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Introduction: Autonomous chronic disease management requires models that are able to interpret time
series data from patients. However, construction of such models by means of machine learning requires
the availability of costly health-care data, often resulting in small samples. We analysed data from
chronic obstructive pulmonary disease (COPD) patients with the goal of constructing a model to predict
the occurrence of exacerbation events, i.e., episodes of decreased pulmonary health status.
Methods: Data from 10 COPD patients, gathered with our home monitoring system, were used for tem-
poral Bayesian network learning, combined with bootstrapping methods for data analysis of small data
samples. For comparison a temporal variant of augmented naive Bayes models and a temporal nodes
Bayesian network (TNBN) were constructed. The performances of the methods were first tested with syn-
thetic data. Subsequently, different COPD models were compared to each other using an external valida-
tion data set.
Results: The model learning methods are capable of finding good predictive models for our COPD data.
Model averaging over models based on bootstrap replications is able to find a good balance between true
and false positive rates on predicting COPD exacerbation events. Temporal naive Bayes offers an alterna-
tive that trades some performance for a reduction in computation time and easier interpretation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Clinical data often takes the form of time series, which, when
interpreting all the variables concerned in their mutual context, of-
fer a description of the progression of a disease over time. While
insight into the evolution of a disease is an important aspect of
the management of any disease, whether acute or chronic, for pa-
tients with a chronic disease the evolution is of even more impor-
tance, as often the disease will not disappear. In this context it is in
particular important to be able to detect when the disease becomes
worse, i.e., to detect and possibly prevent exacerbations. For any
chronic disease it is therefore of clinical interest to study the inter-
action between different variables, ranging from signs and symp-
toms to environmental factors, in terms of both static and
temporal relationships. If we can capture this knowledge in a mod-
el, predictions regarding health status made by means of such
models can be used to assist in chronic disease management, for
example by advising on therapy adjustment. Furthermore, disease
models are important for epidemiological purposes, for example
for survival analysis, as well as for cost-effectiveness analysis and
policy planning.

A complication that arises when analysing clinical time series is
that it is often hard to obtain sufficient data, for example because
the event of interest is relatively low frequency or because taking
measurements is costly, time consuming or inconvenient for the
patient. In addition, the reality of gathering clinical data is that
observations are made at irregular time intervals and the data will
contain missing values. Patients will sometimes forget to provide
data, or omit some evidence for unknown reasons. Also measuring
devices may sometimes fail or readings may not be recorded. These
observations pose a challenging research question, which we seek
to answer in this paper, namely, whether we can learn useful pre-
dictive models from clinical data with the combined characteristics
of missing values and limited availability.

The research methods we propose draw their inspiration from
various existing methods, which have proven to be successful in
machine learning applications. Yet the combination of these meth-
ods has not been applied to clinical time series analysis. Temporal
variants of Bayesian networks are our main tools to reason about
causal and temporal processes in a probabilistic manner. In partic-
ular we use dynamic Bayesian networks (DBNs), where ‘dynamic’
should be interpreted as modelling the temporal dynamics of the
process. They provide interpretable and versatile models to
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describe time series data and can be used to classify states and
make predictions about future states. To learn network structures
in the presence of missing observations we make use of the struc-
tural expectation–maximisation (EM) algorithm [1], which itera-
tively completes the data and performs a search for the best
network structure to explain the data. Here we employ a variant
of structural EM, with a different approach to filling in values for
the missing data. Finally, to tackle the problem of data sparsity,
we consider bootstrap methods originally developed in statistics
[2]. In the context of Bayesian networks these methods have been
applied to the analysis of micro-array data and we extend them
here to the learning of temporal models from clinical time series.

To provide a concrete clinical context for this research, we focus
on chronic obstructive pulmonary disease (COPD) as an application
area. This disease has many characteristics that are typical for any
chronic disease, although symptoms and signs will be mostly dif-
ferent from those other diseases. COPD is a major chronic disease
in terms of morbidity and mortality; it affects the respiratory sys-
tem, decreasing lung capacity and obstructing airways, thus inter-
fering with normal breathing. An important aspect of COPD which
is particularly relevant in the present context is the progressive
nature of the disease. Specifically episodes of acute deterioration
have a profound impact on patient well-being and on health-care
costs [3]. These exacerbations are mainly caused by airway infec-
tions resulting in symptom worsening [4]. Important to note is also
that patients with frequent exacerbations usually have faster dis-
ease progression, which makes exacerbation prevention a particu-
larly relevant goal. Additionally, a faster treatment response to
exacerbations appears to lead to better recovery [5].

The main contributions of the paper are as follows:

� We formulate an algorithm to learn temporal probabilistic
models from limited clinical time series with missing values.
The main novelty of the algorithm lies in combining learning
of dynamic Bayesian networks from clinical data using struc-
tural EM with block bootstrapping for small data samples.
� We propose a variant of our learning algorithm based on naive

Bayes networks, which has the attractive properties of reduced
computational complexity, thus easy construction, while offer-
ing good prediction performance.
� The proposed learning algorithms are used to build predictive

models of COPD patient’s health status, focussing on day to
day progress of signs and symptoms that can rapidly change
during exacerbation events. These predictive models are novel
in the context of COPD as they can handle both the dynamic
nature and uncertainty inherent in the disease progression. As
such, these models can be embedded within clinical or home-
based applications for chronic disease management.
� We evaluate the learning procedure on COPD synthetic and

patient data and show that it is effective in terms of structure
discovery of interesting variable relationships, interpretability
and prediction performance of the models learned.
� The results from this research demonstrate important clinical

implications not only for the prediction of COPD exacerbations
but also for the clinical relevance of the methods proposed for
chronic disease management applications in general.

2. Related research

2.1. Clinical time series analysis

Survival analysis is a popular clinical application of time series
analysis and here the technique of Cox-regression is normally used
for model construction [6]. However, Cox-regression has important
limitations; in particular, it is not suitable to model independence
assumptions. Our work is more closely related to the research de-
scribed in [7], which argues for using DBNs for prognostic models
in medicine. Variants of DBNs have also been used to model tem-
poral dynamics of organ failure in patients in intensive care units
(ICU) [8], although there no structure learning was used. Further,
a Bayesian network has been developed on the basis of electronic
health record data to predict the onset of COPD in asthma patients;
however, temporal information was not explicitly taken into ac-
count [9]. In the specific context of long term disease management
for COPD, related research has focussed on facilitating remote com-
munication [10,11] and automatic data interpretation is still
uncommon. In [12] a telehealth system is described that has been
applied to COPD and contains a decision support component. How-
ever, currently the decision support is limited to rule based detec-
tion of abnormal values and trend detection. Automatic
interpretation of monitoring data using machine learning while
taking time and uncertainty into account, therefore, appears to
be a useful contribution to the area of chronic disease
management.

2.2. Modelling and machine learning techniques

Early work on using Bayesian networks for prediction includes
dynamic network models [13], with, for example, a clinical appli-
cation to predicting sleep apnea [14]. In our work, we used and ex-
tended techniques for learning Bayesian networks from data with
missing values [1] and learning from small samples using boot-
strapping [15]. These methods are used extensively in bioinformat-
ics [16], but application to the domain of clinical time series
analysis constitutes a new and interesting challenge. The bootstrap
methods used for small data samples are related to what is known
as bagging in the machine learning literature [17], but are usually
applied to learning decision trees instead of Bayesian networks.
Our augmented temporal naive Bayes model is an extension of
the TAN classifier from [18] to a prediction model that takes time
dependencies into account.

In [19] a method is proposed to learn DBNs with changing
dependency structures. The models include hidden variables that
influence the structure of the model depending on the value of a
particular variable that controls the structure change. This method
is of interest when sufficient data is available to learn changing
dependencies. Finally, in [20] an approach is described to use stea-
dy state information in addition to time series data to learn DBNs.
Steady state data from the limiting distribution of the Markov
chain describing the process is used as an additional source of
information.

