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Abstract

Model-based diagnosis concerns using a model of the structure and behaviour of a
system or device in order to establish why the system or device is malfunctioning.
Traditionally, little attention has been given to the problem of dealing with uncertainty
in model-based diagnosis. Given the fact that determining a diagnosis for a problem
almost always involves uncertainty, this situation is not entirely satisfactory. This paper
builds upon and extends previous work in model-based diagnosis by supplementing the
well-known model-based framework with mathematically sound ways for dealing with
uncertainty. The resulting method integrates logical reasoning with probabilistic rea-
soning, and reasoning about the structure and behaviour of a system with reasoning by
taking stochastic independence assumptions into account. © 2001 Elsevier Science Inc.
All rights reserved.
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1. Introduction

There has been a great deal of research in the area of model-based diagnosis
in the past two decades. Model-based diagnosis concerns using a model of the
structure and behaviour of a system or device in order to establish why the
system or device is malfunctioning. A number of different theories of diagnosis
have been proposed, capable of dealing with different diagnostic problems. In
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fact, it has been recognised that there exists a wide range of different notions of
diagnosis that can be taken as foundations for building diagnostic systems [12].

The two most popular theories of model-based diagnosis are abductive di-
agnosis and consistency-based diagnosis. In abductive diagnosis, typically a
causal model of abnormal behaviour is used to explain observed abnormal
findings in terms of a given causal theory [1,11,14,15]. The theory possesses two
different formalisations, one in terms of logic, as proposed by Console et al. [1],
and by Poole [15]; the other one, proposed by Peng and Reggia [14], uses set
theory. The logical theory of abductive diagnosis is the more powerful one,
which is a mere consequence of limitations imposed by Peng and Reggia [14] on
their set-theoretical formalisation, and not of limitations of set theory in
general [11]. In contrast to abductive diagnosis, in consistency-based diagnosis,
typically knowledge of the normal structure and behaviour of devices is used to
determine what is wrong with a device or system [4,7,16]. The theory is in
particular suitable when dealing with faults with which there exists little or no
prior experience, such as done in troubleshooting of novel equipment and
devices. The theory has the virtue of having a precise, formal underpinning in
terms of logic [7,16], supplemented by well-engineered computational envi-
ronments [8,6]. Although abductive diagnosis was originally meant for dealing
with abnormal behaviour only, it was later extended to handle knowledge of
normal behaviour as well [2]. Similarly, whereas the theory of consistency-
based was originally focussed on diagnosis with a model of normal structure
and behaviour, it was later extended to also incorporate abnormal behaviour
[7]. However, the actual approaches followed in solving a diagnostic problem
are still different: abductive reasoning versus consistency-based reasoning,
yielding different solutions.

It has been argued that Bayesian networks offer a natural framework for
dealing with uncertainty in abductive reasoning problems [13]. The reason for
this is easy to understand: as Bayesian networks can be given a causal inter-
pretation, there exists an obvious relationship between abductive reasoning in
qualitative causal models and diagnostic reasoning in Bayesian networks. Such
a relationship, however, does not exist with consistency-based diagnosis, as the
models used in consistency-based diagnosis do not normally permit a causal
interpretation. Handling uncertainty in consistency-based diagnosis has
therefore been a difficult issue, for which no satisfactory solution has been
found as yet. When researchers did explicitly consider the uncertainties in-
volved in consistency-based diagnostic reasoning, they usually did so by rather
restrictive methods.

In the present paper, we seek to develop methods for reasoning with un-
certainty in consistency-based diagnosis that extends those described in the
literature; probabilistic reasoning as offered by Bayesian networks and logical
reasoning as done in consistency-based diagnosis are integrated. The aim is to
combine the best of both worlds. As consistency-based diagnosis is no longer
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uniquely associated with models of normal structure and behaviour, but also
with models of abnormal behaviour, we will assume that the latter type of
knowledge may also be included.

The paper is organised as follows. In Section 2, we briefly discuss the pre-
vious work in dealing with uncertainty in consistency-based diagnosis. Next,
the basic theory of consistency-based diagnosis is reviewed, and a number of
properties required in subsequent sections are investigated. In Sections 4 and 5,
a theory of Bayesian model-based diagnosis is developed by building upon the
previous work. The paper is rounded off by a discussion of what has been
achieved.

2. Previous research

We start by summarising the major results of related previous research,
and subsequently undertake to identify limitations and weaknesses of these
results.

In his ground-breaking article, Reiter [16] introduced for the first time a
precise, formal description of model-based diagnosis of the consistency-based
type. This paper essentially discusses the logical structure of model-based di-
agnosis; the issue of how to deal with the uncertainties associated with the
occurrence of faults in a device, however, was not touched upon. In a subse-
quent paper [6], de Kleer proposed to represent this uncertainty as a joint
probability distribution Pr(C) on a set of components C = {C,...,C,}, where
the adjustment of this probability distribution due to the observation of a
particular finding o would be computed by Bayes’ rule:

Pr(o|C) Pr(C)
Pr(o)

assuming Pr(o) > 0. Baye’s rule reformulates the problem into determining the
probabilities Pr(o|C) and Pr(C); the probability Pr(o) is a normalisation fac-
tor. Whereas the specification of the probability distributions Pr(o|C) and
Pr(C) is exponential in their number of variables, computation of the other
probability is hard in general.

