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Abstract

The color of particular parts of a flower is often employed as one of the features to differenti-

ate between flower types. Thus, color is also used in flower-image classification. Color

labels, such as ‘green’, ‘red’, and ‘yellow’, are used by taxonomists and lay people alike to

describe the color of plants. Flower image datasets usually only consist of images and do

not contain flower descriptions. In this research, we have built a flower-image dataset, espe-

cially regarding orchid species, which consists of human-friendly textual descriptions of fea-

tures of specific flowers, on the one hand, and digital photographs indicating how a flower

looks like, on the other hand. Using this dataset, a new automated color detection model

was developed. It is the first research of its kind using color labels and deep learning for

color detection in flower recognition. As deep learning often excels in pattern recognition in

digital images, we applied transfer learning with various amounts of unfreezing of layers

with five different neural network architectures (VGG16, Inception, Resnet50, Xception,

Nasnet) to determine which architecture and which scheme of transfer learning performs

best. In addition, various color scheme scenarios were tested, including the use of primary

and secondary color together, and, in addition, the effectiveness of dealing with multi-class

classification using multi-class, combined binary, and, finally, ensemble classifiers were

studied. The best overall performance was achieved by the ensemble classifier. The results

show that the proposed method can detect the color of flower and labellum very well without

having to perform image segmentation. The result of this study can act as a foundation for

the development of an image-based plant recognition system that is able to offer an expla-

nation of a provided classification.

Introduction

Identifying a plant is not an easy task, not even for the expert. There are many features of

plants that play a role in this task. Color is often used as one of the more important features in

flower recognition using image processing [1]. This feature also appears in descriptions used

in identification keys, i.e., structured features to identify a species [2]. In this paper we investi-

gate the role color can play in identification, where digital photographs in conjunction with
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descriptions of orchids are used as the experimental domain. Although color is just one of the

features deployed in orchid identification, it is not known how hard it is to detect the colors

of an orchid in an image. This is the research question which this paper aims to answer. Our

future plan is to build an explainable flower identification computer-based system in which

color is one of the features used to support the explanation of why a particular species is most

likely.

The colors of some parts of an orchid—the sepals, the petals, and the lip as shown in Fig 1

—are of particular value when identifying a plant. In this research, the sepals and petals

together are called the flower, while the lip, that acts as a landing platform for insects, is called

the labellum. It may be expected that the difficulty of color detection is not the same for the

flower and labellum, because of differences in shape and size. Automatic color detection is not

straightforward, as both flower and labellum may contain multiple colors, e.g. red and green,

increasing the size of the search space, yet in the face of the availability of only a limited num-

ber of photographic images of orchids with varying image quality. In addition, the flowers pic-

tured in the images are normally surrounded by other plants, trees, grass, etc., sometimes

making even the detection of the flowers in the image a challenge. As the flowers are not

photographed in a standardized fashion, it does not appear easy to develop a segmentation

Fig 1. Parts of an orchid flower. The flower is made up of sepals and petals; there is only one labellum and it may have its own separate color.

https://doi.org/10.1371/journal.pone.0259036.g001
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algorithm that is able to distinguish the flowers from the background. Of course, often the pho-

tographers did their best to obtain a good (most of the characteristic details of the flower can

be distinguished) and clear image of the flowers. However, we noticed that not all photographs

are of good quality and even the human eye sometimes has difficulty to find the flowers in the

image.

The context of the present research is that of orchid databases (e.g., https://gobotany.

nativeplanttrust.org/), nowadays widely available and online accessible through the internet.

They contain systematic descriptions of orchids, identified by species name and classified in

genera, in terms of specific features (color of the flowers and labellum, shape and texture of the

leaves, geographical location where they are found, etc.), complemented by multiple digital

photographic images of the plant. As existing image-based flower recognition systems offer

black-box approaches, which only output the species name [3–5], we believe that the way a tax-

onomist identifies an orchid, i.e., in terms of its features, is a valuable source of inspiration for

designing a plant species identification computer-based system.

In the present paper, a novel approach to automated color detection of flowers in images is

proposed; all of the published studies in image-based flower recognition have used color

moments and color histograms for extracting color features from images [6]. In contrast, in

our research color labels are used, i.e., names of colors used to describe objects, in our case

flowers. Taxonomist have used color labels, together with other flower features, to describe

the characteristics of flowers for centuries [7]. Thus, in the present paper there are two novel

contributions:

• Firstly, we have built a new format for a flower-image database, which not only consists of

flower images, but in addition of descriptions of the flower characteristics.

• Secondly, we propose a new approach to extract color features from flower images using

color labels and deep learning without making use of image segmentation.

To achieve a reliable color detection system, we conducted experiments with five different

deep learning architectures, with transfer learning and varying amounts of unfreezing of neu-

ral network layers, and various classifier methods (multi-class classifiers, combined binary

classifiers, and ensemble classifiers), using different color scheme scenarios. Our experiments

show that the ensemble classifier outperforms other classifiers.

Materials and methods

Related work

In this section, we briefly review the most relevant researches on: (1) color detection [8–14];

and (2) flower classification using deep learning [3, 5, 15–20].

Color is widely used as one of the features in object recognition and various methods are

employed in identifying color in images. Popular methods are color moments and the color

histogram. Color moments measure the color similarity between images by using mean, stan-

dard deviation, and skewness [8], whereas the color histogram is based on the computation of

the frequency with which colors occur in an image. To compute a color histogram, several

color space options can be chosen from, such as the RGB color space, HSV color space, CIE

L�a�b� color space, etc. [9].

Besides color moments and the color histogram, another currently popular method is based

on color labels. There are two popular methods available to assign linguistic color labels to

image pixel, using either chip-based color names or real-world image-based color names.

Chip-based color names are obtained by mapping RGB values to the color names of a labeled

PLOS ONE Automated color detection in orchids

PLOS ONE | https://doi.org/10.1371/journal.pone.0259036 October 27, 2021 3 / 27

https://gobotany.nativeplanttrust.org/
https://gobotany.nativeplanttrust.org/
https://doi.org/10.1371/journal.pone.0259036


set of color chips. It works well when the image is taken under conditions of ideal lighting.