A different approach to modelling temporal processes is used in
temporal nodes Bayesian networks (TNBNs), which model events
instead of dynamics [21]. TNBNs are similar to Bayesian networks,
but temporal nodes take time intervals as values. The intervals rep-
resent the time since a parent event. We made a TNBN model for
our COPD domain to compare to the dynamic models, which will
be discussed in Sections 5.3 and 6.3.
3. The Aerial project: mobile COPD management

The methods we developed and used in this paper were needed
as part of a research project, called Aerial, aimed at the detection of
worsening in patients with COPD, i.e., exacerbations. Here we
briefly describe the system and the design of the study to sketch
the practical clinical context of the work.

3.1. A system that supports self-management

In order to facilitate self-management of COPD by patients we
developed a system with the capability to gather patient-specific
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information, to interpret the gathered data automatically and to of-
fer feedback and advice to the patient. The general architecture of
the Aerial system is shown in Fig. 1. The system consists of a smart-
phone as the main component taking care of communication and
computation. Questionnaire data is collected from the patient on
the smartphone, which also communicates wirelessly with the
sensors used to obtain objective information on the patient’s
health status. A web-based system allows scheduling tasks and
collecting patient data centrally. The web-centre receives the data
from the smartphone and provides data access for health-care
workers. Patient data are interpreted in the smartphone by means
of a disease-specific probabilistic model, different variants of
which are studied in this paper. A more comprehensive description
of the system can be found elsewhere [22].
3.2. Patient population and data gathering

The aim of the study was to investigate the prerequisites to
facilitate self-management of COPD-patients in a home-care set-
ting. We tested the Aerial system at home to see whether this
would result in usable data with the goal of gathering a data set
from which to learn models for COPD-exacerbation prediction.
Ten participants were recruited from hospitals and general prac-
tices in the Netherlands, 7 male and 3 female, between 53 and
76 years of age (mean (sd): 65.6 (6.8)). All participants gave writ-
ten informed consent. Inclusion criteria were GOLD II or III (disease
severity classification on a scale from I to IV) [23] and sufficient
cognitive capability to operate the system. There were two possible
inclusion paths: stable patients, although having had exacerba-
tions in the past, and patients that reported to a physician because
of an exacerbation. The first path provides information on stable
patients, and possibly on exacerbation onset; the second on exac-
erbation recovery and possibly relapse.

Patients were monitored daily for a duration of approximately
4 weeks. Each day they answered a set of binary questions about
their symptoms and performed spirometry and pulse-oximetry
measurements. All questions were formulated such that a ‘yes’ an-
swer indicates a symptom worse than the baseline condition for
that patient. The set of recorded variables consists of the symptoms
dyspnea (D), sputum volume (SV), sputum purulence (SP), cough
(C), wheeze (W), temperature (T), malaise (M) and activity (A);
plus the measurements SpO2 (SO) (blood oxygen saturation) and
FEV1 (F) (forced expiratory volume in 1 s). Exacerbations (E) were
defined as at least two consecutive days of an increase in at least
two major respiratory symptoms (dyspnea, sputum volume or spu-
tum purulence) or one major and at least one minor respiratory
Fig. 1. Schematic of t
symptom (see e.g. [24]). A total of 189 data records were collected,
which when regularised by adding missing values for days that
were not recorded resulted in a data set of 250 records. The reason
for explicitly representing missing values is that the learning algo-
rithms assume regularly spaced data. Missing data was partly a
consequence of technical issues and partly due to patients omitting
data for unknown reasons, resulting in 30% missing data. Of all the
collected data records 60 were collected during an exacerbation.
4. Probabilistic models for temporal data analysis

As the research aim was to develop models that were able to
interpret temporal clinical data, in particular revealing the progres-
sion of COPD including its stochastic variation, especially probabi-
listic models were considered to be attractive for that purpose.
Probabilistic models can express temporal trends and handle miss-
ing values when data of a specific patient must be interpreted. The
successful use of dynamic Bayesian networks in the context of mi-
cro-array analysis [16], where sparsity of data is also a problem,
made us wonder whether similar methods might also be success-
fully applied to clinical problems.

We start with a brief summary of basic methods used in the re-
search, leading up to a method to learn models from sparse clinical
time series data.
4.1. Dynamic Bayesian networks

A Bayesian network [25,26], is a probabilistic graphical model
represented as a pair BN ¼ ðG; PÞ. Here, G ¼ ðV ;AÞ is a directed acy-
clic graph consisting of vertices V, corresponding one-to-one to ran-
dom variables of interest, and A # V � V are arcs, representing
probabilistic dependencies between variables. Furthermore, P is a
joint probability distribution defined by a family of conditional
probability distributions of the form PðV j paðVÞÞ, that is, the prob-
ability that V takes on a specific value given the values of its parent
variables, paðVÞ. The network represents the joint distribution over
the random variables, which can be factored according to the
dependencies represented in the graph, resulting in:

PðV1;V2; . . . ;VnÞ ¼
Yn

i¼1

PðVi j paðViÞÞ;

where Vi 2 V is the representation of a random variable in the graph
G. Any probability of interest can be computed from this joint prob-
ability distribution.
he system setup.
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A dynamic Bayesian network [27,28], DBN for short, is an exten-
sion of a Bayesian network to a distribution over a sequence of ran-
dom variables. It is particularly well suited to represent a Markov
process

X1 ! X2 ! � � � ! Xt ! � � �

where Xt represents a random variable at a particular moment in
time t. The joint distribution can be decomposed using the chain
rule, writing X1:T for X1; . . . ;Xt; . . . ;XT :

PðX1:TÞ ¼ PðXT j X1:T�1ÞPðX1:T�1Þ:

In general a DBN is a factorisation of a probability distribution, like
its atemporal counterpart. In addition, when Xt is composite it can
be represented as a BN. This BN is called a time slice and relations
between time slices can be modelled by introducing arcs in the
graph between random variables in different time slices. A DBN fac-
torisation can then be written as:

PðX1:TÞ ¼
Y

t

Y
i

PðXt;i j paðXt;iÞÞ

where i indexes variables within a time slice and paðXÞ denotes the
parents of X in the graph. A hidden Markov model, a popular sto-
chastic model used for pattern recognition, is a special case of a
DBN.

A common assumption is that there is only a limited time frame
that influences the current state of the process, as opposed to the
complete history, which simplifies model learning. When assum-
ing an nth-order Markov process we obtain:

PðX1:TÞ ¼ PðXT j XT�n:T�1ÞPðXT�n:T�1Þ;

recursively. In the context of clinical data analysis, this assumption
makes sense for two reasons: first, as time passes physiological and
disease processes will change and older information will be less
informative about the current state of the patient; second, it will of-
ten not be possible to obtain reliable information about the past. For
smaller n more temporal independence is introduced and when
only sparse data is available, it is common to make the most restric-
tive version of the Markov assumption, first-order, such that the fu-
ture state of the process only depends on the present:

PðXtþ1 j X1:tÞ ¼ PðXtþ1 j XtÞ:

Hence, all parents of a variable X will be in the same time slice or in
the previous time slice. From a medical point of view this means
that the current health status provides the most information about
the future. Given that clinical data is often sparse, an important
practical consequence of this assumption is that it simplifies the
model, and hence reduces the amount of data we need. When we
now also assume that the process is stationary, that is
PðXt;i j paðXt;iÞÞ ¼ PðXt0 ;i j paðXt0 ;iÞÞ for all t; t0, we obtain a two-slice
DBN consisting of an initial network BN0 and a transition network
BN!. A process through time can now be modelled by a sequence
of repetitions of transition networks. When modelling a chronic dis-
ease over a long period, it may be that stationarity is not a reason-
able assumption. For COPD one might argue that it is also useful to
consider separate models for the disease stages (GOLD I-IV [23]).
However the COPD data we study here is limited to GOLD II and
III by the inclusion criteria, and the amount of available data is
too limited to make a distinction. Yet, in general, it appears useful
to consider recent techniques to learn non-stationary DBNs [29].

