Introduction to eHealth
What, why, how?

Peter Lucas

Institute for Computing and Information Sciences
Radboud University Nijmegen
Course aims and website

At the end of the two eHealth courses you need to have knowledge of:

▶ The role of biomedical knowledge in medicine and healthcare
▶ Anatomy, physiology and internal medicine of an organ system
▶ Probabilistic techniques for diagnosis and treatment selection
▶ Normative and descriptive techniques for decision analysis
▶ The role of medical image analysis in clinical medicine

You are the Pioneers!!

Website: http://www.ocw.cs.ru.nl/NWI-IPC027
Structure and assessment of the course eHealth1/2

Four themes:

▶ **Theme I:** principles of medicine and healthcare (illustrated by an organ system and disease management) (eHealth 1)

▶ **Theme II:** diagnostic reasoning and decision making (by means of probability and decision theory) (eHealth 1)

▶ **Theme III:** Human factors in clinical decision making (part eHealth 1 and part eHealth 2)

▶ **Theme IV:** role of image analysis in clinical medicine (eHealth 2)

Assessment: by means of essays and problems you have to solve (for which you will get a mark)
eHealth 1 – Schedule

▶ Theme I: Principles medicine and clinical decision support:

1. 7 February: Principles of medicine, computing science in healthcare
2. 14 February: Computing Science in healthcare
3. 21 February: anatomy, physiology, internal medicine, treatment
4. 28 February: probability theory and making a diagnosis
5. 7 March: decision support, decision making and treatment
6. 14 March: decision theory and medical applications

▶ Theme II: Human factors in decision making:

7. 21 March: Chapters 2, 3, 4: Intro psychological decision making and heuristics
8. 28 March: Chapters 6 and 7: Causes of associations, risks and uncertainty
eHealth 2 – Schedule

▶ Theme II Human factors in decision making (continued):
 1. 25 April: Chapters 8, 9 and 11: Preferences, trust and real life
 2. 9 May: Groups and intuition

▶ Theme III Medical image analysis:
 3. 16 May: Image construction modalities
 4. 23 May: Medical image processing
 5. 6 June: Computer-aided detection in screening
 6. 13 June: Digital pathology
 7. 20 June: Images and information flow in a hospital
Theme I: Clinical decision support

- Challenging problems
- Highly relevant decisions (every one becomes ill somewhere in life)
- Lots of improvements possible: mistakes, wrong judgements made by medical professionals
- Many research opportunities
Medicine ~ engineering?

Bridge building

Engineering principles

Consequence of failure

Medicine

Clinical principles

Consequence of failure
Context of most eHealth: clinical reasoning

- **signs**
 - diagnostic process
 - test
 - medical knowledge
 - patient data
 - therapy selection
 - therapy
 - disease prediction
 - prognosis
 - patient data
 - therapy
 - disease progress
 - prognosis
Patient and data

- **Clinical data**: symptoms and signs
- **Biosignals**: space-time records (stream) of biological events
 - mechanical
 - chemical
 - electromagnetic
 - acoustic
 - optic
- **Physiological origin**
- **Measured by biosensors**

Nowadays are the data collected at different sites: home, general practice, hospital, specialised units
Interpretation of patient data (including biosignals) in a clinical context:

- Collect uncertain
 - symptoms and signs
 - biosignals
 and interpret them taking into account their mutual dependence

- Clinical knowledge is the context of this interpretation (so needs to be represented)

- Only then, clinical decision support is possible

- Structured joint probability distributions (e.g. Bayesian networks) are perfect for that
Big data and healthcare

Patient and Sensors → Digital Doctor → Patient Data

-Dental and Mouth Sensors
-Blood Transfusion and Renal Dialysis Systems
-Orthopedic Devices
-Fluid-Handling and Drug Delivery Systems
-Hand Grippers
-Neurological and Nerve Transducers
-Tendon and Ligament Transducers
-Guidewire Torque Verification Devices
-Carpal Tunnel Transducers
-Joint Simulators
Problem: bias in big datasets because the data come from different area (e.g. different healthcare areas in the Netherlands)

Statistical solution: multilevel regression (to model variation of outcomes between various groups):

- multilevel linear regression:
 \[P(O_k \mid e, l) \sim \mathcal{N}(\mu, \Sigma) \text{ with} \]
 \[\mu = \mathbb{E}[O \mid e, l] = \beta_k e = (\delta_k + \gamma_k l)^T e \]

- multilevel logistic regression:
 \[P(O_k \mid e, l) \sim \mathcal{B}(n, p) \text{ with } \logit(\mathbb{E}[O_k \mid e, l]) = (\delta_k + \gamma_k l)^T e \]
Multimorbidity and big data

Multilevel regression often used for the analysis in multimorbidity (patients with multiple diseases)

single disease
- environment
- characteristics
- genetics
- disease
- pathophysiology
- signs
- symptoms
- laboratory results

multiple diseases
- environment
- characteristics
- genetics
- disease A
- pathophysiology X
- sign 1
 - symptom 1
- laboratory results 1
- pathophysiology Y
 - sign 2
 - symptom 2
- laboratory results 2
- pathophysiology Z
 - sign 3
 - symptom 3
- laboratory results 3
Multimorbidity and time