There are some chip-based color naming references that have been built from different dataset

[10–12]. Alternatively, real-world image color names are used, where color names are learned

from objects in real-world images. Van der Weijer et al. [13] have done research employing

this method. They used Probabilistic Latent Semantic Analysis (PLSA), a generative model

introduced by Hofmann [14] for document analysis, to obtain the distributions of the color

names over L�a�b� values. They claim that their method is photometrically robust because the

images for learning have been taken from the internet using Google Search with varying illu-

minants, cameras, and camera settings. However, in contrast to our approach, the method

requires segmentation of an object in an image and the segmented object’s color is subse-

quently determined by counting the number of color pixels. Furthermore, the method is

unable to differentiate between the color of the flower and labellum, which is one of the aims

of our research.

These limitations brought us to proposing a new method to identify the color of flower and

labellum by color labels and deep learning. Basically, we adopted the idea to start with real-

world images as suggested by Van der Weijer [13]. Instead of deploying images from general

objects (such as cars, shoes, dresses, etc.), we used only flower images. To decide on the color

name, we employed deep learning instead of PLSA.

In recent years, flower classification by means of deep learning has been evolving rapidly.

Hiary, et al. have proposed a two-step deep-learning method to classify flower species [5].

The first step consists of segmenting the flower region using a Fully Convolutional Network

(FCN), composed of 5 blocks from the VGG16 architecture [21] and an additional three de-

convolutional layers. The second step is concerned with classifying the type of flower using a

Convolutional Neural Network (CNN), which also uses the VGG16 architecture, followed by 3

convolutional layers with 512 feature maps. They chose VGG16 because it better suits the

flower classification task compared to other deep-learning methods. Evaluation of the perfor-

mance of their method was conducted on three different datasets, two from Oxford—the

Oxford 17 and the Oxford 102 dataset —, and the Zou-Nagy dataset. The results show that

their proposed method can achieve at least an accuracy of 97% on these datasets.

Gurnani et al. have compared the performance of the GoogleNet and AlexNet architecture

in classifying different flowers from the Oxford 102 dataset [15]. The GoogleNet architecture

uses Inception as the backbone, while AlexNet uses eight layers with the first 5 layers being

convolutional layers and the last 3 layers being fully connected layers. They kept the same

hyper-parameters during training of both architectures, concluding that the GoogleNet

yielded a better performance than the AlexNet.

Use of the Inception-v3 feature extractor with transfer learning, together with a CNN,

was proposed recently by Arwatchananukul et al. in an attempt to distinguish 15 species of

Paphiopedilum orchids [16]. They also built a new Paphiopedilum orchid database consist-

ing of 1500 images, 100 images per species, each of them front-view images with the flower

and labellum placed in a very similar standardized way. The performance of their classifica-

tion system reached as highest accuracy a value of 98.6%. Inception-v3 was also used by Xia

et al. [17] for flower classification. They used Oxford-17 and Oxford-102 flower dataset in

their experiment. The results showed that the system can greatly improve the accuracy of

flower classification.

In Liu et al. [3], two network architectures, VGG16 and ResNet50, were applied to recog-

nize Chrysanthemum flowers. They used two datasets for training and evaluation. The dataset

for training consisted of 14,000 images with 103 cultivars, while another dataset, comprising

197 images, was deployed for evaluation. Deep learning was selected as method in this research

because of its potential advantage of achieving a good performance.
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Furthermore, a research in Orchid flowers recognition has been conducted by Zhang et al.

[18]. They built a dataset comprising two million orchid images from 2608 species and pro-

posed a joint framework between deep learning and a tree classifier to identfy plant species in

large scale. AlexNet was used for deep learning architecture, while two-layers tree classifier

was constructed which can perfectly organize the large number of plant species. The results

showed that the proposed framework can achieve very competitive results in accuracy and

computational time.

Research to compare the performance of CNNs combined with transfer learning against

other machine learning methods using handcrafted feature extraction was initiated by Gogul

and Kumar [19]. They used the Inception-v3, Xception, and Overfeat architecture to do fea-

ture extraction. In deep learning, specifying the features one by one as normally done in hand-

crafting is not needed. The handcrafted features that are often used in flower recognition are:

color, shape, and texture. All of these features acted as input to the machine learning method.

Decision trees, k-nearest neighbor, naive Bayesian networks, and random forests were com-

pared to each other. The results showed that in extracting features, deep learning outper-

formed the other machine learning methods (using handcrafted feature extraction) in terms of

accuracy. In this case, the highest accuracy was achieved by the Inception-v3 architecture.

A comparison of the performance of some deep learning architectures is also made in the

work by Basa et al. [20]. In this research, they compared the performance of VGG16, ResNet-

50, MobileNet, DenseNet, and NasNet-Mobile combined with a fine-tuning method deploying

some datasets including the Oxford-102 Flower dataset. The results showed that VGG16 and

ResNet-50 achieved the highest performance, in contrast to NasNet that performed poorly.

However, in several studies [22, 23], NasNet, which is a relative new architecture in deep learn-

ing, often gives the highest performance.

Although the summary of related research above certainly conveys the impression that

much progress has been made during the last decade by applying deep learning to flower clas-

sification, in our research we explicitly aim to move away from the black-box nature of deep

learning, by providing information about the role of each of the features exploited in the classi-

fication process, although these features may be identified by deep learning. In this paper, the

feature studied is color.

The color of orchids

Relevant features. Different from the situation with other flowering plants (angiosperms),

the color of the labellum is employed as extra information by taxonomists, in addition to the

color of the flower, for describing the characteristics of the orchid. Thus,

• Color of Flower, CF for short, and

• Color of Labellum, abbreviated to CL,

are the color features of orchids that have been selected for our research because of their easy

identifiability by both humans and computer vision systems. In the following, these color fea-

tures will be abbreviated together as ‘CO’. Both CO features have an associated domain (range

of values), denoted D(CO). For the domain of these CO features, we have designed two scenar-

ios. The first scenario is using non-binary, multinomial data. For example, the variable CF

(Color of Flower) can take color values such as ‘red’, ‘purple’, ‘yellow’, etc. The other, simpler

binary scenario assumes that one of the colors is taken as the indicator, e.g., ‘red’, whereas the

other value is ‘non-red’ (in general, ‘color’ and ‘non-color’). Below, first the design of multino-

mial color schemes will be described, which will be followed later by the design of multi-class

and binary classifiers, where the latter deal with the binary scenario.
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RGB encoding. We use the RGB (Red Green Blue) color space as a foundation for the

color labeling as this color model is also used in the description of the digital images of orchids.

