonically
decreasing evidence function, the resulting diagnosis is either undefined or equal to

Fig. 11. Monotonically increasing (a) and decreasing (b) evidence functions.
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the given hypothesisH . This contrasts with GS applied to a monotonically increasing
evidence function, which may also yield subsets of the hypothesis as a diagnosis. If
such an evidence function is assumed to represent empirical associations, the notion
of most general diagnosis may be taken as the formalization of heuristic classification.
GSΣ,e|H ′ (E)=H ′′ in Fig. 11(a) is intended to illustrate thate(H ′′)may even be a superset
of E. If the evidence functione is nonmonotonic, then the relationships betweenE and
e|H(H ′) are investigated as before, but again, certain interactions between defects may be
ignored.

The independence assumption is satisfied for GS if GS is restricted to diagnostic
specifications with a monotonically increasing evidence function, which can be defined
by a bottom-up partial specification.

Proposition 43. The independence assumption holds for the notion of diagnosisGS, when
applied to diagnostic specifications with monotonically increasing evidence functions,
described by a bottom-up partial specification.

Proof. Let P = (Σ,E) be a diagnostic problem with monotonically increasing evidence
function e. Let V ⊆ H be a subset of the hypothesisH ⊆ ∆. The powerset℘(H) is
partitioned into the set of setsP for which it holds that for eachU ∈ P : U ⊆ V , and
the set of setsP ′ for which it holds that for eachU ∈ P ′: U 6⊆ V . Then, according to basic
set theory, it holds that:

GSΣ,e|H (E)=
⋃
H ′∈P

e|V (H ′)⊆E

H ′ ∪
⋃
H ′∈P ′

e|H (H ′)⊆E

H ′.

The first component of this union can also be written as GSΣ,e|V (E). Since e is
monotonically increasing, the setsH ′ ∈ P ′ may be changed toH ′′ = H ′\V , because if
e(H ′)⊆E, thene(H ′′)⊆E, and becauseH ′ ∩V ⊆ V , the setH ′ ∩V is considered in the
diagnosis GSΣ,e|V (E). Hence,

GSΣ,e|H (E)=GSΣ,e|V (E)∪GSΣ,e|H\V (E).

Since the setV has been selected arbitrarily, GS satisfies the independence assump-
tion. 2

However, if the evidence functione is not monotonically increasing, then the indepen-
dence assumption is not satisfied. Hence, the independence assumption fails to hold in
general for most general subset diagnosis, as can be shown the a counterexample. How-
ever, most general subset diagnosis is diagnostically monotonic, as proven in the following
proposition.

Proposition 44. The notion of most general subset diagnosisGS is diagnostically
monotonic.

Proof. If H ⊆H ′, then GSΣ,e|H (E)⊆GSΣ,e|H ′ (E) given that GSΣ,e|H (E), GSΣ,e|H ′ (E)
6= u, because ife|H(H ′′)⊆E,H ′′ ⊆H , thene|H ′(H ′′)⊆E. 2
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Fig. 12. Monotonically increasing (a) and decreasing (b) evidence functions.

Where most general subset diagnosis can be viewed as a more flexible version of
strong-causality diagnosis SC, which for certain evidence functions is as little restrictive
as consistency-based diagnosis, a similar, flexible notion of diagnosis can be designed for
weak-causality diagnosis. This suggests replacing the subset relation in most general subset
diagnosis by the superset relation, yielding the notion of most general superset diagnosis
GO (the letter ‘O’ stands for ‘cOntains’).

The notion ofmost general superset diagnosis, denoted by GO, is defined as follows:

GOΣ,e|H (E)=


⋃
H ′⊆H

e|H (H ′)⊇E

H ′ if H is consistent, and∃H ′ ⊆H : e|H(H ′)⊇E,

u otherwise.