- Model-based analysis of healthcare data
- Temporal patterns
Decision support: its computerisation is not easy

► Early academic attempts, e.g.:
 ► Diagnosis of disorders in internal medicine (e.g., gastrointestinal, rheumatoid, endocrine disorders): INTERNIST-I (1975–1985)

► Commercial AI attempts:
 ► Quick Medical Reference (QMR) – based on INTERNIST-I (discontinued 2001)
 ► DXplain (1984–) –
 http://lcs.mgh.harvard.edu/projects/dxplain.html
 ► Recently (2013-) from Poland: DxMate (https://dxmate.com) and in Polish:
 http://doktor-medi.pl/
Why failure?

- Focus on diagnostic systems: after entering set of findings ⇒ differential diagnosis
- First generation programs: immature technology, PhD projects
- Don’t offer the support clinicians want to have
- Computational infrastructure too primitive until 2000
- Clinicians had little computer literacy until ±1995
- No integration with electronic patient record systems (still not generally available)
- Bad computer interface
Do clinicians need ‘support’?

- Obstetric clinics at Vienna General Hospital mid 1800s
- Doctors (1st clinic) versus midwives (2nd clinic):

- Ignaz Semmelweis (1818–1865): infection after child birth can be drastically cut by hand washing
Hand hygiene in the intensive care unit: prospective observations of clinical practice

Pol Arch Med Wewn, 2008; 118 (10): 543-547

Ismael A. Qushmaq, Diane Heels-Ansdell, Deborah J. Cook, Mark B. Loeb, Maureen O. Meade

Abstract. INTRODUCTION: Adherence to hand hygiene recommendations in the intensive care unit (ICU) is variable and moderate, at best. OBJECTIVES: To measure adherence to hand hygiene recommendations among ICU clinicians in a prospective observational study in 6 multidisciplinary ICUs among 4 hospitals. . . . RESULTS: The rate of adherence to current recommendations was 20%. . . .
2002 Centers for Disease Control and Prevention Guidelines for the prevention of intravascular catheter-related infections:

- Wash your hands before inserting a central venous catheter
- Clean the skin with chlorhexidine
- Use of full-barrier precautions during CVC insertion
- Avoid the femoral site
- Remove unnecessary central venous catheters

⇒ We can investigate compliance
Example: NICE DM2 guideline

DM2 GL: ORAL GLUCOSE CONTROL THERAPIES (2):
Thiazolidinediones (glitazones)

► **R40** If glucose concentrations are not adequately controlled (to HbA1c <7.5% or other higher level agreed with the individual), consider, after discussion with the person, adding a thiazolidinedione to:
 ► the combination of metformin and a sulfonylurea where insulin would otherwise be considered but is likely to be unacceptable or of reduced effectiveness because of:
 ► employment, social or recreational issues related to putative hypoglycaemia
 ► barriers arising from injection therapy or . . .
 ► a sulfonylurea if metformin is not tolerated
 ► metformin as an alternative to a sulfonylurea where . . .

► **R41** Warn a person prescribed a thiazolidinedione about the possibility of significant oedema and advise on the action to take if it develops.

► **R42** . . .
Which decision support is best?

Protocols and guidelines:
- Evidence based (reflect scientific evidence)
- Have been shown to have a positive effect on quality of care
- Non-interactive, often very lengthy textual documents (with fixed structure)
- Are hard to personalise

Decision-support systems:
- Interactive
- Offer one or more problem solving modes
- Relationship to scientific evidence?
- Integration with clinician’s work flow?
The probabilistic approach

- Management (diagnosis, treatment, prognosis) can be formalised: **meta-model**, e.g.,
 - What is a diagnosis?
 - What is a prognosis, etc.

- Medical knowledge is also modelled (**object model**)

- Deployment of:
 - standard probabilistic methods (e.g. Bayes’ rule)
 - probabilistic graphical models, in particular Bayesian networks
Example: VAP in the ICU

- Problem: diagnosis and antimicrobial treatment of patients with ventilator-associated pneumonia (VAP)
- About 15-20% of ICU patients develop VAP
- Mortality rate: up to 40%
- Up to 50% of used antibiotics in ICUs are prescribed for airway infections
Probabilistic model pneumonia

- hospitalisation
- colonisation
- aspiration
- mechanical ventilation
- immunological status
- symptoms signs, lab
- side effects
- antimicrobial therapy
- organism susceptibility
- coverage
- susceptibility
- coverage
- side effects
- antimicrobial therapy
- organism susceptibility
- coverage
- susceptibility
- coverage
Prediction

\[\text{Pr(pneumonia)} = 1.0 \quad \text{or} \quad \text{Pr(pneumonia)} = ? \]
Integration with ICU

- PHP Module
- Apache HTTP Server
- Web Browser
- CPR
- Reasoning System
- Bayesian Network