4.2. Model learning

Given a data set we can use machine learning techniques to
learn a model from the data. Two main tasks are usually distin-
guished: (i) finding a network structure, and (ii) finding the param-
eters that best describe the data given a network structure. See
[30,31] for fairly comprehensive overviews of probabilistic
learning.

4.2.1. Parameter learning
Parameter learning entails finding the optimal parameters ĥ for

a given network structure G, that explain the data D:

ĥ ¼ arg max
h

PðD; h;GÞ:

This is the maximum likelihood estimate, parametrised by h (the
semicolon indicates that it is a parameter, not a conditional). The
maximum likelihood estimate is straightforward to compute, but
may suffer from overfitting; especially for sparse data, which is
the case that we are considering here. A Bayesian approach makes
explicit the uncertainty in the parameters by taking h to be a ran-
dom variable, leading to:

Pðh j D;GÞ ¼ PðD j h;GÞPðh j GÞ=PðD j GÞ;

from Bayes’ theorem, where we compute a distribution over param-
eters, with some prior distribution Pðh j GÞ. Assuming independent
and identically distributed data, global and local parameter inde-
pendence, the likelihood can be decomposed in local likelihood
terms according to the graph:

PðD j h;GÞ ¼
Y
d2D

Yn

i¼1

PðXi ¼ k j paðXiÞ ¼ j; hÞ:

Since we are using discrete variables in our COPD model, we use
multinomial distributions for the local likelihood terms
PðXi ¼ k j paðXiÞ ¼ j; hÞ. The conjugate prior distribution of the mul-
tinomial is a Dirichlet distribution, where conjugacy implies that
the posterior is also a Dirichlet distribution. We can interpret the
hyperparameters a of the Dirichlet distribution as pseudo-counts
which leads to a parameter estimate

hijk ¼ PðXi ¼ k j paðXiÞ ¼ jÞ ¼ j D½k; j� j þa½k; j�
j D½j� j þa½j� ;

where D½k; j� is an index expression selecting the data cases where
Xi ¼ k and paðXiÞ ¼ j and D½j� ¼

P
kD½k; j�. In principle it is possible

to specify different prior pseudo-counts for different cases, leading
to analogous index expressions for a, in practice a is often constant.

Parameter estimation using likelihood decomposition proper-
ties works well for complete data, which is unrealistic for clinical
models. The expectation–maximisation (EM) algorithm can be
used to learn parameters when we have missing values [32].

Let D ¼ hO;Hi be a data set consisting of observed values O and
hidden values H; Oi;Hi indicate a single data point. The EM algo-
rithm iteratively adjusts the parameters in two steps:

E-step : Complete D according to PðHi j Oi; h
sÞ

M-step : hsþ1 ¼ arg max
h

PðD j hÞ

where s is the step counter. The E-step completes the data by filling
in values for the hidden variables given the current parameters
(usually implemented by computing expected sufficient statistics);
and the M-step computes the maximum likelihood parameters
based on the completed data. This algorithm provably improves
the likelihood in each step until some maximum is reached,
although this could be a local maximum [32]. EM gives us no guar-
antee of finding a global maximum; however, its results are nor-
mally sufficiently good.

4.2.2. Structure learning
Hand-crafting a network structure is difficult and time consum-

ing and hence it is useful to also try to learn the network structure
from data. Even for a limited number of variables as we have in our
case, the search space is of such a size that exhaustive search is
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infeasible. Alternative methods include constraint based and score
based techniques. See [33] for a comparison on a large set of hos-
pital management data, where constraint based methods appear to
perform somewhat better. However, an important disadvantage of
constraint based methods, that rely on independence tests, is that
early errors propagate and can have large effects. Additionally,
independence tests tend to be less reliable especially on small sam-
ples, for example because distribution assumptions are not met. In
[34] arguments for and against constraint based methods are
examined and a hybrid approach is proposed, which is, however,
not directly applicable to time series. We opt here for a standard
score-based search procedure that tests local changes to the graph,
greedily maximising the score log PðG j DÞ, which by Bayes’ rule
can be written as

log PðG j DÞ / log PðD j GÞ þ log PðGÞ:

Taking a Bayesian approach the probability PðD j GÞ can be written
as the integral

PðD j GÞ ¼
Z

h
PðD j h;GÞf ðh j GÞdh;

with f ðh j GÞ a probability density function, marginalising out the
parameters. For complete data the likelihood again decomposes
according to the graph and assuming conjugate priors there is a
closed form solution for the marginal likelihood PðD j GÞ (see for
example [30]). A common choice for the structure prior PðGÞ results
in the BDe-score [35], which uses a prior such that we have score
equivalence. That is, networks that encode the same independence
information will have the same score.

Unfortunately, the task becomes increasingly difficult with
missing data. Finding optimal parameters when we have missing
values depends on the structure, while structure search clearly de-
pends on the data, including the missing values. There is no partic-
ularly efficient solution to this problem, but we can use the same
general principle as we did to learn parameters from partially ob-
served data. This idea is called structural expectation maximisation
[1]. In essence the structural EM algorithm alternates between
completing the data based on the current structure and parameters
and finding a model that has a better score. The same caveat as
mentioned for the EM algorithm applies here as well, structural
EM does not guarantee finding the global maximum likelihood
solution. When the number of missing values increases the search
space becomes larger and we are less likely to find a globally opti-
mal model.
4.3. Small data samples

With the model learning techniques described above we can try
to find models that reasonably fit our data, even when some of the
data is missing. However, as we are learning statistical models
there is a strong dependence on the amount of available data.
The more data we have the better we can learn relations. Unfortu-
nately, gathering data is often a difficult, time consuming process.
For the COPD self-management application the demanding logis-
tics of studying a new system in a home-care setting, made data
collection hard. Furthermore, sometimes the model space is so
large that obtaining sufficient data to learn models directly may
be infeasible. Previous research in determining gene interaction
patterns from micro-array data [15,16], is another example of re-
search that stumbled across the mentioned problems. The clinical
data we study here is, however, of a different nature than micro-ar-
ray data, as signs and symptoms will clearly produce other tempo-
ral dynamics. Although the number of variables was fairly limited
in our case, we had a combination of missing values within records
and a limited number of records in total. Hence we needed to com-
bine the EM procedure with some technique to deal with the small
data sample.
4.3.1. Bootstrapping
The data sparsity in modelling gene data led to using boot-

strapping [2] as a way to estimate the uncertainty of relations
in Bayesian networks [15]. The idea is as follows: bootstrapping
can be used as a nonparametric estimate of a statistic of interest,
for which we can take the presence of arcs in the Bayesian net-
work graph. The intuition behind bootstrap replications of a data
set is that if we assume a generative model, the actual data we
see are just a particular realisation which may be unrepresenta-
tive of the underlying process. Bootstrapping a number, say m,
of new realisations by resampling (with replacement) j D j sam-
ples from the original data and learning models from those data
sets, we can estimate whether an arc a should be present in
our model:

PðaÞ ¼ 1
m

Xm

i¼1

Iða;GiÞ;

where Iða;GiÞ is an indicator function that is 1 when a is present in
the graph learned from bootstrap realisation i.

Since we are analysing temporal data, the situation is some-
what more difficult. Simply resampling from the original data will
discard all the ordering information, which is clearly undesirable.
Instead we have to apply a kind of bootstrapping that preserves
the correlation between different time points. In the statistics lit-
erature a number of methods have been developed to do so, and
we opted to use fixed-length block bootstrapping. As the name
suggests this entails resampling blocks of data points, which pre-
serves the time relations within the block. The moving block boot-
strap splits the data in j D j �lþ 1 blocks, where l is the block
length. Block i contains the data points from i to iþ l� 1. A boot-
strap time series is the concatenation of j D j =l sampled blocks.
See e.g. [36] for a theoretical comparison of block bootstrap
methods.