RGB color labeling was applied to the color labeling of CF and CL. As the RGB color model

describes a 3-dimensional space, we used the 2-dimension matrix mapping, shown in Fig 2, to

facilitate designing a mapping.

To reduce the search space, we designed two color schemes from the RGB color model as

described in Fig 3.

One alternative (called below color scheme 1) investigated is based on the following colors:

• Red (standing for redish, i.e., red, brown, and orange): first 2 columns of the matrix of Fig 2.

• Yellow (standing for yellow, light yellow, and white): 3rd column of the matrix of Fig 2.

• Green (standing for greenish): columns 4–6 of the matrix of Fig 2.

• Purple (standing for purple to pink): columns 10–12 of the matrix of Fig 2.

As blue neither occurs in a flower nor in a labellum of an orchid, columns 7–9 are ignored.

Finally, note that white is actually the rectangle M[9, 13], but M[9, 3] (the end of the Yellow

column) is close to white. This choice results in 4 different colors.

The other alternative (color scheme 2) investigated was to employ the following colors:

• Red (standing for redish, i.e., red and brown): first column of the matrix of Fig 2 and

M[1 : 4, 2].

• Yellow (standing for orange, yellow, light yellow): 2nd and 3rd column of the matrix of Fig

2, excluding M[1 : 4, 2], which is classified as red.

• Green (standing for greenish): columns 4–6 of the matrix of Fig 2.

Fig 2. RGB color model as 9 × 13 matrix M. White is located at the right bottom cell; the blue color, columns 7–9,

does not occur in our orchids.

https://doi.org/10.1371/journal.pone.0259036.g002
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• Purple (standing for purple to pink): columns 10–12 of the matrix of Fig 2.

• White: element M[9, 13] in the color matrix.

As again blue neither occurs in an orchid flower nor in its labellum, columns 7–9 are

ignored. This choice yields 5 different colors, one color more than color scheme 1. Also

observe that only two of the color names of color scheme 1 and 2 have exactly the same seman-

tics: green and purple; the meaning of the other color names is different, which is worth to

remember as otherwise it may make the rest of the paper confusing. In the following, the color

schemes in relationship to CF (Color of Flower) and CL (Color of Labellum) are referred to be

CF1 and CF2, respectively, and CL1 and CL2, respectively.

Primary and secondary color combinations. Often flowers and labellums have multiple

colors; the color combination may help in identifying them. One option is to use a multi-label

classification method (with the possibility of having two or more color labels at the same

time). However, this would imply that we had to combine two (or more) colors according to

the Cartesian product of their domain, D(CO) × D(CO) for two colors, yielding 16, e.g. (Red,

Yellow) and (Yellow, Red), and 25 colors, respectively, based on color scheme 1 and 2. As we

only had a dataset of limited size, we decided to investigate whether the number of labels could

be reduced.

As the color of a flower is often not unique, we have defined the variable CO as a subset of

the Cartesian product of two other color variables called COp and COs, respectively, i.e., D
(CO)� D(COp) × D(COs), with COp the primary color and COs the secondary color. Based

on the description of orchids, the primary color COp has a domain with eight values: blue,

brown, green, pink, purple, red, white, and yellow; the secondary color COs has a domain

consisting of seven values: brown, green, pink, purple, red, white, yellow. The advantage of

this definition of CO is that unlikely or impossible color combinations can be left out of the

definition, and do not have to be assessed during statistical estimation of the probability

distribution.

Fig 3. Color scheme scenario.

https://doi.org/10.1371/journal.pone.0259036.g003
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The order of colors is significant as the first, primary color name, will fill most of the flower

or labellum area, and the secondary color a smaller part, often only a rim. However, to reduce

the number of colors we assume commutativity of their combination, i.e., for colors A, B we

assume that AB = BA. This choice implies that we can compute the number of color combina-

tions with repetitions (the primary and secondary colors can be the same, which is the same as

that there is no secondary color), k at the time, of n colors:

� nþ k � 1

k

�

ð1Þ

As in this case we wish to model image colors, not the colors in the descriptions (although

there is a strict mapping between the two), we assume that we have to handle 4 and 5 colors,

respectively, using the color schemes previously mentioned. Thus, in the present situation for

color scheme 1 n = 4 and k = 2, hence: ð 5

2
Þ ¼ 10. The values include, for example, RedRed,

which is just Red (the entire flower is red, there is no secondary color). Finally, some of the

combinations do not occur in nature. This yields the following combinations:

• (1) RedRed = Red

• (2) YellowYellow = Yellow

• (3) GreenGreen = Green

• (4) PurplePurple = Purple

• (5) RedYellow = YellowRed

• (6) RedGreen = GreenRed

• (7) RedPurple = PurpleRed X, Y

• (8) YellowGreen = GreenYellow

• (9) YellowPurple = PurpleYellow

• (10) GreenPurple = PurpleGreen X, Y

Two combinations, indicated by X, do not occur in practice for the variable CL (Color of

Labellum), and Y for CF (Color of Flower), hence what remains are 8 combinations of pri-

mary and secondary colors.

For color scheme 2 we have n = 5 and k = 2, thus ð 6

2
Þ ¼ 15.

• (1) RedRed = Red X

• (2) YellowYellow = Yellow

• (3) GreenGreen = Green

• (4) PurplePurple = Purple

• (5) WhiteWhite = White

• (6) RedYellow = YellowRed

• (7) RedGreen = GreenRed

• (8) RedPurple = PurpleRed X, Y

• (9) RedWhite = WhiteRed X, Y
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• (10) YellowGreen = GreenYellow X

• (11) YellowPurple = PurpleYellow

• (12) YellowWhite = WhiteYellow Y

• (13) GreenPurple = PurpleGreen X, Y

• (14) GreenWhite = WhiteGreen

• (15) PurpleWhite = WhitePurple

Five combinations, indicated by X, do not occur in practice for the variable CL (Color of

Labellum), hence what remains are 10 combinations of primary and secondary colors. For the

variable CF (Color of Flower) we can remove the 4 combinations indicated by Y, yielding 11

combinations. To make it easier for the reader to distinguish the employed color scenarios,

the diagrams depicted in Figs 4 and 5 are included in the paper.