In a more recent paper, Kohlas et al. [9] propose another, yet related, ap-
proach. Instead of adjusting a probability distribution when new evidence
becomes available using Bayes’ rule, they adjust it using knowledge of possible
and impossible states of components as obtained by consistency-based rea-
soning. This may be viewed as determining the probabilistic diagnosis of faulty
behaviour:

Pr'(C) = Pr(C|o) =

Pr(Cl, ey C,,)
PI’/(C) = Pr(D)
0 otherwise

if {C],...,Cn}eD
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where D stands for a set of sets C = {C|,...,C,}, with each set consisting of
components that, when assumed to be behaving in a particular way, may be
viewed as a diagnosis; the stochastic variables C;, 1 <i<n, indicate compo-
nents that may or may not be faulty. The set D contains all combinations of
behaviours of components that, according to the theory of model-based di-
agnosis, are consistent with the observations; the other combinations of be-
haviours are inconsistent, and therefore left out. The probability distribution
can thus be adjusted to reflect this new information.

The two approaches mentioned above are very much in line with traditional
model-based diagnosis. Somewhat different is the suggestion made by Pearl [13]
that model-based diagnosis can also be accommodated in the framework of
Bayesian networks. In the suggested representation, (faulty) components are
represented as independent conditioning vertices, i.e., vertices without incom-
ing arcs. Their state influences the component’s output, which is modelled by
vertices with incoming arcs from the appropriate component vertex, and
possibly from input vertices; outgoing arcs correspond to the component’s
output connections. The typical structure of a Bayesian network that repre-
sents a model-based diagnostic problem as suggested by Pearl is shown in
Fig. 1. In the figure, / and I’ represent inputs to the component C;; O; stands for
the associated output. Both the inputs / and /' and the output O; may have an
outgoing arc connected to outputs of other components.

Of the three different ways to incorporate uncertainty in model-based di-
agnosis discussed above, none is really satisfactory; in all three, some unreal-
istic assumptions are made, as is in fact acknowledged by de Kleer in his paper
[6]. In the first two approaches, it is assumed that the components are mutually
independent. Since the event of failure of one component is unlikely to be
completely independent of failure of all other components, this assumption is
much too strong. Pearl’s third approach assumes that the failure of compo-
nents is unconditionally independent, but information concerning observations
may make components dependent, which is known as induced dependence [13].
When in addition any information about failure of those components is entered
into the network, by instantiating one or more of the component vertices,
failure of the other components becomes less likely, a phenomenon known as
explaining away [13]. Thus, Pearl’s approach is able to cope with dependences

Fig. 1. Typical structure of Bayesian-network fragment representing model-based diagnosis ac-
cording to Pearl [13].
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among components to some extent. However, the structure of a Bayesian
network only reflects the functional dependences as following from the speci-
fication of the structure and behaviour of a system. Possible additional sto-
chastic dependences among components are ignored, which is unsatisfactory,
because Bayesian networks are especially suited for that purpose.

Also note that the assumption of (marginal) independence tends to overes-
timate the likelihood of single-fault diagnoses, because the likelihood that a
particular component C; is faulty is usually much smaller than it to be func-
tioning normally. The prior probability

Pr(Cy,...,C,) =[] Pr(C)
i=1

will therefore be the largest for single faults. This also holds for the first two
approaches when there are observations available that are inconsistent with the
model. This consequence of the independence assumption is unfortunate, be-
cause one of the attractive features of the theory of model-based diagnosis is its
capability of dealing with multiple, interacting faults. Something similar holds
for Pearl’s approach, as basically posterior probabilities Pr(C;|O) are deter-
mined for every component C; € C for given observations O. Obviously, these
are not real multiple fault diagnoses. Furthermore, in the work of Kohlas et al.
the probabilistic influence of evidence on the likelihood that particular com-
ponents are faulty is dealt with in a limited way, viz., only to adjust the
probability distribution with respect to possible system states.

The relaxation of these assumptions is the main subject of this paper. First,
the foundations of consistency-based diagnosis will be briefly reviewed. The
incorporation of uncertainty into the logic framework will then be dealt with in
the subsequent sections.