Most general superset diagnosis has much in common with weak-causality diagnosis WC
defined in the previous section. If the notion of most general superset diagnosis is applied to
evidence functions that are monotonically decreasing, or nonmonotonic, for the resulting
diagnosis GOΣ,e|H (E) = H ′ it may even hold thate(H ′) ⊂ E, although for each of the
diagnostic hypothesesH ′′ ⊆H that contribute to the diagnosis it holds thate|H(H ′′)⊇E.
Hence, the situation is the reverse of that for most general subset diagnosis discussed above,
as might be expected from their respective definitions. In Fig. 12, the various possibilities
are schematically depicted. The independence assumption is not generally satisfied for
most general superset diagnosis, but most general superset diagnosis is diagnostically
monotonic. Both results follow from straightforward modification of Proposition 44.

As is true for weak-causality diagnosis WC, most general superset diagnosis restricted to
monotonically increasing evidence functions is very unrestrictive, which is revealed by the
fact that GOΣ,e|H (∅)=H if e(H) 6= ⊥, meaning that all defects constituting the hypothesis
may have occurred, even if no findings have been observed. Note that the same diagnosis
would have been produced by weak-causality diagnosis WC in this case. By adopting some
criterion of parsimony to only select plausible diagnoses (cf. [41]), such as minimality
according to set inclusion, the unrestrictiveness is alleviated; the empty diagnosis∅ would
then be produced.
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An alternative to the definition of subset diagnosis is to consider all sets of defectsD

that have at least one findingf in common with the findingsE observed. This leads to the
following definition of the notion ofmost general intersection diagnosis, denoted by GI:

GIΣ,e|H (E)=


⋃
H ′⊆H

(E=∅∨e|H (H ′)=∅∨
e|H (H ′)∩E 6=∅)

H ′ if H is consistent, and(E = ∅
or ∃H ′ ⊆H : e|H(H ′)= ∅ or
e|H(H ′)∩E 6= ∅),

u otherwise.
If the sets of observed and observable findings are nonempty, intersection diagnosis with
respect toH stands for the least upper bound of subsets of defects ofH ⊆∆, where for
each subset of defectsH ′ admitted to the most general intersection diagnosis GIΣ,e|H (E),
the associated set of observable findingse|H(H ′) is empty or has at least one finding in
common with the set of observed findingsE.

The independence assumption is not satisfied for most general intersection diagnosis,
which is even true if GI is restricted to interaction-free evidence functions. The reason is
that if e|H(H ′)∩E 6= ∅, then it need not be true that for alld ∈H ′: e|{d}(d)∩E 6= ∅. Only
if e(D) = e(D′), for each consistentD,D′ ⊆∆ (every set of defects has the same set of
associated findings) would the independence assumption hold. However, ife is interaction
free, the notion of most general intersection diagnosis restricted to such interaction-free
evidence functions is diagnostically monotonic.

The advantage of most general intersection diagnosis over most general subset and
superset diagnosis is that only defects that have at least one associated observable finding
that has actually been observed, are included in a diagnosis. This will be an acceptable
assumption in a domain where not all findings associated with a set of defects need be
observed and not all observed findings need be accounted for. In representing a domain, it
may be required to restrict to those observable findings that are in some way ‘typical’ for
the defects.

Most general intersection diagnosis can be viewed as a refinement version of a mixture
of the notions of weak-causality and strong-causality diagnosis.

5.2. Comparison

Most general subset, superset and intersection diagnosis are three refinement approaches
to diagnosis. The restriction relationships between these notions of diagnosis are shown in
Fig. 13. For most general subset diagnosis, all findings associated with a set of defects
must be observed if the set of defects is to be included as part of a diagnosis. Most general
superset diagnosis focusses on common findings of defects. For most general intersection

Fig. 13. Restriction taxonomy of notions of diagnosis.
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diagnosis, at least one finding associated with a defect must be observed if the defect is to
be included as part of a diagnosis. Notions of diagnosis can also be classified in terms of
the subdiagnostic relation� (cf. Definition 29). The three notions of diagnosis discussed
above stand in a subdiagnostic relation to each other:

GS�GI

GO�GI.