From the bootstrap results we can construct a model that in-
cludes the features (arcs) that have a high probability. Another
possibility is to use model averaging, where we compute the pre-
diction probability on validation data Dval as the average over the
predictions of the bootstrap models
PðDvalÞ ¼
1
m

X
i

PðDval j GiÞ: ð1Þ

However, each of the networks Gi has some score attached to it, so a
better approximation to the real probability can be obtained from
the weighted average

PðDvalÞ ¼
1
m

X
i

PðDval j GiÞPðGi j DiÞ; ð2Þ

where Di indicates the ith bootstrapped data set.
4.4. A method to learn temporal models from small data samples with
missing values

With all the machinery described above, we can now start
putting together the method to learn models from time series.
The main idea is a variant of structural EM applied to bootstrap
resampled data. The new features of this procedure are that it
combines sparse data techniques with structure learning on
small samples of time series data, which is typical for clinical
data.



M. van der Heijden et al. / Journal of Biomedical Informatics 48 (2014) 94–105 99
Algorithm 1.
This algorithm generalises the bootstrap method for sparse data
[15], to temporal models. In order to learn the structure of a tem-
poral model, we need a generalisation of the structural EM algo-
rithm [38]. In each iteration we learn the structure of a two-slice
network consisting of BN0 and BN!. There are, however, some dif-
ferences with the algorithm in [38]. In particular, we take a differ-
ent approach to completing the data. On line 5 of our algorithm, we
sample values from the posterior distribution PðH j O; hjÞ instead of
computing fractional sufficient statistics. That is we sample values
for the missing data H from the posterior given the observed values
O and the current parameters hj. This allows us to decouple the
parameter learning and the structure search. The result is a com-
plete data set without (fractional) expected values filled in for
the missing values, which lets us use structure search methods
developed for complete data. Additionally, sampling from the pos-
terior PðH j O; hjÞ has the interesting property that it results in
automatic small data perturbations. Because structural EM is not
guaranteed to find a global maximum, the data perturbations help
in starting the search from slightly different departure points. The
posterior sampling provides a way to let the search reach different
parts of the search space. In [39] some of the differences between
hard-assignment, EM (soft-assignment) and posterior assignment
are studied in the context of clustering, which is closely related
to filling-in missing values.
4.4.1. Augmented temporal naive Bayes
Although a full model is useful to gain insight into the domain,

for our application it is important that the performance on predict-
ing exacerbations is good. Therefore, it appears useful to emphasise
this goal during model construction. To do so we start from the
concept of a naive Bayes classifier, with exacerbation, E, as class
variable. The rationale is that naive Bayes is a good baseline classi-
fier that can be extended with the information obtained from
structure learning. The idea of modelling dependencies between
naive Bayes feature variables has been used to construct tree aug-
mented naive Bayes (TAN) classifiers [18]. We here propose an
augmented temporal naive Bayes classifier. The presence of arcs
from our class variable exacerbation to each of the other variables
in the same time slice is enforced, ensuring the naive Bayes struc-
ture. Structure search can then identify dependencies between the
other variables, also through time. We retain the inner loop of
Algorithm 1 to find the dependencies that best explain the data,
but instead of bootstrapping we restrict the model search space by
predefining part of the network structure. The acyclicity of the
graph implies that Xt ! Et is not present, whereas we need to
explicitly blacklist arcs of the type Xt ! Etþ1 for all X. The structure
search will identify temporal dependencies but one could argue
that since we are interested in the temporal behaviour of the class
variable that we should also enforce the presence of the arc
Et ! Etþ1. It turns out that in this specific case of a COPD model,
when the arc is not enforced, it is found by the search procedure.
5. Experimental setup

In the previous section we described a general method to learn
DBNs from small sample time series data. Here we describe the
experimental evaluation of the methods for the clinical problem
of predicting exacerbations of COPD. The experiments serve to
evaluate, first, whether the models that result from the learning
procedure are accurate; second, to explore what models can be
learned from the COPD data. For the first goal we use synthetic
data from a synthetic model, described below. The second goal
can be further refined, as we are interested in how the learned
models compare to the model constructed in cooperation with a
pulmonologist; and we want to find out what the performance of
these models is on predicting exacerbation events.

5.1. Data

5.1.1. Synthetic data
To test our model learning procedure we first study the results

with synthetic data from a known model. The model contains the
same variables as the Aerial data (Section 3) to stay as close as pos-
sible to the real data context. The arcs were not chosen to be clin-
ically correct; however, to make the results transferable to the real
data the model resembles a clinical model. Analogous to the other
models both atemporal and temporal arcs are present. The struc-
ture of the model is shown in Fig. 3a. The parameters were as-
signed by hand, without attempting to capture the real relations.
From this model we generated four data sets of the same length
as the Aerial data, one without missing values and the others with
10%, 20% and 30% missing values respectively. The latter is similar
to the percentage of missing values in the Aerial data. We then ap-
plied our model learning procedure to each of these data sets in
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order to be able to compare the learned models to the known
source model.
5.1.2. Aerial data
The Aerial data consists of time series from 10 patients, gath-

ered during the pilot study of our disease management system.
The characteristics of this data set have been described in Section
3 as part of sketching the background for this work. The data set
is used as the input for the learning procedure, to learn models that
explain the COPD-monitoring time series.
5.1.3. Validation data
An independent data set [42] was used for validation. It pro-

vides time series of COPD-exacerbation related variables, used so-
lely for external validation, so no model parameters were learned
from this set. As the data is used for testing our model retrospec-
tively, the set of variables is incomplete and contains 8 out of the
11 variables in the Aerial data. The data consists of time series from
13 patients of the London COPD cohort who had an exacerbation,
with a total of 2849 data entries, of which 406 were during an
exacerbation. The data contains values for the variables dyspnea,
sputum volume and purulence, wheeze, cough, temperature, and
oxygen saturation (SpO2). We consider two variants of this data
set, the complete validation set, denoted by Dval, and a deduplicat-
ed version Ddedup. The latter consists of the same data, but with
consecutive identical entries removed, resulting in 605 entries, of
which 128 during an exacerbation. The idea behind removing
duplicates is that we are interested in predicting relevant state
changes instead of finding models that are often correct by predict-
ing that nothing changes. By removing repeating sequences we en-
sure that we make predictions with data that frequently changes
state. Note that we only remove exact duplicates, so a change in
the observations without a change in exacerbation label still con-
stitutes a change.
T D W

SP I LF SO

SV A F

C E

Fig. 2. Expert model. The variables are A = activity; C = cough; D = dyspnea;
E = exacerbation; F = FEV1; I = infection; LF = lung function; SO = SpO2; SP = sputum
purulence; SV = sputum volume; T = temperature; W = wheeze. Temporal arcs are
dotted.
5.2. Evaluation metrics

To evaluate the models and their performance we will use stan-
dard metrics from classification. Classification evaluation is often
based on measuring true positives (TP), cases that are correctly
classified as positive; false positives (FP), incorrectly classified as
positive; and analogously for true/false negatives (TN; FN). The
true positive rate (TPR) is then defined as TP=ðTPþ FNÞ and the
false positive rate (FPR) as FP=ðFPþ TNÞ. Plotting a curve of TPR-
FPR for different cut-off points results in an ROC-curve, which is of-
ten summarised in a single number by computing the area under
the curve or AUC.

We distinguish two situations: (i) the performance of network
structure discovery and (ii) the prediction performance of different
models. For structure discovery, a true positive is an arc present in
both the source and learned network graph and a false positive is
an arc not present in the original network. True and false negatives
are defined analogously. For prediction, the usual interpretations in
terms of data records is used.