3. Consistency-based diagnosis

The theory of consistency-based diagnosis was initially introduced by de
Kleer [4] and de Kleer and Williams [8], and formalised by Reiter [16] and de
Kleer et al. [7]. The basic idea is that a specification of the structure and be-
haviour of a system or device is used for diagnosing problems encountered with
the system or device. Knowledge about the structure and behaviour of a system
is used as a basis for simulation. The thus obtained simulated behaviour is then
compared to the behaviour as observed from the actual system. A discrepancy
between predicted and actual behaviour is interpreted as indicating that the
system must be faulty. When the discrepancy is resolved by assuming particular
components of the system to be faulty, a diagnosis has been established. We
shall briefly review the formalisation of this idea in the following.
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In the theory of consistency-based diagnosis, the structure and behaviour of

a system & is defined as a triple ¥ = (SD, COMPS, OBS), where

e SD denotes a finite set of formulae in first-order predicate logic, specifying
normal structure and behaviour, but sometimes including abnormal beha-
viour as well, called the system description;

e COMPS denotes a finite set of nullary function symbols or constants in first-
order logic, corresponding to the components of the system that can be
faulty;

e OBS denotes a finite set of formulae in first-order predicate logic, represent-
ing observations.

It is, in principle, possible to specify normal as well as abnormal (faulty) be-

haviour within a system description SD, though the emphasis typically lies on

the specification of normal behaviour. Formulae in SD having the form

Vx((COMP;(x) A —Ab(x)) — NormBehaviour;(x))

specify the normal behaviour of the components ¢ € COMPS for which
COMP;(c) would hold true. There may also be formulae specifying abnormal
(faulty) behaviour; these formulae have the form

Vx((COMP;(x) A Ab(x)) — AbBehaviour;(x))

A literal Ab(c), where ‘Ab’ is short for abnormal, when taken true, is inter-
preted as the assumption that component c is faulty; a literals =Ab(c), on the
other hand, means that it is assumed that component c¢ is acting normally. An
Ab clause is defined as a disjunction consisting of Ab literals. An Ab conjunct is
defined as a conjunction of Ab literals. A set of literals is interpreted as a
conjunction of those literals, and vice versa.

Adopting the definition from Ref. [7], a diagnosis in the theory of consis-
tency-based diagnosis can be defined as follows.

Definition 1 (Consistency-based diagnosis). Let & = (SD, COMPS, OBS) be a
system. Let

Ap = {Ab(c)|c € COMPS}
be the set of all positive Ab literals, and

An = {—Ab(c) |c € COMPS}

be the set of all negative Ab literals. Furthermore, let 4 C Ap U Ay be a set,
such that

4 = {Ab(c)|c € C} U{-Ab(c) | COMPS\C}

for some C C COMPS. Then 4 is a consistency-based diagnosis of & if the
following condition, called the consistency condition, holds:
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SDUAUOBS ¥ L (1)
i.e., SDU 4 UOBS is satisfiable.

Here ¥ stands for the negation of the logical entailment relation, and L
represents a contradiction. A diagnosis is thus defined as a maximally consis-
tent Ab conjunct, indicating for each component ¢ € COMPS whether it is
faulty or not.

The notion of conflict is dual to the notion of diagnosis; it is of central
importance to the theory. We again follow de Keer et al. [7] in defining it.

Definition 2 (Conflict). Let & = (SD, COMPS, OBS) be a system. If ¢ is a non-
empty Ab clause, such that

SDUOBS E ¢

then ¢ is called a conflict.

The term ‘conflict’ comes from the earlier literature, in which an Ab conjunct
 for which SD Uy UOBS [ L would be called a conflict. Obviously, there
exists in this case an Ab clause ¢ for which y = -¢ and SDUOBS E ¢.
Hence, the relationship between these two definitions is straightforward.

We have the following important relationship between diagnoses and con-
flicts, using Definition 2, again based on Ref. [7].

Theorem 1. Let & = (SD,COMPS, OBS) be a system with set of conflicts II.
Then the maximally consistent Ab conjunct A is a diagnosis of & iff

Huag 1

Proof. (=) Since 4 is a diagnosis, it holds that
SDUOBSU4FE L

It follows that SD UOBS ¥ 1, and any conflict ¢ € IT will therefore be con-
sistent with A.
(<) Suppose that 4 is not a diagnosis, i.e.,

SDUOBSUA E L

and that TUA¥ 1. Then it follows that SDUOBS E —4. By definition,
-4 € I, as -4 is an Ab clause. But then, it must hold that [TU 4 | L, con-
tradicting the assumption at the beginning. Hence, 4 must be a diagnosis. [

This relationship between conflicts and diagnoses is not only of theoretical
significance: conflicts are commonly used in diagnostic reasoning engines to act
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as a sort of intermediary result in computing diagnoses, as follows from the
following corollary.

Corollary 1. Let & = (SD,COMPS, OBS) be a system with set of conflicts T1
and set of diagnoses D. Then for each ¢ € II and for each A € D it holds that
- N A EL

Proof. Note that from Theorem 1 it follows that for each ¢ € I1
¢ N AE L (2)

Now 4 contains an Ab literal for every component ¢ € COMPS. From (2) it
follows that the Ab clause ¢ contains at least one Ab literal with the same sign
and concerning the same component as a literal in 4. [

Hence, diagnoses overlap, though usually not completely, with conflicts.
This insight is the basis of a number of algorithms that construct diagnoses
from sets of conflicts, such as the hitting-set algorithm by Reiter [16], the
constructor algorithm in the general diagnostic engine (GDE) [8], and the
component consequences algorithm by Darwiche [3].