- SQL
- Data
- Variable–value pairs
- Variable–value–probability triples

DHTML
Decision-making for patient

Patient enters signs and symptoms, and makes measurements

► Smartphone’s software interprets these data

► mHealth (mobile health)
History of mobile health

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>1st electrocardiogram sent via telephone</td>
</tr>
<tr>
<td>1970s</td>
<td>"Telehealth"</td>
</tr>
<tr>
<td>1990s</td>
<td>"eHealth"</td>
</tr>
<tr>
<td>2004</td>
<td>"mHealth"</td>
</tr>
<tr>
<td>2011</td>
<td>124 mln. mHealth users</td>
</tr>
<tr>
<td>2012</td>
<td>≈ 247 mln. mHealth users</td>
</tr>
</tbody>
</table>

Definitions

Telehealth
Healthcare service delivery where physicians examine patients at a distance where information (e.g., voice, an image, a medical record, commands to a surgical robot) is exchanged using electronic means of communication.

eHealth
Health services and information delivered or enhanced through the Internet and related technologies.

mHealth
The practice of medicine and public health supported by mobile devices.
Telehealth around 1900

- Electrocardiogram was also be recorded a a distance (telehealth, not mobile health!)
- Terminology waves still the same
mHealth for hypertension in pregnancy

Around 15% of the first-time pregnant women develop high blood pressure (hypertension)

Around half of them develop associated problems, such as presence of protein in the urine leading to the pregnancy syndrome of preeclampsia:

- a major cause of maternal and neonatal mortality and morbidity
- 15 to 20% of maternal mortality in developed countries
- frequent out-patient clinic visits
- cure via delivery
Temporal Bayesian network

- **Risk factors**: Age, (family) history of hypertension, diabetes, etc.
- **Laboratory measurements**: from 10 checkups at 12, 16, 20, 24, 28, 32, 36, 38, 40 and 42 weeks of pregnancy
- **VascRisk**
- **Vascular and renal functions**
- **Risk of PE** at future time-points
Prognostic prediction

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Patient A: Not-preeclamptic</th>
<th>Patient B: Preeclamptic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>26-30</td>
<td>36-40</td>
</tr>
<tr>
<td>Smoking</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obese</td>
<td>obese</td>
<td>normal</td>
</tr>
<tr>
<td>Chronic HT</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Parity-HistoryPE</td>
<td>parous-yes</td>
<td>parous-yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Per control</th>
<th>12 wk</th>
<th>16wk</th>
<th>20wk</th>
<th>24wk</th>
<th>12 wk</th>
<th>16wk</th>
<th>20wk</th>
<th>24wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>127-129</td>
<td>118-120</td>
<td>121-123</td>
<td>121-123</td>
<td>124-126</td>
<td>118-120</td>
<td>118-120</td>
<td>136-138</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>76-79</td>
<td>68-71</td>
<td>72-75</td>
<td>76-79</td>
<td>64-67</td>
<td>72-75</td>
<td>64-67</td>
<td>80-83</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>n/a</td>
<td>6.7</td>
<td>n/a</td>
<td>6.2</td>
<td>7.5</td>
<td>n/a</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Creatinine</td>
<td>n/a</td>
<td>58-61</td>
<td>n/a</td>
<td>46-49</td>
<td>50-53</td>
<td>n/a</td>
<td>n/a</td>
<td>62-65</td>
</tr>
<tr>
<td>Protein/Creatinine</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>0.3-0.6</td>
</tr>
</tbody>
</table>

\[
P_{PRIOR}(PE) = 0.0014 \quad 0.0076 \quad 0.05 \quad 0.16 \\
P_{CURR}(PE) = 0.003 \quad 0.008 \quad 0.08 \quad 0.18 \\
Rel. change = 1.23 \quad 0.11 \quad 0.60 \quad 0.13 \\
|
| 1.36 | 4.71 | 2.80 | 4.93 |

Radboud University Nijmegen
What does it look like? – Advice to the patient

The patient gets immediate feedback ...

Current status

Prognostic chart

Measurement analysis
Medical imaging
Breast cancer detection

- national breast cancer screening programme
- decision-making under uncertainty
- interpretation of image features in terms of probabilistic graphical models
- from single- to multi-view interpretation
Singleview CAD system

- Region features: contrast, size, location, margin, spiculation, etc.
- Advantage: a good detection rate per image
- Shortcoming: unsatisfactory performance at a patient level because views are treated independently
Multiview interpretation

Mediolateral oblique view

Craniocaudal view

View–A

View–B

A

B

L

L

L

L

A

B

L

L
Multiview Bayesian network

\[A_i / B_j = (x_1, x_2, \ldots, x_n) \]

\[a) \text{ RegNet} \]

\[b) \text{ ViewNet} \]

- Interpretation of regions of interest (real-valued feature vector): logistic regression
- Combination of region and view information: causal independence
What do you need to work in healthcare?

- You need to be a computing or information scientist
- You need sufficient knowhow about what healthcare professionals do:
 - knowledge about making diagnoses, treating patients
 - knowledge of methods used in medicine and healthcare
 - a tiny bit of knowledge of human biology and diseases
Next week

- Computing Science in healthcare