To evaluate the prediction results we also compute the Brier
score [43], which is defined as

BS ¼ 1
j D j

XjDj
i¼1

ðpi � liÞ2;

where p is the predicted probability and l the correct label. A Brier
score of zero indicates perfect prediction.
5.3. Benchmark models

5.3.1. Static expert model
The model constructed in cooperation with pulmonologists

from the Radboud University Medical Centre, described in [22], is
used as a baseline model. This model is static, in the sense that it
does not explicitly model time effects. To make temporal predic-
tions we simply interpret the exacerbation probability as the pre-
diction probability at a future time point.

5.3.2. Dynamic expert model
Additionally we constructed a dynamic version of the expert

model by adding identity arcs to each variable. The graph is shown
in Fig. 2. For the additional parameters we choose values heuristi-
cally, assuming that remaining in the same state is more likely
than switching state. It should be noted that although we refer to
this model as dynamic expert model, the pulmonologist was only
involved in the construction of the static model and the dynamic
version should therefore be seen only as a naive extension for com-
parison purposes.

5.3.3. Temporal nodes Bayesian network
As a further comparison we also constructed a temporal nodes

Bayesian network [21]. This model is based on the static expert
model structure described above, where the exacerbation variable
is replaced by a temporal node that takes as values whether an
exacerbation occurs in the intervals today or tomorrow or does
not occur. The intervals are relative to the observations, i.e., the
exacerbation temporal node models the probability of an exacerba-
tion on the same day and the day after the measurements have
been taken. The other variables are instantaneous nodes, as they
model the health state at the time of measurement. Parameters
for this model were learned from the Aerial data. Performance
was tested using a one against all scheme. For example the predic-
tion performance for tomorrow was tested with tomorrow as the
positive class and the other two values as the negative class.

5.4. Implementation

The structure was learned using the BDe-score [35], with a
Dirichlet prior with a ¼ 1 to learn the parameters. A greedy struc-
ture search procedure with random restarts was used. For the
bootstrapping we used the implementation from the R-package
boot [37], with a fixed block length of 5. The EM parameter learning
was implemented using Smile [40], and the DBN structure search
on the completed data was implemented in Banjo [41]. In practice,
convergence of the complete procedure can be very slow due to the



Table 1
Structural equivalence scores for models from synthetic data.

Data set TP FP FN TPR

Complete 11 4 3 11=14 � 0:79
Missing 10% 11 2 3 11=14 � 0:79
Missing 20% 8 3 6 8=14 � 0:57
Missing 30% 5 4 9 5=14 � 0:36
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size of the search space. Within each iteration we use the general-
ised EM result that it is sufficient to update the model when it has a
higher score, without having to maximise the score. Per iteration
we set a time limit on the structure search only accepting the
new structure when a higher score was found.

6. Results

6.1. Synthetic data

To get a feel for the performance of the methods we used, let us
first look at the results of synthetic data from a known model
(Fig. 3a).

6.1.1. Structural comparison
For the structural comparison we compare the arcs in the graph.

The direction of arcs not involved in a v-structure can be reversed
without influencing the conditional independencies in the graph
and can therefore be represented by a line. However, the temporal
arcs cannot be inverted by definition, as the future cannot influ-
ence the past. The representation where the direction of reversible
arcs is dropped is called an essential graph. Table 1 shows the true
positives and false positives/negatives of the learned model arcs.
The true negatives are less interesting because the learning proce-
dure is forced to only consider graphs with bounded indegree. For
the complete data we do not actually need the structural EM meth-
od, but for completeness we still report the results.

Some interesting observations can be made. Looking at the true
positive rate (TPR), we see that as the percentage of missing values
increases the TPR decreases, as expected. The false negatives
caused by failing to detect that there is both a direct and a tempo-
ral arc D! A and D! M is not a very serious issue, because
whether these should be distinguished as separate arcs is quite
sensitive to the parameters. Furthermore, all models missed the
arc F ! SO, but looking at the parameters we see that the distribu-
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Fig. 3. (a) model that generated the data; (b) majority vote of arcs according to the boot
missing; (e) 20% missing; (f) 30% missing. The variables are A = activity; C = cough; D = dy
SV = sputum volume; T = temperature; W = wheeze. Temporal arcs are dotted.
tion is close to uniform which makes it almost impossible to detect
the dependence from limited data. These kind of errors could also
occur in the real data.

We also computed bootstrap models for the data with 30%
missing values. In Fig. 3b the resulting aggregated model is shown.
For each bootstrap replication we computed the best network
using the procedure described above and then we averaged over
the models to compute the probability of finding the arc. Due to
the computational cost of the search procedure, bootstrapping
was restricted to 9 resampled data sets. The arcs shown in the
graph were found in a majority of the bootstrap models, i.e., the
probability of the arc is PðaÞ > 0:5. Because the scores of the best
networks are fairly close together, it makes little difference
whether we use Eq. (1) or Eq. (2) to compute the arc scores. Ob-
serve that there are only a limited number of arcs with a high
score, which is to be expected if there are multiple models that ex-
plain the data reasonably well. The arcs that are found are correct,
except for E! SO, which means 5 arcs are true positives and 1 is a
false positive. The TPR is 5=14 � 0:36 which is the same as the re-
sult without bootstrapping for data with 30% missing values. How-
ever, the number of false positives is lower for the bootstrapped
model.

6.1.2. Prediction performance
We now turn to the goal of density estimation, for which pre-

diction performance can be used as a measure. In the context of
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strap models; (c) model learned from complete data; (d) Model from data with 10%
spnea; E = exacerbation; F = FEV1; M = malaise; SO = SpO2; SP = sputum purulence;



102 M. van der Heijden et al. / Journal of Biomedical Informatics 48 (2014) 94–105
COPD management, we are primarily interested in the probability
of exacerbation. We compute the probability PðEtþ1 j OtÞ, which is
the prediction probability of an exacerbation at time t þ 1 given
the observations at time t (recall that the observations were made
daily, so a single step is a day). A new data set with 30% missing
values was generated from the original synthetic model as test
data. An ROC-analysis shows that all models perform almost iden-
tically, with an area under the curve AUC = 0.63. This performance
may seem low, but an ROC-analysis with the true model that gen-
erated the data also results in an AUC of 0.63. This is a consequence
of the fact that the generating model contains limited temporal
dependencies. Computing the auto- and cross-correlations for the
generated time series also shows that correlations are small.
Therefore we cannot expect to make very good predictions on
these data. Inspection of these correlations in the real data shows
the presence of more temporal information, so prediction perfor-
mance analysis will be of more interest there.

The analysis of synthetic data indicates that even from a small
sample of time series data we can reasonably reconstruct the net-
work structure. As expected the performance is sensitive to the
presence of missing values, but it appears that some amount of
missing values is tolerable. These results provide sufficient confi-
dence to analyse the COPD-monitoring data.

6.2. Aerial data models

The Aerial project aims to provide disease management for
COPD patients. In order to achieve this goal we have performed a
pilot study as described in Section 3. We now turn to the analysis
of the gathered data to see whether our learning procedure is capa-
ble of finding relevant patterns.

6.2.1. Model learning and bootstrapping result
The result after 100 iterations of structural EM is shown on the

left in Fig. 4. We will refer to the model learned from the Aerial
data as the Aerial Model. It is not as easy as with the synthetic data
to ascertain whether this structure is correct. We can, however,
compare it to the structures found by the bootstrap replications.
The same procedure as used on the synthetic data leads to a major-
ity graph of the bootstrap replications of the Aerial data, shown on
the right in Fig. 4. Comparing the two graphs we see that the
majority bootstrap model is sparser than the Aerial model; the
arc E! C is not present in the Aerial model and the relations be-
tween the variables T;M and E differ in arc direction and temporal
signature. All other arcs in the majority bootstrap model are also
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Fig. 4. Aerial model: Structure of the best learned network on the Aerial data (left).
Majority graph learned from the bootstrap replications of the Aerial data (right).
The variables are A = activity; C = cough; D = dyspnea; E = exacerbation; F = FEV1;
M = malaise; SO = SpO2; SP = sputum purulence; SV = sputum volume; T = temper-
ature; W = wheeze. Temporal arcs are dotted.
present in the Aerial model. When we test the prediction perfor-
mance of our models in Section 6.3, we will call the model average
over the bootstrap models the bootstrap model.