We illustrate the concepts from this section with a classical example from the
literature on consistency-based diagnosis (cf. [7]).

Example 1. Consider Fig. 2, which depicts an electronic circuit with three
multipliers, referred to as My, M, and M;, and two adders, denoted by 4; and
Ay, i.e., COMPS = {M;, M,,M;,A,,4,}. The system description SD consists of
formulae like
Vx((Multiplier(x) A =Ab(x)) — (o(x) = i1 (x) X ir(x)))
for describing the behaviour of components, such as Multiplier(M;), and
o(M) = i (1)

M 1 —I

A, ——12 observable
[10] observed

2
2 — M,
3

As |—— 12 observable

L —l— [12] observed
Mj

Fig. 2. Multiplier-adder circuit.
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(the output of M, is equal to the first input to 4,) for representing knowledge
about the structure of the system. Now the output of the system,
{o(4,) =10, o(4,) = 12}, differs from the one expected according to the
simulation model, i.e., it gives rise to an inconsistency

SD UOBS U {~Ab(c) |c € COMPS} | L

as is also indicated in Fig. 2. There exist two conflicts with minimal number of
literals (the others are subsumed):

Ab(4;) V Ab(M;) V Ab(M>)
Ab(4)) V Ab(M;) V Ab(M;) V Ab(4,)
One of the diagnoses is
Ab(4,) A =Ab(4,) A —“Ab(M,) A ~Ab(M;) A —Ab(M;)

i.e., when assuming component 4, to be defective, the inconsistency is resolved.

Since conflicts are used as a basis for computing diagnoses, it is worthwhile
to look for further relationships between the two concepts, in addition to the
fundamental result of Theorem 1.

Proposition 1. Let & = (SD, COMPS, OBS) be a system with a set of conflicts
II and a set of diagnoses D. Then D = - \/{~¢| ¢ € II}.

Proof. For convenience, we shall interpret the disjunctive normal form of a
formula as a set of elements; the set D is also viewed as consisting of dis-
junctions of conjuncts (diagnoses). Let IT = \/{—¢ | ¢ € IT}. Then we have that
for each € IT

SDUyUOBS E L
whereas for each A4 € D, it holds that

SDUAUOBS ¥ L
and every possible maximally consistent combination of Ab literals is covered
by II and D together. Hence,

IIvVD=T 3)
Finally, from (3) it follows that D = —=I1. O

Hence, we may conclude that as soon as we have obtained the set of con-

flicts, finding the associated diagnoses is a trivial process.

The notion of cover is used in the following to investigate subsets of diag-
noses.
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Definition 3 (Cover). Let ¢ and  be Ab conjuncts, such that any interpretation
# that satisfies ¢ also satisfies yy. Then  is said to cover ¢. This is denoted by

V=g

Note that the cover relation defines a partial order on the set of Ab con-
juncts.

In addition to the notion of diagnosis, de Kleer et al. [7] define the notion of
partial diagnosis. A partial diagnosis combines information from different, but
related diagnoses, in a single representation. For example, suppose that

Ab(Cl) N Ab(Cz) AN Ab(C})
and
Ab(Cl) A\ Ab(Cz) A\ _\Ab(C3)

are two alternative diagnoses of a system .. These two diagnoses are identical,
with the exception of the last literal. Clearly, component c¢; may either be faulty
or not faulty, as long as ¢; and ¢, are both faulty. The partial diagnosis
Ab(c;) A Ab(c,) conveys exactly that information; note that both diagnoses
above are covered by this partial diagnosis. As there may be several partial
diagnoses related to each other in the sense discussed above, it seems desirable
to single out special partial diagnoses having some minimality property. This is
exactly what is achieved by the notion of kernel diagnosis, which is defined as a
partial diagnosis that can only be covered by itself.
The following property of diagnoses will also be used in the following.

Proposition 2. Let ¥ = (SD, COMPS, OBS) be a system, and let A and A" be
two diagnoses of & such that AZA'. Then A N A = 1.

Proof. The diagnoses 4 and A’ are conjuncts, different in at least one literal.
That literal, however, must concern the same component, hence the result. [

Note that this property only holds for (full) diagnoses, and not generally for
partial diagnoses.