Fig 4. Scenarios for Color of Flower (CF).

https://doi.org/10.1371/journal.pone.0259036.g004

Fig 5. Scenarios for Color of Labellum (CL).

https://doi.org/10.1371/journal.pone.0259036.g005
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Orchid dataset

A dataset was composed by us that includes 7156 images of orchid flowers, consisting of 156

different orchid species. Most of the images were Flickr images under the Creative Commons

license, downloaded by us through the Flickr API. Some of the images were obtained from

websites such as Go Botany (Native Plant Trust) and the Encyclopedia of Life (EoL). Different

from other flower image datasets, in addition to the images our dataset contains, descriptions

are included of the features for each orchid. The feature descriptions were obtained from the

“Go Botany” and “Go Orchids” websites. Several features are used in this dataset: colors, tex-

ture, inflorescence, number of flower, and labellum characteristics. However, in this paper, we

only focus on the color features.

The dataset is quite challenging because it suffers from imbalance: some classes are covered

by a large number of images, whereas other image classes are underrepresented, i.e., only

appear in very small numbers. However, this imbalance in the data might be caused by the

rareness of the species in nature, leading to a lack of pictures of certain species. Besides that,

the dataset contains flower photographic images with a natural background, taken from vari-

ous position and angles, with varying conditions of illumination and noise, rendering this

dataset non-uniform and thus hard to analyze (see Fig 6 for some example pictures).

The dataset used in this paper can be downloaded at https://doi.org/10.7910/DVN/

0HNECY [24].

Deep learning

As deep learning appears to be one of the best available methods for image interpretation, we

compared the performance of some promising deep learning architectures on our orchid data-

set with the hope of discovering the best architecture for our color detection system. We

explored VGG16 [21], Inception-v3 [25], Resnet50 [26], Xception [27], and NasNetLarge [22].

Rather than training a custom-made convolutional network from scratch, transfer learning

using these pre-trained architectures, trained on a large dataset (in our case the ImageNet

dataset), were used. A pre-trained network is in particular attractive if only a small dataset is

available.

In transfer learning, we can freeze or unfreeze the layers in pre-trained model to obtain the

best performance. Table 1 shows the number of layers in each architecture. Based on the table,

Fig 6. A selection of pictures of orchids in the dataset used in our research.

https://doi.org/10.1371/journal.pone.0259036.g006
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some experiments were performed by adjusting the number of frozen layers in the pre-trained

models. We froze 3

4
th, 1

2
, and 1

4
th of the bottom layers. In addition, we also tried to freeze the

first layer and unfreeze all of the layers.

We added three new layers in the last layer of pre-trained model. The last new layers were: a

flatten layer, a dense layer with 512 neurons, a dropout layer with a probability of 0.5, and as

last dense layer one with the number of neurons equal to the number of colors that we

wished to detect. ReLU was employed as the activation function in the first dense layer and

softmax as the activation function for the last dense layer.

The hyper-parameter for deep learning that we employed in the experiments are shown in

Table 2. As input to the neural networks acted an RGB image with size 224 × 224 for all of the

architectures except NasNetLarge which uses 331 × 331. We used a batch size equal to 64 and

the number of epochs was equal to 100. To achieve a better performance we also fine-tuned

our pre-trained models using data augmentation. Data augmentation is a method to increase

the diversity of the training set by applying random transformations. The transformations we

applied to the dataset were: rotation, shrink, flip, and zoom. The class weight method was

applied to the data to obtain more balanced data; it works by replicating the smaller (in num-

ber of instances) class until as many samples are obtained as for the larger class. Adam was the

optimizer used in this case, with as loss function: weighted binary cross entropy. Software was

developed for the experiments based on the software libraries tensorflow and keras, on top of

the scripting language python [28, 29].

Color classifier methods

As is clear from the description above, the feature of color of both flowers and labellum are

described by more than two class labels. Hence, the classifier models we need to learn from the

data are of the form C : Rp�q
! f1; . . . ;mg, p; q;m 2 N, where an image I 2 Rp�q

is described

by a pq-dimensional (here 224 × 224; 331 × 331 for NasNetLarge) real matrix, and for primary

colors only, m = 4 using color scheme 1, and m = 5 for scheme 2; when we consider combining

primary and secondary colors, m = 8 for scheme 1 and m = 10 or m = 11 for scheme 2, as dis-

cussed above.

Table 1. The depth of the network model.

Network model Number of layers

VGG16 19

Inception-v3 311

Resnet50 175

Xception 132

NasNet 1039

https://doi.org/10.1371/journal.pone.0259036.t001

Table 2. Setting of deep learning architecture.

Hyper-parameters Value

Optimization algorithm Adam optimizer

Initial LR 0.00005

Epochs 100

Batch size 64

Image Input Size 224 × 224

331 × 331 (NasNet)

Loss function Weighted binary cross entropy

https://doi.org/10.1371/journal.pone.0259036.t002
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There are multiple ways in which color classification can be handled. The first way is that

one simply learns a color multi-class classifier C. Fig 7 shows the framework for multi-class

classifier using deep learning. After dividing the dataset into some training set, validation set

and testing set, we use the flower images together with its color labels as the input and train

them using multi-class classifier based on one of deep learning architecture. In multi-class clas-

sifier, we only need one classifier for predicting various color labels. The outputs for both

training and testing are color label and softmax value. The disadvantage is that in situations of

a small dataset, it is hard to learn C when the number of color labels is large, such as 10 and 11

in our case. An alternative solution is to learn multiple binary classifiers, Ci : Rp�q
! f0; 1g,

i = 1, . . ., m − 1 and to combine them.