To get some insight in which variables are good predictors
according to the model, it is informative to approach the prediction
problem from the other side and look at the probability of predic-
tors given the event, PðXt�d j EtÞ. In Table 2 the probabilities of
some observations for d 2 f0;1;2g are shown. We can see that
dyspnea is a good direct predictor, as its probability increases lead-
ing up to an exacerbation. The variable activity denotes a decrease
in daily activities and is similarly predictive. Sputum volume and
cough give less information about exacerbations over time.
6.2.2. Structural comparison to expert and naive Bayes models
It is informative to compare the result of the structure search to

the expert model introduced in Section 5.3. Although this expert
model is static, we can at least see whether the found dependen-
cies are similar irrespective of whether arcs are temporal. The com-
parison is hindered by the presence of hidden variables in the
expert model which are not present in the learned models – learn-
ing models with hidden variables is a difficult problem, see e.g.
[44] for a possible approach. As a consequence we expect to find
dependencies between symptoms that are mediated by a hidden
variable in the expert model.

Although we cannot really interpret the model in Fig. 4 causally,
it helps to keep the clinical meaning of the variables in mind when
comparing the model with the expert model. The dependence be-
tween sputum volume and cough is found in both the expert and
learned model. The learning procedure finds a dependence be-
tween exacerbation (E) and FEV1 (F) which is an indicator of lung
function, which is in line with the expert model. Fever is a strong
indicator of infection, which is often the cause of an exacerbation,
explaining the dependency E! T in the Aerial model, whereas the
expert models the dependence of temperature on the hidden var-
iable infection by the arc I! T . In the expert model activity is
influenced by lung function, which is captured by the dependence
between activity, exacerbation and sputum volume in the Aerial
model. So although there are clear differences between the models,
the Aerial model appears to identify dependencies that can be ex-
plained. It should be noted, however, that identifiability of rela-
tions between subjective symptoms can be a problem with
limited data, so there might exist other models that are also rea-
sonable and perform similarly. The advantage of Bayesian net-
works in this context is that they at least provide a simple way
to inspect the relations and for example check with a clinician
whether the found relations are clinically defensible.

If we compare the structure of the Aerial model to the temporal
naive Bayes structure (Fig. 5), we see that most of the dependen-
cies between the features remain intact. Note that the structure
of this model is restricted by both the naive Bayes arcs from exac-
erbation to all the other variables and by the complexity limit in
our search procedure which bounds the number of parents to
three. For the augmented naive Bayes model five temporal arcs
are found, self loops for E;A; SP and T and the arc SP ! T, all of
which are also present in the Aerial model. The atemporal arc
T ! SV is not present in the Aerial model and the path
Table 2
Probabilities of predictors given evidence of an exacerbation.

X PðXt�3 j EtÞ PðXt�2 j EtÞ PðXt�1 j EtÞ PðXt j EtÞ

Dyspnea 0.55 0.60 0.67 0.79
Sputum volume 0.43 0.46 0.49 0.48
Cough 0.50 0.53 0.53 0.50
Activity 0.75 0.78 0.84 0.91
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Fig. 6. ROC-curve on the validation data set Dval for the Aerial model predictions
(solid); for the bootstrap averaged model (dash); and on the deduplicated
validation data Ddedup for the Aerial model (dot) and bootstrap averaged model
(dash-dot).
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A! SO! D is represented by the arc A! D in the Aerial model.
Based on the data we have it is hard to determine directly which
of these models is correct. Therefore we now turn to the evaluation
of the models in terms of exacerbation prediction performance.
6.3. Prediction performance and validation

Ultimately, we are interested in prediction performance. We
can use our bootstrap replications as an alternative cross-valida-
Table 3
Summary of AUC, True Positive Rate (TPR), False Positive Rate (FPR) and Brier Score (BS) f

Data Model

Expert static Expert dynamic Temporal A

AUC TPR FPR BS AUC TPR FPR BS AUC TPR

t þ 1
Dval 0.86 0.89 0.25 0.11 0.85 0.89 0.25 0.19 0.89 0.90
Ddedup 0.76 0.59 0.14 0.14 0.76 0.60 0.15 0.20 0.77 0.80

t þ 2
Dval 0.84 0.86 0.26 0.11 0.83 0.86 0.26 0.19 0.87 0.87
Ddedup 0.72 0.72 0.39 0.15 0.72 0.54 0.16 0.20 0.72 0.78
tion, measuring performance of the Aerial model on the bootstrap
data. To do so we concatenated all the bootstrapped data and com-
puted the TPR, FPR and AUC for the combined data. The results
with the Aerial model are modest, with TPR = 0.76, FPR = 0.40
and AUC = 0.66. Although ideally our model should be tested on
prospective data – a project to gather validation data is in planning
– we can gain some insight in the generalisability of our results by
testing the performance on a different data set.

We performed an ROC-analysis on the validation data set Dval,
that has not been used for model learning. The ROC-curves for
the Aerial and bootstrap models are shown in Fig. 6. The Aerial
model reaches an AUC of 0.84 with one day ahead predictions on
the validation data, which is an encouraging result. The bootstrap
model (model average over the bootstraps), outperforms the Aerial
model, obtaining an AUC of 0.90. In practice one has to decide on a
cut-off point somewhere on the ROC-curve which gives a reason-
able trade off between true and false positive rates. Our system
can adapt the kind of feedback that is given to the patient based
on the probability of exacerbation, incorporating different cut-off
points for different kinds of advice. We should be careful, however,
in interpreting the prediction results as consecutive time points are
often the same, positively skewing the results by predicting that
nothing changes.

To test the influence of repetitions in the test data we also
checked the performance of the models on Ddedup, the deduplicated
version of the data. This way we can see how the model reacts to
state changes, which is ultimately what we are trying to detect.
In Table 3, we summarise the results for different models: the sta-
tic and dynamic expert model, the augmented temporal naive
Bayes model and the Aerial and bootstrap models on the regular
validation data and the deduplicated data. For all models we com-
pute the performance measures from the prediction probabilities
PðEtþd j OtÞ for d 2 f1;2g.

As expected performance drops for all models on Ddedup, with
the most notable decrease in the expert models. As AUC alone is
not sufficiently informative, we also look at true and false positive
rates, computed with the point on the ROC-curve closest to ð0;1Þ as
cut-off point. The true and false positive rates show that although
the baseline static model appears to perform on par with the tem-
poral models, this is only true on average over cut-off points. At the
theoretically optimal cut-off we see that detecting changes is diffi-
cult with a static model, as one would expect. The Aerial model and
the temporal naive Bayes perform similarly in this condition, but
are outperformed by the bootstrapped model in terms of false po-
sitive rate without a significant change in true positive rate. The
Brier scores show a similar pattern, although differences in scores
are small.

The performance for two day ahead predictions is also shown in
Table 3. A decrease in performance is expected as health status can
change quickly over time. The same caveat with respect to predict-
ing ‘no change’ applies, so again the performance on the dedupli-
cated data is of more interest. In terms of AUC the performance
drop seems relatively small, however, false positive rates are get-
or different models on the validation data set Dval and the deduplicated data Ddedup.