4. Uncertainty in model-based diagnosis

Consistency-based diagnosis can be viewed as a form of assumption-based
problem-solving [15]; resulting diagnoses may therefore be seen as assumptions
that hold as long as no refuting evidence is available. Diagnoses are thus taken
to be uncertain. However, without quantifying this uncertainty explicitly, there
is no real choice here but to assume that all possible diagnoses are equally
likely, even given that this is extremely rare. Some researchers have suggested



P.J.F. Lucas | Internat. J. Approx. Reason. 27 (2001) 99-119 109

using syntactic properties as a measure of likelihood, such as the number of
positive Ab literals in a diagnostic solution, interpreting diagnoses with fewer
positive literals as more likely [18]. However, these approaches are not really
satisfactory, as they offer no systematic approach that will work in any
problem domain. As discussed above, there have also been proposed several
probabilistic approaches to this problem. Here we take the work by Kohlas et
al. [9], which was discussed above, as a starting point and undertake to gen-
eralise it.

4.1. Probabilistic independence structure

Uncertainty with respect to the normal or faulty behaviour of components is
expressed by a joint probability distribution on the set of components COMPS:

PI‘(Cl7 ey C,,)

where C;, for each i, 1 <i<n, is a stochastic variable that when taking the value
true, also denoted by ¢;, indicates component ¢; to be faulty; when C; takes the
value false, also denoted by —c¢;, component ¢; is assumed to be normal. This
yields a 1-1 correspondence between Ab formulae and Boolean expressions
involving ¢; and its negation. It will usually be clear from the context whether
by a particular expression a Boolean expression within probability theory is
intended or its corresponding logical formula within the theory of consistency-
based diagnosis.

In contrast to [6,9], it is not assumed that the variables C; are mutually in-
dependent, because information of whether a component is faulty or not
usually influences our knowledge about other components. We adopt, there-
fore, the very general idea that the joint probability distribution Pr can be
factorised according to our knowledge of a given problem domain, such as
knowledge of causal relationships between (mal)function of components and of
dependences and (un)conditional independences among components:

Pr(Cy,...,C,) = H Pr(C;|n(Cy))

where 7(C;) are the variables on which the variable C; is conditioned according
to the factorisation, possibly taking conditional independence information into
account. Components that are behaving normally, however, are assumed to be
mutually independent, i.e.,

Pr(—c¢;|an(C;)) = Pr(—c;)

where the expression 7n(C;) stands for -c¢ and where

jl, ..
Pr(—¢;|an(C;)) is obtained from the factorisation. Thus,

—c
» " Climy >
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Pr(=cy,...,—e,) = [ [ Pr(=e:)
i=1

Hence, knowing that particular components are behaving normally does not
influence our knowledge of other components. This seems the only general
independence assumption that can be made without introducing unrealistic
limitations.

A factorisation of a probability distribution can also be depicted as a di-
rected acyclic graph G = (C,4), where in this case the set of vertices C cor-
responds to the set of components COMPS; the set of arcs 4 C C x C reflects
the stochastic dependences and independences among the variables, and fol-
lows the structure of the factorisation. One could also start with defining a
directed acyclic graph G to model the independence structure of the problem,
and next define a joint probability distribution Pr on the variables corre-
sponding to the vertices C. The result will be a Bayesian network 4, = (G, Pr)
of the system & [10]. In the following, this is the approach that will be adopted.

4.2. Handling evidence

Now let us assume that some observations are obtained for a system &.
These observations could in principle influence our knowledge of the likelihood
of malfunction of certain components of the system. However, the extent of
influence cannot be established by instantiating variables in the Bayesian net-
work %, as is usually done in Bayesian-network applications, as observation
variables have not been included. Instead, we use information that is obtained
from diagnostic problem-solving with the system .¥ that is associated with the
Bayesian network % .

As before, let IT be the set of all conflicts that have been obtained for the
system .. For each element ¢ € IT it holds that

SDUOBSU {~¢} | L.

In other words, the system cannot be in state —¢, because that gives rise to a
contradiction. Hence, we know that

Pr'(~¢) = 0
must hold, where Pr’ is the probability distribution obtained by conditioning

on information obtained from performing consistency-based diagnosis. Now
let IT be defined as follows:

m=\/{~¢|¢ecI}
From Proposition 1 we know that the set of diagnoses D = —I1. Let us assume
that D is in disjunctive normal form, where a diagnosis {Ci,...,C,} € D is

again an Ab conjunct. Then it holds that
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PI'(Ch...,Cn) .
/ - f P n D
Pr'(C,...,Cy) Pr(D) ir{C,.... G} e
0 otherwise
where
Pr(D) = Pr(4)
AeD

because according to Proposition 2 it holds, for each 4,4’ € D, with A#£ A’,
that 4 A A" =1. The probabilities Pr(4) can be computed from the associated
Bayesian network %, with a computational complexity depending on the
density of the topology of the network. Alternatively, the probability Pr(D)
may be computed directly from the conflict set IT as

Pr(D) = 1 — Pr(Il)
or, when focussing on individual conflicts,

Pr(D)=1- )" Pr(¢)

pell’

with

II'={¢|¢p = {Ab(c)|c € C} U{~Ab(c)|c € COMPS\C},

C C COMPS, ¢ € II}
i.e., only maximally consistent conflicts should be taken into account to pre-
vent counting probabilities more than once.
Based on the results above, it is now also possible to determine the proba-

bility of partial diagnoses. Partial diagnoses are no longer merely simplified

representations of alternative diagnoses, as we have to take their likelihood
into account as well.