Let I 2 Rp�q
be an image and let us denote by Ci the situation that Ci(I) = 1 and by ¬Ci the

case that Ci(I) = 0. Note that the situation where we know nothing about the actual color of a

flower or labellum can be summarized by the following logical disjunction (with _ having the

meaning of inclusive OR):

G � ðC1 _ C2 _ � � � _ Ci _ � � � _ CmÞ ð2Þ

called the domain closure axiom in artificial intelligence [30], which is augmented with mutual
exclusiveness, ¬Ci_¬Cj, 1� i, j�m, i 6¼ j. It simply means that known is that the actual color

is one of the allowed colors, and having two or more colors at the same time is inconsistent.

Note the difference with totally knowing nothing; we do know something, but not yet which

specific color the plant part has. This formula plays an essential role below.

We have the following potential results from the merge of the binary classifiers:

Fig 7. Multi-class classifier.

https://doi.org/10.1371/journal.pone.0259036.g007
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• (¬C1^� � �^¬Ci−1^Ci^¬Ci+1^� � �^¬Cm−1^¬Cm), where Ci is the only established positive

label for image I, ¬Ck, k = 1, . . ., m − 1, k 6¼ i, is the output of classifier k, and ¬Cm is obtained

by the mutual exclusiveness axioms;

• (¬C1^� � �^Ci^� � �^Cj^� � �^¬Cm−1), with i 6¼ j, meaning that the binary classifiers yield con-

tradictory (more than one positive label) result. The label is unknown in that case.

• (¬C1^� � �^¬Ci^� � �^¬Cm−1), which when combined with Γ yields that Cm is the right label of

the image.

This way of combining the result of multiple binary classifiers is known as the one-versus-
the-rest classifier [31].

A third alternative is to learn an approximate probability function fi : Rp�q
! ½0; 1� for

each color i = 1, . . ., m by deep learning and to select the color k where an image I has maxi-

mum probability:

k ¼ argmax
1�i�mfiðIÞ ð3Þ

The fourth and last classifier we wish to consider is that of combining a multi-class and

combined-binary classifier as an ensemble [31]. Often ensembles of classifiers use some kind

of voting mechanism to determine the output. As in this case the ensemble consists just of two

classifiers, we have designed two ways to determine which class label to yield as a result. Let C1

and C2 be the two classifiers that make up the ensemble. The following heuristics have been

designed (and will be evaluated below) yielding two different ensemble methods:

• Most likely true color (MLTC) ensemble. If both C1 and C2 produce the same label as out-

put, then this is taken as the result. However, when the labels are different, we select the

color of C1 or C2 that has the highest true positive rate (TPR; see next section for its

definition).

• Most likely color ratio (MLCR) ensemble. Similar to the MLTC ensemble, if both C1 and C2

produce the same label as output, this is taken as the result. However, when the results are

different, we decide to produce the color for which the true positive rate ratio of these two

colors between the two classifiers is highest as output. The ratio is interpreted in this case as

a heuristic saying that if the difference in ratio between a specific color of a classifier is larger

than for the other classifier, then the best color choice is the one with the lowest ratio.

An example may be valuable to help in understanding of what we have just described.

Example 1 Consider the two classifiers C1 and C2, respectively, with outputs red and white,

respectively, and the following results for the two different ensemble methods. For C1 = red,

TPR = 0.38, whereas for C1 = white, TPR = 0.70; similarly, for C2 = red, TPR = 0.58, whereas for
C2 = white, TPR = 0.59. If we use the MLTC ensemble method, the choice would be white (that
is, C2 wins) as 0.59> 0.38. The MLCR ensemble method will choose red, as the ratio for white is
in this case equal to 0.59/0.70� 0.84 and for red equal to 0.38/0.58� 0.66 indicating that for
red the values are wider apart than for white. Hence, red is the proper choice for the MLRC
method.

The detailed schemas to understand easily the scenarios for combined-binary classifiers

and ensemble classifier can be seen in the S1 Fig.

Training and testing procedures

We divided the dataset described above into two parts: one for training the classifiers, using a

training and validation set, and the other one for testing purposes. The training and validation
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sets are used for optimization purposes, i.e., to fine-tune a model. The independent testing set

ensures that testing is done on images that have not been met during training. The percentages

of each part were approximately: 70% (training set), 20% (validation set), and 10% (testing

set). We had 5119 images for training, 1235 images for validation, and 802 images for testing.

Data augmentation was only applied in the training process. In this dataset, we used two color

characteristics, CF and CL, as described in detail above. We extracted the primary color and

also primary and secondary color from the images, using the color schemes described above,

to handle the large number of flower species. Note that in training the images and associated

color labels are used as input, in a form of supervised learning, whereas in testing only the

images act as input and the associated color labels are only used to determine the classification

performance of the various classifiers.

There are several measures in use to evaluate the performance of a classifier. As we are deal-

ing with multi-class classification problems, no use is made of ROC analysis, which was origi-

nally designed for binary classification. Instead we will examine the performance by showing

confusion matrices; they have the advantage that they include all the needed information to

compute various performance measures, offering detailed insight into how well a classifier per-

forms. A confusion matrix is also useful to visually show imbalance in a dataset.

A confusion matrix is computed by summarizing the number of correct and incorrect pre-

dictions per class. There are two kinds of confusion matrices. The first kind is a confusion

matrix with entries computed by directly placing the number of correctly or incorrectly pre-

dicted cases into the table. Although we will use confusion matrices for multi-class classifica-

tion, which do not have the 2 × 2 table structure as for binary classification, we illustrate the

basic ideas by this simplest possible confusion matrix. TP stands for ‘True Positive’, represent-

ing the number of cases with positive classes that were predicted correctly as being positive.

TN stands for ‘True Negative’; it represents the number of cases with negative class that is pre-

dicted correctly as being negative. FP is short for ‘False Positive’, being the number of cases

with negative class that the classifier predicted as being positive. Finally, FN stands for ‘False

Negative’, being the number of cases with positive class that are predicted as being negative.

Table 3(a) summarizes these measures in one matrix.

The second kind of confusion matrix includes rates or frequencies, based on the data in the

unnormalized confusion matrix in Table 3(a) which is computed by dividing the number of

correctly or incorrectly predicted cases by the total number of cases per class. If we need to

obtain a normalized confusion matrix, we only need to divide each entry of the confusion

matrix by the total number of cases per class like in as shown in Table 3(b). For example, the

number of true positives (TP) is turned into the TPR (True Positive Rate) by its definition in

the upper-left table entry.