This follows from the fact that if a set of observed findings is included in the set of
observable findings associated with a set of defects, or vice versa, the intersection of the
set of observed findings and observable findings is nonempty, given that neither the set of
observed findingsE, nor the set of observable findingse|H(H ′), is empty. For the empty
cases, the most general intersection diagnosis is always equal to the largest result with
respect to set inclusion of GO and GS. Hence, a most general intersection diagnosis will
always contain at least as many elements as the corresponding most general subset and
superset diagnosis.

5.3. Most specific diagnosis

Rather than taking the least upper bound of a set of accepted subhypotheses of a
given hypothesis, taking the greatest lower bound provides another approach to refinement
diagnosis. We shall refer to notions of diagnosis based on taking the greatest lower bound as
notions ofmost specific diagnosis. Where the concept of most general diagnosis formalizes
notions of diagnosis that yield diagnoses that includeeveryaccepted subhypothesis, most
specific diagnosis formalizes notions of diagnosis that yield diagnoses that arecommonto
every accepted subhypothesis. In general it holds for a notion of most specific diagnosis
S that if SΣ,e|H (E) = ∅ and SΣ,e|H ′ (E) = H ′′, then, by definition,SΣ,e|H∪H ′ (E) = ∅.
Hence, notions of most specific diagnosis are very restrictive, and neither the independence
assumption nor diagnostic monotonicity holds.

As with the notion of most general subset diagnosis, in the notion of most specific subset
diagnosis, subhypotheses are admitted to a diagnosis if their associated sets of findings
are included in the set of observed findings of a diagnostic problem. However, of these
accepted subhypotheses, only the defects the subhypotheses have in common constitute a
diagnosis. Hence, the notion ofmost specific subset diagnosis, denoted by SS, is defined
as follows:

SSΣ,e|H (E)=


⋂
H ′⊆H

e|H (H ′)⊆E

H ′ if H is consistent, and∃H ′ ⊆H : e|H (H ′)⊆E,

u otherwise.
This notion of diagnosis is extremely restrictive. For example, if an evidence function
is interaction free, then the most specific subset diagnosis will almost always (with the
exception when only one subhypothesis is accepted) be equal to the empty set.

If the evidence function is monotonically decreasing, then most specific subset diagnosis
tries to construct the smallest diagnosis possible. It may be viewed as a flexible
form of kernel, consistency-based diagnosis in the sense of [18]. The reason for the
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Fig. 14. Multiplier–adder circuit.

similarity between kernel diagnosis in consistency-based diagnosis and most specific
subset diagnosis is that any hypothesisH ′ for whiche|H (H ′)⊆E is also consistent withE.

The correspondence between kernel diagnosis and most specific subset diagnosis is
illustrated by an example taken from [18].

Example 45. Consider Fig. 14, which depicts an electronic circuit with three multipliers,
referred to asM1, M2 and M3, and two adders, denoted byA1 and A2. When a
multiplier Mi is behaving normally, it produces as output the product of its two inputs;
similarly, a normally behaving adderAj produces as output the sum of its two inputs. Let
Σ = (∆,Φ,e) be a diagnostic specification representing the circuit. The fact that some
multiplierMi is defective, is denoted bymi ; if it is nondefective, this is indicated by¬mi .
A similar notational convention is adopted with regard to the two adders. It is convenient
to assume that the input to the circuit is fixed (as assumed in [15,18]), as indicated in
Fig. 14. The normal output of the circuit,O1= 12 andO2= 12, is denoted byo1 ando2;
abnormal output is denoted by¬oj , j = 1,2. The set of observed findingsE is in equal to
e= {¬o1, o2}, i.e.,O1= 10 6= 12 andO2= 12.