Proposition 3. Let ¥ be a partial diagnosis of the system & = (SD, COMPS,
OBS). Then for any diagnosis A of & with ¥ < A, it holds that Pr(4) < Pr('P).

Proof. Using marginalisation, it holds that

Pr(¥) = Pr(4)

Y=<4

where A’s are diagnoses, from which the premise follows immediately. [
The following corollary comprises the result we are really after.

Corollary 2. If V¥ is a kernel diagnosis of the system &, then for any partial
diagnosis V' of & with W < ¥' it holds that Pr(¥') < Pr(¥).
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Hence, kernel diagnoses are the most likely diagnoses. As a consequence,
when it is necessary to restrict the number of diagnoses to be considered, it
might be worthwhile to determine kernel diagnoses only, and to focus on
the repair of the components included in the kernel diagnoses.

The results of this section are related to the results obtained by Kohlas et
al. [9], but here they are achieved without making, possibly unrealistic, in-
dependence assumptions about the problem domain. Yet the method is
computationally feasible under realistic conditions. The heaviest part of the
computation will usually be done by the logical reasoning engine, which
may be implemented by an ATMS [5], by using the hitting-set algorithm
[16] or by the component consequences algorithm [3]. Furthermore, it was
shown that the methods could be extended in a straightforward way to deal
with partial and kernel diagnoses, yielding some practically useful results.

5. Incorporating observations: the Bayesian approach

Up until now, we have handled evidence in model-based diagnosis by
renormalisation of a given joint probability distribution Pr(C) based on
information concerning conflict sets. These were computed using traditional
logical techniques from consistency-based diagnosis. Although only realistic
assumptions were made, this method is still rather crude. Whereas this type
of model-based diagnosis does indeed enable the usage of knowledge of
abnormal behaviour and of abnormality observations for reducing the
number of alternative diagnoses [6], it is not possible to employ such evi-
dence effectively to influence the likelihood of the individual diagnoses. It is
this aspect that will be studied in this section.

5.1. An extended Bayesian-network representation

In order to deal with the unrestricted probabilistic influence of observed
findings on a probability distribution, it is necessary to include observations
into Bayesian-network models. We will do so accordingly.

Definition 4 (Bayesian observation model). A Bayesian observation model My

of system & = (SD,COMPS,OBS) is a tuple My = (C,0,4,E,Pr), such

that:

e ( represents a set of stochastic (component) variables, corresponding to a
system’s components;

e O represents a set of stochastic (observation) variables, corresponding to ob-
servations;

e ACCx(CUO) is a set of (directed) arcs, portraying stochastic depen-
dences among the variables;
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e ECOXxZ%(CUO,) is a set of Boolean expressions concerning the compo-
nents and observations, indexed by particular observations;

e Pr is a joint probability distribution defined on C U O that reflects all sto-
chastic (in)dependence information represented in 4 and E.

Note that though we speak of ‘observation variables’, this does not mean
that they need actually be observed. A more proper name would have been
‘observable variables’. However, as the role of a variable in probability theory
depends on whether or not it is conditioning other variables — if it is condi-
tioning it is assumed to be observed, if not, it is assumed to be observable,
which could easily happen by transforming probabilistic formulae, it seems
justified to ignore such subtleties. However, it should be recognised that the
role of observation variables may change in this process.

In the following, the structure of an observation model M, will be depicted
as a directed acyclic graph, where elements of 4 will be represented as solid
arcs; E is used to augment the probability distribution of observation variables
with extra information. Note that the set of arcs 4 contains both knowledge
about dependences among components, on the one hand, and among com-
ponents and observations, on the other hand. The set E includes knowledge of
dependences among components and observation variables, expressed as
conditional probabilities. It is assumed that there are no immediate arcs in
A between any two observation variables. However, the set £ may incorpo-
rate more complicated interactions, including those among observation
variables.

Now let us assume that the joint probability distribution

Pr(0,C,...,C,) = Pr(Cy,...,C,) Pr(O|Cy,...,C)) (4)

is decomposed in such way that

Pr(C,...,C,) = H Pr(C| m4(C))) (5)

according to the set of arcs A. The second component of Pr, i.e., the conditional
probability distribution Pr(O|Cy, ..., C,), is defined by the set E together with
the set of arcs 4 by a decomposition into factors using the chain rule of
probability theory; factors have the following form:

Pr(O;|x) if Kk C{c}',...,c2} U0
Pr(O;|cf,....c",0) = and (0;,x) €E
Pr(0;|74(0;)) otherwise
(6)

for each O; € O, where {O;} U O’ C O; furthermore, ¢/ is either equal to ¢; or to
—c;. We assume that the factorisation is determined, firstly, by the factors
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Pr(O;|x), with (O;,x) € E, and only in the second place by the factors
Pr(0; | 74(0)).