Another often used measure is ‘accuracy’: the total number of correct predictions divided

by the total number of cases. The accuracy can be calculated directly from the confusion

matrix as follows [32]:

accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
ð4Þ

Table 3. The confusion matrices; (a) without normalization and (b) normalized.

Predicted Value Predicted Value

Actual Value TP FN Actual Value TP/TP + FN FN/TP + FN

FP TN FP/FP + TN TN/FP + TN

(a) (b)

https://doi.org/10.1371/journal.pone.0259036.t003

PLOS ONE Automated color detection in orchids

PLOS ONE | https://doi.org/10.1371/journal.pone.0259036 October 27, 2021 14 / 27

https://doi.org/10.1371/journal.pone.0259036.t003
https://doi.org/10.1371/journal.pone.0259036


In addition, the performance measure F1 is applied frequently, which defined as the har-

monic mean of Recall and Precision [32]:

F1 ¼
2 � Recall � Precision
Recallþ Precision

ð5Þ

where

Recall ¼
TP

TPþ FN
ð6Þ

and

Precision ¼
TP

TPþ FP
: ð7Þ

In practice we will use the macro-F1 measure, as it yields insight into the classification per-

formance for the entire class variable, as it is defined as the mean of the Fi
1

measure for the

individual classes i:

macro-F1 ¼
1

n

Xn

i¼1

Fi
1 ð8Þ

where n represents the number of classes. Thus, henceforth, when we refer to F1, we actually

mean macro-F1.

Results

As mentioned above, we conducted the experiments using different deep learning architec-

tures to find the pre-trained model that performed best on our orchid data. Using the best pre-

trained model, we then conducted further experiments by using two color schemes for pri-

mary color only and on relevant combinations of primary and secondary color, where the

color schemes are referred to in both cases as CF1, CF2, for color of flowers, and CL1 and CL2,

for color of labellum. Three different types of classifier were trained and tested using the data:

multi-class classifiers, combined binary classifiers, and ensemble classifiers.

Selection of a pre-trained deep-learning model

As detection of the color of the labellum is a more difficult problem than that of the flower,

because of its smaller size, the choice of the architecture was guided by their capability of deal-

ing with this color detection problem. Fig 8 shows the results for different architectures applied

to our orchid dataset using the primary color of the labellum, using the CL1 color scheme.

When all layers are frozen, each of the pre-trained models offers no more than 70% accuracy,

except VGG16, which already is a good feature extractor. Its performance is relatively stable

for all freezing and unfreezing scenarios. The performance of the other pre-trained models did

not give significant improvement when we tried to freeze 3

4
th of the bottom layers. Inception-

v3 and Xception give us a good performance since we freeze only 1

2
of the bottom layers. In

contrast, the performance of ResNet50 is decreasing when we freeze 1

2
of the bottom layers.

Their performance is quite significantly improving when freezing only the first layer and

unfreezing the others, and remains good when unfreezing all layers. In the last two cases, all of

the architectures give more or less similar performance. However, Xception gives us the best

performance when we only freeze the first layer. Because of that, from now on we will use

Xception to conduct further experiments using different color schemes.
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Computation times

For training the deep-learning models, a high performance computing system with a graphic

processing unit was employed, giving rise to greatly reduced computation times. Training

time was around three hours, while the testing process was very fast. There are were no signifi-

cant differences in training time between VGG16, Inception, Xception, and Resnet50. For

NasNet, we ran out of memory when trying to unfreeze the layers.

The results for the different classifiers are discussed next.

Results for the multi-class classifiers

The results of the various multi-class classifiers in terms of accuracy and the F1-score are

shown in Table 4. From the table, we conclude that color scheme 1 yields better accuracy and

F1-score for color of labellum (CL), whereas color scheme 2 works better for color of flower

(CF). As the results obtained for the detection of primary and secondary color together are

worse than that for primary color only, the detection of the combination of colors is clearly

more difficult than detecting one color only, which is according to expectations. Certainly part

Fig 8. The performance of deep learning architecture on orchid flower dataset.

https://doi.org/10.1371/journal.pone.0259036.g008

Table 4. Accuracy and F1 for the multi-class classifiers.

Color Combination Color Scheme Accuracy F1

Primary CF1 0.872 0.873

CF2 0.873 0.873

CL1 0.888 0.874

CL2 0.855 0.823

Primary and Secondary CF1 0.848 0.813

CF2 0.852 0.818

CL1 0.848 0.773

CL2 0.817 0.751

Bold font is used to indicate clearly superior performance.

https://doi.org/10.1371/journal.pone.0259036.t004
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of the decrease in performance is due to the fact that the number of class labels is much higher

for the color combination than for primary color only.

Based on these results, we decided to proceed developing separate binary classifiers for indi-

vidual colors (a kind of ‘color specialists’), which would be subsequently be combined into

multi-class classifiers, as described above in the section on color classifier methods.

Results for the combined binary classifiers

Recall that for combining binary classifiers, we use two methods: one-versus-the-rest (method

1) and maximum probability (method 2). Table 5 offers a summary of the accuracy and F1-

score for all combinations of color schemes and methods. Overall, both for primary, and pri-

mary and secondary color, method 1 yields lower performance in comparison to method 2. As

Table 6 shows, the lower performance is often due to the unclassifier (inconsistent) cases,

which is what we expected. The advantage of method 2 is that it always produces consistent

classifications and thus below we will focus on this method.

Both CF and CL using primary colors show better accuracy than using primary and second-

ary color. However, the color schemes yield different results for CF and CL. When used to clas-

sify CL, we see that color scheme 1 appears to work better than color scheme 2. The opposite

pattern occurs for CF for primary color, but not always, as shown for the color combination.

Hence, it is clear that classifying color for flowers and the labellum are not task with identical

Table 5. Accuracy and F1 for the combined binary classifiers.