NB Aerial model Bootstrap model

FPR BS AUC TPR FPR BS AUC TPR FPR BS

0.21 0.09 0.84 0.89 0.20 0.10 0.90 0.87 0.12 0.09
0.31 0.15 0.75 0.82 0.32 0.15 0.82 0.78 0.19 0.13

0.22 0.10 0.86 0.82 0.15 0.10 0.86 0.84 0.13 0.11
0.36 0.16 0.73 0.70 0.31 0.15 0.76 0.69 0.21 0.15
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ting less acceptable for a useful application. The static expert mod-
el shows some remarkable behaviour by increasing its TPR for two
day ahead predictions, but this is mostly a consequence of finding
the optimal cut-off, resulting in a higher TPR but also very high
FPR. The naive Bayes model performs best in terms of TPR, but
the bootstrap model remains the best performer in terms of FPR.
Hence it appears that different approaches are all capable of mak-
ing predictions with some accuracy, but that model averaging over
bootstrap models performs somewhat better overall. This shows
that bootstrapping is a useful technique to learn clinical models
from small data samples of patient monitoring data.

6.3.1. TNBN prediction performance
We tested the performance of the TNBN model on Ddedup. For

same day predictions the AUC, TPR and FPR are 0.80, 0.75 and
0.24 respectively. While for predicting whether tomorrow an exac-
erbation will occur the same measures are 0.66, 0.67 and 0.43.
Comparing these latter values to the results in the t þ 1 row of Ta-
ble 3, we see the TNBN performs worse than the other models. A
possible explanation for this result is that because the TNBN does
not model the dynamics the only data that is available to estimate
the parameters for (exacerbation, tomorrow) are the actual data
points a day before an exacerbation. The DBNs in contrast try to
model the temporal interactions between variables during both
stable and exacerbation episodes. TNBNs are in principle suitable
for these kind of modelling problems; however, when limited data
is available it seems performance suffers.

6.3.2. Bootstrap block length
Finally, we checked that prediction performance is not overly

sensitive to the choice for the bootstrap block length parameter.
Three block length values were tested: 3, 5 and 7. The prediction
performance results are similar for all values, but a block length
of 7 performs somewhat worse, which is likely because it is too
long relative to the total time series length. In general the block
length should be chosen to capture the time scale of the effects
of interest but short enough compared to the length of the series
to attain sampling variation. A block length of 5 therefore seems
a good choice for our data.
7. Discussion

Chronic disease management using automatic data interpreta-
tion requires analysing time series to make predictions. We studied
time series data from a pilot study with chronic obstructive pul-
monary disease patients, with the purpose of developing a predic-
tive model for COPD exacerbations. In this section we discuss the
impact of our findings, limitations and future work.

There has been quite some work on telehealth and monitoring
for chronic diseases in general and COPD in particular [10], but
automatic data interpretation has not played an important role
up to now. However, the methods based on developments in arti-
ficial intelligence offer powerful tools for automatic interpretation.
Bayesian networks are well suited to deal with data analysis in a
clinical context, because the models are interpretable – one can
ask a clinician whether the relations found with structure learning
make clinical sense. Equally important for use in a home-care set-
ting is that it remains possible to make predictions when data val-
ues are missing. Since missing values are virtually impossible to
prevent completely, this is an important requirement. Dynamic
Bayesian networks generalise the capabilities of Bayesian networks
to time series analysis. An issue that relates to model interpretabil-
ity is that the best performance is obtained by a model average,
which is more difficult to understand. Cooperation with a clinician
seems advisable, to make sure that differences in models describe
possible domain features. Alternatively, augmented naive Bayes
may be a better choice when a fully interpretable model is desired.
In the augmented naive Bayes model only the interpretation of the
dependencies has to be verified to be clinically valid and at least in
our data the performance difference with the model average was
fairly small.

Structure learning of Bayesian networks has been studied
extensively [30], but the present challenge was combining struc-
ture learning techniques for DBNs with sparse data methods.
Structural EM is in itself already a computationally expensive oper-
ation and bootstrapping data sets makes it even more daunting,
which is clearly a limitation when using these methods for very
large models. The computation time for our COPD data, however,
although long in absolute terms (about a day per data set on cur-
rent hardware), is negligible compared to the time investment of
data acquisition. Therefore it may still be worth considering even
for larger models. The current result also indicates that if model
averaging is too expensive, augmented temporal naive Bayes pro-
vides an alternative that is easier to obtain because the model
space is restricted, but offers good performance relative to the
computational complexity. Although model learning is relatively
expensive, computing predictions is easy due to the small size of
the models (in fact in our application model predictions are com-
puted on a smartphone). The model can be updated offline when
sufficient data have been collected to warrant recomputation. In
practice the computational cost is therefore not a limiting factor.

For our COPD application our results are promising as we are
able to learn models that appear quite capable of predicting exac-
erbation occurrences. Summarising the trade-off between the dif-
ferent models we can conclude the following. Of the models that
were analysed the temporal augmented naive Bayes approach is
particularly interesting as it gives good predictive results but is
simpler than a full structure learned model. Yet, when insight in
the underlying clinical process is the main interest, structure learn-
ing will be preferable.

There are limitations to the extend to which we can rely on the
results of the validation. The test data has not been gathered spe-
cifically for this purpose and does not contain all the variables in
our model, also the number of missing values may not be typical
for the data that needs to be analysed in the final system. Further-
more, the decision on what is an acceptable trade-off between true
and false positives is beyond the technical scope and depends on
clinical views, cost considerations and regulatory requirements.
As the project’s initial focus was on analysing the monitoring data,
background information on the patient, including current treat-
ment, and more general environmental factors (e.g. time of year,
weather conditions) have not been taken into account at present,
but are part of future work. Whether our results generalise will
be tested in a follow-up study that is currently being planned, in
which a more substantive group of patients will be monitored,
extensive baseline information will be taken into account and
exacerbation events will be verified by a pulmonologist as gold
standard. A confirmation of the present prediction results would
then open up the way for a practical implementation of automatic
data interpretation for COPD disease management.
References

[1] Friedman N, The Bayesian structural EM algorithm. In: UAI ’98: proceedings of
the 14th conference on uncertainty in artificial intelligence; 1998.

[2] Efron B. Bootstrap methods: another look at the jackknife. Ann Statist
1979;7(1):1–26.

[3] Viegi G, Pistelli F, Sherrill D, Maio S, Baldacci S, Carrozzi L, et al. epidemiology
and natural history of COPD. Eur Respir J 2007;30(5):993–1013.

[4] Wedzicha J, Seemungal T. COPD exacerbations: defining their cause and
prevention. Lancet 2007;370(9589):786–96.

http://refhub.elsevier.com/S1532-0464(13)00198-6/h0085
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0085
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0090
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0090
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0095
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0095


M. van der Heijden et al. / Journal of Biomedical Informatics 48 (2014) 94–105 105
[5] Wilkinson T, Donaldson G, Hurst J, Seemungal T, Wedzicha J. Early therapy
improves outcomes of exacerbations of chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 2004;169(12):1298–303.

[6] Selvin S. Survival analysis for epidemiologic and medical research. Cambridge
University Press; 2008.

[7] van Gerven M, Taal B, Lucas P. Dynamic Bayesian networks as prognostic
models for clinical patient management. J. Biomed. Inf 2008;41(4):515–29.

[8] Peelen L, de Keizer N, de Jonge E, Bosman R, Abu-Hanna A, Peek N. Using
hierarchical dynamic Bayesian networks to investigate dynamics of organ
failure in patients in the Intensive Care Unit. J Biomed Inf 2010;43(2):
273–86.

[9] Himes B, Dai Y, Kohane I, Weiss S, Ramoni M. Prediction of chronic obstructive
pulmonary disease (COPD) in asthma patients using electronic medical
records. J Am Med Infor Assoc 2009;16(3):371–9.

[10] McLean S, Nurmatov U, Liu J, Pagliari C, Car J, Sheikh A. Telehealthcare for
chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011;7.

[11] Polisena J, Tran K, Cimon K, Hutton B, McGill S, Palmer K, et al. Home
telehealth for chronic obstrcutive pulmonary disease: a systematic review and
meta-analysis. J Telemed Telecare 2010;16(3):120–7.