The principal idea is that the set £ contains all additional dependences,
when the independences portrayed by A are not fulfilled for all values
(instances) of the variables. This has the advantage that the resulting
Bayesian-network model can still be sparse, even though at the vari-
able level some independences, including those among observation variables,
are not fulfilled. The elements (O, k) € E will be denoted in the following by
Ko-

The set E together with 4 and their associated joint probability distribu-
tion Pr is now used to model the behaviour of a given system &, i.e., to
predict observations given other observed output and state assumptions re-
garding the components. We assume that the following correspondence exists
between the two formalisations. Let ¥ = (SD, COMPS, OBS) be a system.
Then

SDUOUVY E o < Pr(o°|y,0) =1

with {0°} UO C OBS, and for each O’ COBS, O C O: SDUO Uy ¥ o°, i.e.,
O C OBS is C-minimal. In addition, it is assumed that yy C Ap U Ay is
C-minimal. Finally, o¢ is either o or —o. These conditions ensure that the
specification of E will be as small as possible, still capturing the essential be-
haviour of ¥.

It follows that the factors (6) may not be uniquely defined, as there may be
more than one (O, y) combination that enables us to derive o°. This indicates
that there may exist more than one partial behaviour explaining the overall
behaviour of the system, and we could have chosen any of these, as their
probabilities will all be equal to 1.

Example 2. Reconsider the multiplier-adder circuit .% from Example 1. In
Fig. 3, a Bayesian observation model M of that system is shown. For ease of
exposition, we assume that the input to the circuit is fixed; it is therefore not
necessary to represent the input explicitly. We have C = {M;, My, M;,4,,4,}
and O = {0y, 0,}. Furthermore, the following probability distribution is de-
fined for this model:

Pr(o)|a)) =1 Pr(os]a) =1
Pr(oy|—a;) =0.04  Pr(oy|—a,) = 0.05
Pr(m;) = 0.2 Pr(a; |m;) = 0.02
Pr(m;) = 0.02 Pr(a; | —m;) = 0.01
Pr(ms|m) =0.01  Pr(a) = 0.03
Pr(m,|—m;) = 0.005
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1 1
M, O, 3¢ 0Oy %
\ oL Koo
M, M3y Ay Ay
Fig. 3. Bayesian observation model.
In addition, E = {«) ,x} , k) , K, }, where

1

K, = T N —mp N\ —ny

;cgl =-a; N\ —ay N —mp N\ —m3 N\ 40,
1

Kaz =-a, N —my A —n3

K = —ap N ay N —myp A —ms A\ 0

i.e., only normality assumptions are represented in E. Finally, the following
probabilities are defined for the elements in E:

Pr(—|01 | —ap, My, _\mz) =1

PT(_‘Ol \_‘al,_‘a27_‘m17_‘m37_‘02 =

y=1
Pr(ﬁ02 | —dp, My, ﬁl’}’l3) 1
Pr(_'OZ ‘ —ap, ~dp, "my, Tms, _'Ol) =1
Note that, e.g., Pr(oj|—a;,—m;,—-m,) =0 replaces the probability
Pr(o;|—a;) = 0.04 in the Bayesian network specified above, when used to de-
fine the joint probability distribution (4) using Eq. (6). As mentioned above,
both

Pr(—o; |—ay, ~my, —~m;)
and
PI'(“O] | -ap, az, "mp, "ms, —\02)
may be used in computing
Pr(—o1, —0y | —ay, —ay, —my, —my, —ms)

as both are possible factors as defined by Eq. (6).

5.2. Probabilistic reasoning

As we have redefined model-based systems in terms of probability distri-
butions, there is now a close correspondence between the two. One may thus
expect that the probability distribution that represents a system will have been
defined in such a way that it respects the logical behaviour of the corresponding
system &, i.e.,
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Pr(C|0) =0

iff Sbuouc E L, ie., when C is a conflict, where the negative form of
conflicts IT is used. We now have the following proposition, in which use is
made of the relation E.

Proposition 4. Let & = (SD,COMPS,OBS) be a system, and let
Pr(C),Pr(0O) > 0. Then C is a conflict iff Pr(C|O) = 0.

Proof. (=) Note that Pr(O|C) = Pr(0;|C,0O) - Pr(O'| C), with {O;} UO' = O,
and O; ¢ O'. If SDUOUC E 1, then for some O; € O, Pr(0;|C,0) =0 ac-
cording to the Bayesian observation model M. The remainder of the proof
follows trivially from Bayes’ rule.

(<) If Pr(C|O) = 0, then Pr(O|C) = 0, meaning that C must be a conflict of
the corresponding system . [

Hence, there exists a 1-1 correspondence between the notion of conflict in
consistency-based diagnosis and in Bayesian model-based diagnosis. As in
consistency-based diagnosis, the set of conflicts can be used as a basis for de-
termining diagnoses. The known algorithms for consistency-based diagnosis
are quite suitable for that purpose.