The following values of the evidence functione are among those that correspond to the
circuit’s normal behaviour:

e
({¬m1,¬m2,¬m3,¬a1,¬a2}

)= {o1, o2}
e
({¬m1,¬m2,¬m3, a1,¬a2}

)= {o2}
e
({¬m1,¬m2,¬m3, a1, a2}

)=∅
e
({¬m1,¬m2,¬m3, a1}

)= {o2}
e
({a1}

)= {o2}
e
({¬m1,¬m2,¬m3}

)= {o1, o2}
...

e(∅)= {o1, o2}.
(e(∅) denotes that it is unknown whether defects are present or absent.) The most specific
subset diagnosis with respect to the hypothesisH = {a1} is equal to

SSΣ,e|{a1}
({¬o1, o2}

)= {a1}
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which is indeed a kernel diagnosis for the diagnostic problemP = (Σ,E) using con-
sistency-based diagnosis. Note that

SSΣ,e|H
({¬o1, o2}

)= {a1}
if a1 ∈H , when for the other kernel diagnoses it holds{m1}, {m2,m3}, {m2, a2} 6⊆H , for
example,

H = {¬m1,¬m2,¬m3, a1,¬a2}.

As discussed above, most general superset diagnosis will often yield a diagnosis
that contains too many defect elements, in particular when an evidence function is
monotonically increasing. Most specific superset diagnosis is a more restrictive, and
possibly more suitable, notion of diagnosis than most general superset diagnosis.

The notion ofmost specific superset diagnosis, denoted by SO, is defined as follows:

SOΣ,e|H (E)=


⋂
H ′⊆H

e|H (H ′)⊇E

H ′ if H is consistent, and∃H ′ ⊆H : e|H(H ′)⊇E,

u otherwise.

If the evidence function to which most specific superset diagnosis is applied, is
monotonically increasing, the result may be intuitively attractive. The basic idea of most
specific superset diagnosis is that the observed findings that are common to the accepted
subhypotheses are due to the common defects of accepted subhypotheses.

Example 46. Reconsider Fig. 1. ForE = {f2, f3} (i.e., the patient has sore throat and
dyspnoea), the most specific superset diagnosis is equal to

SOΣ,e|{d1,d2,d3}(E)= {d3}
because, it holds thate|H({d1, d3}) ⊇ E, e|H({d2, d3}) ⊇ E and e|H ({d1, d2, d3}) ⊇ E,
whereH = {d1, d2, d3}. All other subsets ofH have associated sets of findings that are
no supersets ofE. The defectd3 stands for asthma. While bothd1 and d2 participate
in subhypotheses that also account forE, only the defectd3 occurs in all accepted
subhypotheses, i.e., it turns out to be essential. It seems therefore intuitively right to accept
d3 as the most plausible diagnosis.

As the example above indicates, a most specific superset diagnosis need not account for
all observed findings on the basis of the given evidence function. If an evidence function
is interaction free, then most specific superset diagnosis is likely to produce a singleton set
diagnosis for a given hypothesis that is very plausible if the associated sets of observed
findingse({d}) are mutually disjoint.

As discussed above, the notion of most general intersection diagnosis is very unrestric-
tive. All defects that, either individually or in combination with other defects, have findings
in common with the set of observed findings, are included in a diagnosis. The notion of
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most specific intersection diagnosis, denoted by SI, is much more restrictive than most
general intersection diagnosis; it is defined as follows:

SIΣ,e|H (E)=


⋂
H ′⊆H

(E=∅∨e|H (H ′)=∅∨
e|H (H ′)∩E 6=∅)

H ′ if H is consistent, and(E = ∅ or
∃H ′ ⊆H : e|H (H ′)= ∅ or
e|H(H ′)∩E 6= ∅),

u otherwise.

If the evidence functione is monotonically increasing, the resulting diagnosis will be
equal to the empty set if the function valuese({d}) have many observable findings in
common.

5.4. Comparison

Although the notions of most specific diagnosis are very restrictive, they do not stand in
a simple restriction relation to the other notions of diagnosis. However, it is easy to see that

SSΣ,e|H (E)⊆GSΣ,e|H (E)

holds for each consistentH ⊆∆. Similar set inclusion relations hold for the other notions
of diagnosis. We state without proof that:

SS�GS

SO�GO

SI�GI.