[12] Basilakis J, Lovell N, Redmond S, Celler B. Design of a decision-support
architecture for management of remotely monitored patients. IEEE Trans Inf
Technol Biomed 2010;14(5):1216–26.

[13] Dagum P, Galper A, Horvitz E. Dynamic network models for forecasting. In: UAI
’92: proceedings of the 8th conference on uncertainty in artificial intelligence;
1992. p. 41–8.

[14] Dagum P, Galper A. Forecasting sleep apnea with dynamic models. In: UAI ’93:
proceedings of the 9th conference on uncertainty in artificial intelligence;
1993. p. 64–71.

[15] Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: a
bootstrap approach. In: UAI ’99: proceedings of the 15th conference on
uncertainty in artificial intelligence; 1999.

[16] Kim S, Imoto S, Miyano S. Inferring gene networks from time series microarray
data using dynamic Bayesian networks. Briefings Bioinformatics
2003;4(3):228–35.

[17] Breiman L. Bagging predictors. Mach Learn 1996;24(2):123–40.
[18] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach Learn

1997;29(2-3):131–63.
[19] Tucker A, Liu X. Learning dynamic Bayesian networks from multivariate time

series with changing dependencies. In: IDA ’03: proceedings of the 5th
international symposium on intelligent data analysis, LNCS, vol. 2810. 2003. p.
100–10.

[20] Lähdesmäki H, Shmulevich I. Learning the structure of dynamic Bayesian
networks from time series and steady state measurements. Mach Learn
2008;71(2-3):185–217.

[21] Arroyo-Figueroa G, Sucar L. A temporal Bayesian network for diagnosis and
prediction. In: UAI ’99: proceedings of the 15th conference on uncertainty in
artificial intelligence; 1999.

[22] van der Heijden M, Lucas P, Lijnse B, Heijdra Y, Schermer T. An autonomous
mobile system for the management of COPD. J Biomed Inf 2013;46(3):
458–69.

[23] GOLD. Global initiative for obstructive lung disease. <www.goldcopd.com>.
[24] Bischoff E, Boer L, Molema J, Akkermans R, van Weel C, Vercoulen J, et al.
Validity of an automated telephonic system to assess COPD exacerbation rates.
Eur Respir J 2012;39(5):1090–6.

[25] Cooper G. A diagnostic method that uses causal knowledge and linear
programming in the application of Bayes’ formula. Comput. Methods
Programs Biomed 1986;22(2):223–37.

[26] Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible
inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1988.

[27] Dean T, Kanazawa K. A model for reasoning about persistence and causation.
Comput Intell 1989;5(3):142–50.

[28] Murphy KP. Dynamic Bayesian networks: representation, inference and
learning, Ph.D. thesis. University of California, Berkeley; 2002.

[29] Robinson J, Hartemink A. Learning non-stationary dynamic Bayesian networks.
J Mach Learn Res 2010;11:3647–80.

[30] Koller D, Friedman N. Probabilistic graphical models: principles and
techniques. The MIT Press; 2009.

[31] Murphy K. Machine learning: a probabilistic perspective. Cambridge, MA: MIT
Press; 2012.

[32] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via
the EM algorithm. J Roy Stat Soc Ser B (Methodological) 1977;39(1):1–38.

[33] Acid S, de Campos L, Fernández-Luna J, Rodríguez S, Rodríguez J, Salcedo J. A
comparison of learning algorithms for Bayesian networks: a case study based
on data from an emergency medical service. Artif Intell Med
2004;30(3):215–32.

[34] Dash D, Druzdzel M. A hybrid anytime algorithm for the construction of causal
models from sparse data. In: UAI ’99: proceedings of the 15th conference on
uncertainty in artificial intelligence; 1999.

[35] Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: the
combination of knowledge and statistical data. Mach Learn 1995;20:197–243.

[36] Lahiri S. Theoretical comparisons of block bootstrap methods. Ann Stat
1999;27(1):386–404.

[37] Canty A, Ripley B. boot: bootstrap R (S-Plus) functions; 2012. <http://cran.r-
project.org/web/packages/boot/>.

[38] Friedman N, Murphy K, Russell S. Learning the structure of dynamic
probabilistic networks. In: UAI ’98: proceedings of the 14th conference on
uncertainty in artificial intelligence; 1998.

[39] Kearns M, Mansour Y, Ng A, An information-theoretic analysis of hard and soft
assignment methods for clustering. In: UAI ’97: proceedings of the 13th annual
conference on uncertainty in artificial intelligence; 1997.

[40] Decision Systems Laboratory. University of Pittsburgh, SMILE: Structural
Modeling, Inference, and Learning Engine. <http://genie.sis.pitt.edu/>.

[41] Hartemink A. Banjo: Bayesian Network Inference with Java Objects, Duke
University; 2010. <http://www.cs.duke.edu/�amink/software/banjo/>.

[42] Hurst J, Donaldson G, Quint J, Goldring J, Patel A, Wedzicha J. Domiciliary
pulse-oximetry at exacerbation of chronic obstructive pulmonary disease:
prospective pilot study. BMC Pulm Med 2010;10(1):52.

[43] Brier G. Verification of forecasts expressed in terms of probability. Mon
Weather Rev 1950;78(1):1–3.

[44] Elidan G, Friedman N. Learning the dimensionality of hidden variables. In: UAI
’01: proceedings of the 17th conference on uncertainty in artificial
intelligence; 2001.

http://refhub.elsevier.com/S1532-0464(13)00198-6/h0100
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0100
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0100
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0105
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0105
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0110
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0110
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0115
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0115
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0115
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0115
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0120
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0120
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0120
http://refhub.elsevier.com/S1532-0464(13)00198-6/h5260
http://refhub.elsevier.com/S1532-0464(13)00198-6/h5260
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0125
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0125
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0125
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0130
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0130
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0130
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0135
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0135
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0135
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0140
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0145
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0145
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0150
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0150
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0150
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0155
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0155
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0155
http://www.goldcopd.com
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0160
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0160
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0160
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0165
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0165
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0165
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0170
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0170
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0175
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0175
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0180
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0180
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0185
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0185
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0190
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0190
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0195
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0195
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0200
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0200
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0200
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0200
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0205
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0205
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0210
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0210
http://cran.r-project.org/web/packages/boot/
http://cran.r-project.org/web/packages/boot/
http://genie.sis.pitt.edu/
http://www.cs.duke.edu/~amink/software/banjo/
http://www.cs.duke.edu/~amink/software/banjo/
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0215
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0215
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0215
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0220
http://refhub.elsevier.com/S1532-0464(13)00198-6/h0220

	Learning Bayesian networks for clinical time series analysis
	1 Introduction
	2 Related research
	2.1 Clinical time series analysis
	2.2 Modelling and machine learning techniques

	3 The Aerial project: mobile COPD management
	3.1 A system that supports self-management
	3.2 Patient population and data gathering

	4 Probabilistic models for temporal data analysis
	4.1 Dynamic Bayesian networks
	4.2 Model learning
	4.2.1 Parameter learning
	4.2.2 Structure learning

	4.3 Small data samples
	4.3.1 Bootstrapping

	4.4 A method to learn temporal models from small data samples with missing values
	4.4.1 Augmented temporal naive Bayes


	5 Experimental setup
	5.1 Data
	5.1.1 Synthetic data
	5.1.2 Aerial data
	5.1.3 Validation data

	5.2 Evaluation metrics
	5.3 Benchmark models
	5.3.1 Static expert model
	5.3.2 Dynamic expert model
	5.3.3 Temporal nodes Bayesian network

	5.4 Implementation

	6 Results
	6.1 Synthetic data
	6.1.1 Structural comparison
	6.1.2 Prediction performance

	6.2 Aerial data models
	6.2.1 Model learning and bootstrapping result
	6.2.2 Structural comparison to expert and naive Bayes models

	6.3 Prediction performance and validation
	6.3.1 TNBN prediction performance
	6.3.2 Bootstrap block length


	7 Discussion
	References