Color Combination Color Scheme Method 1 Method 2

Accuracy F1 Accuracy F1

Primary CF1 0.840 0.680 0.872 0.873

CF2 0.819 0.679 0.879 0.872

CL1 0.859 0.668 0.887 0.857

CL2 0.822 0.674 0.864 0.837

Primary and Secondary CF1 0.799 0.703 0.863 0.833

CF2 0.763 0.659 0.865 0.810

CL1 0.822 0.633 0.854 0.735

CL2 0.724 0.578 0.814 0.681

Bold font is used to indicate clearly superior performance. Sometimes either accuracies or F1-scores were very close; then best performance choice was based on the best

other measure.

https://doi.org/10.1371/journal.pone.0259036.t005

Table 6. Accuracy of method 1 by including and excluding inconsistent results.

Color Combination Color Scheme Method 1

Accuracy (Include Inconsistent Results) Accuracy (Without Inconsistent Results)

Primary CF1 0.840 0.856

CF2 0.819 0.847

CL1 0.859 0.864

CL2 0.822 0.854

Primary and Secondary CF1 0.799 0.817

CF2 0.763 0.817

CL1 0.822 0.839

CL2 0.724 0.793

https://doi.org/10.1371/journal.pone.0259036.t006
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difficulty, maybe because the labellum is much smaller than a flower; therefore, the simpler

color scheme appears to work well for the labellum.

Results for the ensemble classifiers

Because the results obtained by the combined binary classifiers were not always consistently

better than those obtained by the multi-class classifiers, and the opposite was also not true, we

decided to investigate two different, although related, ensemble classifiers, as described at the

end of the section on the color classifier methods. Hence, two, closely related methods, the

MLTC and MLCR methods, were compared to each other.

As can be noted from Table 7, in general, identifying color using MLCR yields better accu-

racy than MLTC. However, in some colors such as CL1 using primary color and using primary

and secondary color, MLTC has the same performance as the MLCR method. Even, it slightly

outperforms the MLCR method on CF2 using primary and secondary color. It appears that

MLCR often has some positive, but slight, effect on the performance in comparison to MLTC,

and sometimes not at all.

Which classifier performed best?

Fig 9 summarizes the performance of the various classifiers by means of bar graphs, with

binary classification method 1 now excluded, indicating that all of the classifiers are compara-

ble. However, in general the ensemble classifier using MLCR shows better performance than

the multi-class classifiers and combined-binary classifiers.

Discussion

It has been repeatedly demonstrated that color is a useful discriminative feature in image-

based flower recognition [1, 33]. As photographic images of flowers are made under varying

and usually non-optimal circumstances, color detection of flowers is a far from easy task and

thus hard to automate. Often the color histogram has been taken as method of choice. In con-

trast, we have explored color labels, a choice motivated by the fact that color labels are com-

monly employed by taxonomists in describing flowers. Automated color detection based on

color labels offers certain benefit to the taxonomist. When used as part of a computer-based

system that is able to provide the name of a flower species in an image, color labels can be used

as part of an explanation of why the flower is classified as a certain species. However, a color

label is in itself insufficient as a feature for flower identification, as different flowers often have

Table 7. Accuracy of MLTC and MLCR method on each color scheme.

Color Combination Color Scheme Accuracy

MLTC MLCR

Primary CF1 0.8691 0.8753

CF2 0.8753 0.8815

CL1 0.8890 0.8890

CL2 0.8628 0.8653

Primary and Secondary CF1 0.8566 0.8616

CF2 0.8691 0.8678

CL1 0.8603 0.8603

CL2 0.8317 0.8379

Bold font is used to indicate clearly superior performance.

https://doi.org/10.1371/journal.pone.0259036.t007
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the same color, implying that color can not uniquely predict the name of a species. Therefore,

color features have to be combined with other morphological features.

Even though the results from the classifiers are not significantly different, for the analysis,

we only use the results from the ensemble classifier MLCR which slightly outperforms the

other classifiers.

As discussed in the previous paragraph, the dataset used in our research was very challeng-

ing and reflects common difficulties met in automatic flower identification in the real world.

Fig 10 indicates that the dataset suffers from class imbalance; there is a big difference between

the number of samples belonging to the majority and the minority class. However, as can be

seen in Fig 10, the color classes that have a limited number of training samples do not always

have a low F1-score, as for example illustrated by the primary color ‘Red’ for CL1 and CL2, and

‘PurpleWhite’, ‘GreenYellow’ for CF2, ‘GreenRed’, and ‘GreenWhite’ for CL2 using both pri-

mary and secondary color. One explanation is that the class weights used to handle the

imbalance in the data during training had indeed a positive effect on the performance for

the minority class. Another possibility is that images in the minority class with a good F1-

score have a similar appearance compared to other minority classes so that the classifier can

recognize them more easily.

Next, we consider the confusion matrices for each classifier to obtain more detailed infor-

mation about which colors are hard to predict. Our automated color detection system pos-

sesses a little bit of overfitting, but not too much. We may note from the confusion matrices,

for example from Fig 11, that the classes Yellow and Purple, which have the highest amount of

training data, have high accuracy while the other classes are often classified into these classes.

Nevertheless, the other classes can still achieve high accuracy (for primary color most of classi-

fications are above 80%), even though there is a big difference in the amount of training data

for the class values with the highest and the lowest number of samples (the ratio between the

two is between 1.5–13). Using primary color of the labellum, with color schemes 1 and 2, ‘Red’

is the hardest color to predict. ‘Red’ is often predicted as ‘Yellow’ with color scheme 1 and

‘White’ with color scheme 2. Sometimes, it is also predicted as ‘Purple’ in both color schemes.

In Fig 12, for the color of flower, ‘Yellow’ is the most difficult color to predict using color

Fig 9. Overview of the performance of the various classifiers studied.

https://doi.org/10.1371/journal.pone.0259036.g009
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scheme 1, whereas it is ‘White’ for color scheme 2. For both color schemes, these colors are

often predicted as ‘Green’. The other confusion matrices are provided in the supplement

S1 Fig.

It is worthwhile to examine the images used in testing in more detail to understand why the

classifiers often achieved a good performance and sometimes also failed. As a consequence,

Fig 10. Number of images for each color related to the F1-score of the various classifiers.

https://doi.org/10.1371/journal.pone.0259036.g010
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the 20% images that were misclassified were further analyzed. Three main reasons for the

misclassification were uncovered:

1. It may be the case that the color of the flower in the image corresponds to that in the litera-

ture, whereas the predicted color is different. An example to illustrate this situation is

shown in Fig 13. By their uncertain nature, all classifiers make sometimes mistakes.