There is, however, more knowledge encoded in the Bayesian observation
model than simply the type of knowledge that can be used to compute conflicts.
This knowledge can be used to compute the likelihood of the diagnoses:

Pr(Cy,...,C,|0) = Pr(O|C1,...,Cn)ﬁ Pr(C; | m4(C,))/ Pr(O)

where Pr(O) is a normalisation factor, obtained by computing
Pr(Cy,...,C,|O) for every diagnosis. Note that according to Proposition 4 we
have that Pr(C|O) = 0, for every conflict C, so these probabilities need not be
computed. Sometimes, the observation variables are independent, i.e.,
Pr(0) =[]}, Pr(0;) holds.

Furthermore, Pr(O|Cy,...,C,) may be decomposed as discussed in the
previous section for the Bayesian observation model; sometimes the simpler
condition

Pr(0[Cy,...,C)) =[] Pr(0;lCy,...,Ch)
j=1

holds for the Bayesian observation model; this certainly holds when it is pos-
sible to restrict to the part of the Bayesian observation model concerning 4.

These two approaches — the qualitative, logical one, and the numerical,
probabilistic one — can be combined, yielding the following two-step proce-
dure:
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1. A logical consistency-based algorithm computes all potential diagnoses.

2. The likelihood of every diagnosis is computed using the Bayesian observa-
tion model.

The set £ may be used as a tool to reduce the number of diagnoses to be

considered; the more knowledge it contains, the smaller will be the number of

diagnoses to be considered [7]. We continue with the example in the previous

section, to illustrate the method.

Example 3. In Example 1, the potential diagnoses were already established. The
posterior probability of such diagnoses can now be computed as follows, using
the Bayesian observation model M :
Pr(ay, —ay, —my, —my, —mj3 |01, —0,)
= Pr(o1|ay, —ay, —my, ~my, =ms)-
Pr(—o,|ay, —ay, ~my, —~my, —ms)-
Pr(—my) - Pr(—my | —my) - Pr(—m;)-
Pr(a,|—my) - Pr(—ay)/ Pr(oy, —0,)
=1-1-0.98-0.995-0.80-0.01-0.97/0.046
~ 0.16

where, according to the definition in the previous section, it holds that
Pr(o)|ay, ~ay, ~my, —my, —m3) = Pr(oy |a;)

and
PI‘(“Oz | ap, "az, —mp, Ny, _\H’I3) = Pr(—\02 | —dy, Ny, _‘H’I3)

Furthermore, Pr(o;,—0,) = Pr(o;) Pr(—0,) was computed straight from the
Bayesian observation model, using a standard Bayesian-network inference
algorithm.

Finally, note that the results of the previous section are a special case of the
results of the present section. When the observation variables O are indepen-
dent of the component variables C, i.e., the set of arcs 4 does not include el-
ements (C;, O;), whereas the set £ only represents normality assumptions, the
results of Section 4.2 coincide with the achievements of this section.

6. Discussion

Methods from the field of model-based diagnosis are especially good at in-
corporating knowledge of the structure and behaviour of systems for the
purpose of diagnosis, but are weak at the representation of the uncertainties
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involved. Bayesian networks are good at representing the stochastic (in)de-
pendences and uncertainties involved in processes, but are not really suitable
for the representation of their associated structure and behaviour. Bayesian
model-based diagnosis, on the other hand, integrates the methods from tra-
ditional logic-based consistency-based diagnosis and Bayesian networks, in-
corporating results from these research fields as special cases. Whereas de Kleer
[6] already suggested the use of Bayes’ rule, his approach implies using very
strong independence assumptions, which is unnecessarily restrictive. The work
of Kohlas et al. [9] does not fully recognise the importance of observations to
rank resulting diagnoses, and also ignores the possibilities offered by Bayesian
networks for computing diagnoses efficiently, without having to make abun-
dant independence assumptions. Finally, Pearl [13] does not fully appreciate
the power of model-based reasoning techniques, on the one hand, and does not
give proper attention to the modelling of interactions between components, on
the other hand. The present work does not suffer from such drawbacks.

If the likelihood of every diagnosis is determined, the research described in
this paper may be seen as a model-based approach to the maximum a poste-
riori (MAP) assignment problem for Bayesian networks. In the MAP problem
the instantiation / yielding the largest a posteriori probability Pr(/|E) for ev-
idence E is determined; this problem is known to be NP-hard [17]. In our case,
we try to reduce the computational burden by eliminating potential candidates
I using consistency-based reasoning. Of course, whether this approach is ef-
fective in practice is determined by the actual Bayesian observation model
chosen for a problem. If the network topology is dense, the computational
burden will be large, but if it is sparse, and the set £ includes sufficiently strong
constraints, computation of the most likely diagnosis will be feasible.
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