6. Discussion

In this paper, a theory of diagnosis has been developed which considers a diagnosis
yielded by a diagnostic problem solver as an established relationship between interpreted
domain knowledge and a hypothesis. The resulting framework is suitable to expressstatic
aspects of diagnosis, i.e., diagnosis without taking problem-solving strategies into account.
It is inspired by the work on abductive diagnosis by Reggia et al. [29] and Bylander
et al. [5], but offers a significant extension to that work. In fact, as has been shown
above, these theories of abductive diagnosis amount to particular choices in our theory
of diagnosis.

The framework of diagnosis proposed in this paper supports two different views. On the
one hand, given some intuitively appealing interpretation of knowledge, expressed by an
evidence function, a notion of diagnosis can be designed, or selected, that adheres to that
meaning as closely as possible. On the other hand, applying a particular notion of diagnosis
to solve a diagnostic problem implies that a particular (diagnostic) meaning is given to the
associated evidence function. It was shown that well known notions of diagnosis from the
literature are expressible in terms of the framework, and that it is suitable as a tool for
the analysis and comparison of notions of diagnosis. Furthermore, several new notions
of diagnosis have been proposed that are less rigorous in dealing with observed findings



P.J.F. Lucas / Artificial Intelligence 105 (1998) 295–343 341

and diagnostic knowledge than common notions of diagnosis, which give up too soon,
e.g., when a single element among the set of observed findings cannot be accounted for.
However, these are certainly not the only notions of diagnosis that may be useful in certain
domains.

The literature on diagnosis contains a number of other approaches to diagnosis. In
particular, logic has been a popular language for the analysis of diagnosis, yielding a
number of different logical notions of diagnosis, like abductive and consistency-based
diagnosis [12,18,32,36,42]. These logical notions of diagnosis have usually been designed
in close connection with specific domain models, such as causal models or models of
structure and behaviour, and, hence, can be applied in a natural way to deal with specific
diagnostic problems only. Although several researchers have demonstrated their theory
of diagnosis to be more general than orginally thought [12,18,32,36], there remains a
close link between a specific theory and problem type. In contrast, in our framework,
there is no intimate connection between the theory and any of the existing conceptual
models of diagnosis. In fact, the meaning of a knowledge base, described by means of an
evidence functione, is completely separated from its diagnostic use. Of course, it is usually
desirable to define notions of diagnosis that closely mirror the meaning of a knowledge
base. Furthermore, where in other frameworks, modelled behaviour has to satisfy certain
constraints, like monotonicity due to the monotonic nature of standard logical entailment,
there are no such prerequisites in our framework, and many types of subtle interaction can
be expressed.

We have focussed on qualitative methods for diagnostic problem solving, but in a
considerable number of papers, diagnostic problem solving is essentially viewed as a form
of reasoning with uncertainty, using specific quantitative measures of uncertainty. A typical
example of such work is the usage of probabilistic networks, also called Bayesian belief
networks, for diagnostic problem solving [1,20,28,39]. However, by a straightforward
extension, the framework proposed in this paper can also cover such probabilistic
diagnostic systems: Charniak and Shimony [7], and Santos and Santos [37,38], have shown
that set-covering theory can be moved in a probabilistic direction, by the concept ofcost-
based abduction. This amounts to associating a prior cost function with sets of defects and
findings, and updating cost information during abductive reasoning. Then, to any diagnosis
produced, a cost will be attached. The cost of a diagnosis may be anything, varying from
financial costs to some subjective feeling of importance expressed by numbers. However,
Charniak and Shimony choose as a semantics of cost function information for the negative
logarithm of probabilities. Under this interpretation, a minimal-cost diagnosis is identical
to a most probable diagnosis using probabilistic networks [7].

A limitation of the framework presented here is that, as a tool for the semantical
analysis of diagnosis, the framework is rather extensional in nature. This is in contrast
with the more intensional nature of logic-based techniques for the analysis of diagnosis, as
commonly used in consistency-based and abductive diagnosis, which allow for the separate
specification of knowledge of structure and function, and for the easy composition of a
knowledge base, just by putting parts together. Despite this limitation, it is the extensional
nature of the formalism that forces one to think explicitly about interactions among defects
and findings, and much insight can be gained in this way.
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