2. The color appearance in the misclassified images sometimes differs from the colors men-

tioned in the literature. In that case, the predicted color may correspond either to the color

mentioned in the literature (counted as correct), or to the color appearing in the image

(which we count as incorrect). Fig 14 shows an example of a case where a seemingly correct

prediction is counted as incorrect. Hence, in this case either the literature is mistaken, or

the picture taken had for some reason colors that were not described previously. In both

cases, a decision has to be made as whether the prediction is considered to be correct or

incorrect. We decided to be conservative in our assessment.

Fig 11. The confusion matrices for primary color: (a) CL1 and (b) CL2 using the ensemble classifier.

https://doi.org/10.1371/journal.pone.0259036.g011
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3. An image often not only includes the flower that is to be classified, but also other flowers,

pictured from different angles, and a variety of backgrounds such as grass, leaves, trunks,

etc. There are also some images that show the orchid’s seed pods or flower buds which

may have a color that differs from the blooming flower. These images were classified by

us as hard images as it is almost impossible to detect the color correctly. Fig 15 gives some

examples.

Not much can be done about the misclassified images of type (1) as our classifiers are

already optimal. The distribution of the other two misclassified image types (2) and (3) is

shown in Table 8, indicating that misclassification is reasonably balanced between the two

categories.

Furthermore, we carried out an additional experiment, where we manually corrected the

potentially wrong labels based on the literature and as sometimes an orchid was known to

Fig 12. The confusion matrices for primary color: (a) CF1 and (b) CF2 using ensemble classifier.

https://doi.org/10.1371/journal.pone.0259036.g012
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Fig 13. The color of the orchids seen in the pictures (purple) corresponds to the literature, whereas the classifier predicted white as their color.

https://doi.org/10.1371/journal.pone.0259036.g013

Fig 14. According to the literature, the orchid should be white. Yet, the picture clearly shows a pink-purple flower, where the classifier predicted

purple as color (which includes pink in our color scheme), which was counted as being incorrect.

https://doi.org/10.1371/journal.pone.0259036.g014

Fig 15. Examples of images that are hard to classify because of photographic imperfections or non-blooming stages of the orchid.

https://doi.org/10.1371/journal.pone.0259036.g015
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have a number of alternative colors, these colors were added. Next, we counted a prediction as

being correct if the predicted color occurred among the colors mentioned in the database.

Table 9 shows the accuracy before and after label adjustment using set-membership to count

the correct predictions. As can be seen, the classifier’s performance improved between 1.5–

4.5% after implementing these modifications.

Commutativity of color

As mentioned in the material and methods section, we used commutativity of primary and

secondary color to reduce the number of color combinations, hoping for an improvement in

the classification performance. The reader may wonder whether this effect really occurred,

which is why here attention is payed to this issue. We limited the study to the multi-class classi-

fication as computation times for the experiments would have increased considerably. This

yielded 12, 15, 12, and 16 color combinations for CF1, CF2, CL1, and CL2, respectively. In

Table 10, the performance of the multi-class classifier using these color combinations is com-

pared to using color commutativity, confirming a general decrease in performance if commu-

tativity of color is not deployed.

Conclusion and future work

The best classifier is able to detect the color of the flower and labellum based on their appear-

ance in the image pretty well. Of course, applying segmentation to the images, thus isolating

the orchid from the background, most likely offers better performance. However, it appears

that our results are satisfactory when one wishes to detect orchid colors and segmentation is

Table 8. Distribution of misclassified images.

Color Scheme Potentially Wrong Labels Hard Images

CF1 (100 images) 32 29

CF2 (95 images) 19 24

CL1 (89 images) 35 22

CL2 (108 images) 26 23

https://doi.org/10.1371/journal.pone.0259036.t008

Table 9. Effect on the accuracy of the classifier after label modification and counting correct predictions in terms

of set-membership.

Color Scheme Original Accuracy Accuracy after Modification

CF1 87.5 91.5

CF2 88.2 90.5

CL1 88.9 93.2

CL2 86.5 89.8

https://doi.org/10.1371/journal.pone.0259036.t009

Table 10. The performance of the multi-class classifier using primary and secondary color after dropping the

property of color commutativity.

Color Scheme Accuracy F1

CF1 0.837 0.756

CF2 0.825 0.711

CL1 0.830 0.688

CL2 0.810 0.675

https://doi.org/10.1371/journal.pone.0259036.t010
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not needed. This offers the advantage that the user is not confronted with the burden of man-

ual segmentation, whereas automated segmentation of pictures that include plants with their

complex background may not be feasible. Even though there is still a little bit of overfitting, the

classifier is able to suppress it. Reliable color detection of orchids based on color labels can be

used as input to an automated image-based flower recognition program, which may include

models that are able to provide a better explanation of the classification than deep learning is

able to offer.

Supporting information

S1 Fig. Detailed figures. The schemas can be used to understand the proposed methods easily.

The confusion matrices have acted as the basis for the computation of the various performance

scores in the paper.

(PDF)

Author Contributions

Data curation: Diah Harnoni Apriyanti.

Formal analysis: Luuk J. Spreeuwers, Peter J. F. Lucas, Raymond N. J. Veldhuis.

Funding acquisition: Diah Harnoni Apriyanti.

Methodology: Diah Harnoni Apriyanti, Luuk J. Spreeuwers, Peter J. F. Lucas, Raymond N. J.

Veldhuis.

Resources: Raymond N. J. Veldhuis.

Software: Diah Harnoni Apriyanti.

Supervision: Luuk J. Spreeuwers, Peter J. F. Lucas, Raymond N. J. Veldhuis.

Validation: Diah Harnoni Apriyanti, Luuk J. Spreeuwers, Peter J. F. Lucas, Raymond N. J.

Veldhuis.

Visualization: Diah Harnoni Apriyanti.

Writing – original draft: Diah Harnoni Apriyanti, Peter J. F. Lucas.

Writing – review & editing: Diah Harnoni Apriyanti, Peter J. F. Lucas.

References
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