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Objectives: Establishing causal dependencies is crucial in applied domains, such as medicine and healthcare,
where decision-making must be explainable. In these settings, small sample sizes and missing data call for
federated approaches to maximise the amount of information we can use.

Methods: We propose a novel federated causal discovery algorithm capable of pooling information from

multiple sources with heterogeneous missing data to learn a graph representing cause-effect relationships.
In particular, we learn a causal graph on a centralised server while taking into account both prior knowledge
and missingness mechanism specific to each client.

Results: We applied the proposed algorithm to synthetic data and real-world data from a multicentric study on
endometrial cancer, validating the obtained causal graph through quantitative analyses and a clinical literature

review.

Conclusion: Our approach learns an accurate model despite data missing not-at-random.

1. Introduction

Causal discovery aims to learn a casual graph representing the
underlying data generating mechanism [1,2], which is a crucial re-
quirement in causal inference [3,4]. Tackling this issue is increasingly
relevant in many fields, such as economics [5,6], psychology [7,8] and
medicine [9-11]. Federated learning consists in performing distributed
queries across multiple data sources and aggregating the partial results
to obtain the final overall model. It is an effective solution [12-14]
when we cannot pool data due to privacy policies, data regulations and
integration costs.

Federated causal discovery assumes that data are complete: no miss-
ing values exist in any data source. To our knowledge, the literature has
not investigated this task when data are incomplete. Causal discovery
in the presence of missing data has its own set of challenging issues:
not only it requires to model the data generating mechanism but also

the missingness mechanism [2,15] which describes how the data are
missing and why [16,17, see Section 3]. Simultaneously modelling the
missingness mechanisms in multiple sources makes federated learning
from incomplete data substantially different from causal discovery in a
single source. Accounting for the specific missingness patterns in each
data source allows for reducing bias when learning the data generating
mechanism.
In this paper, we:

» Propose a novel federated causal discovery algorithm capable of
dealing with missing data with different missingness mechanisms
in individual sources.

» Evaluate the interaction between aggregation techniques and
scoring criteria for federated causal discovery for small sample
sizes.

* Corresponding author at: Models and Algorithms for Data and Text Mining Laboratory (MADLab), Department of Informatics, Systems and Communication

(DISCo), University of Milano-Bicocca, Milan, Italy.
E-mail address: alessio.zanga@unimib.it (A. Zanga).

https://doi.org/10.1016/j.jbi.2025.104877

Received 14 October 2024; Received in revised form 30 June 2025; Accepted 7 July 2025

Available online 22 July 2025

1532-0464/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/yjbin
https://www.elsevier.com/locate/yjbin
https://orcid.org/0000-0003-4423-2121
https://orcid.org/0000-0001-8522-6882
https://orcid.org/0000-0001-5454-2428
https://orcid.org/0000-0002-6138-1236
https://orcid.org/0000-0001-6873-7832
https://orcid.org/0000-0002-2151-7266
https://orcid.org/0000-0001-7147-6821
mailto:alessio.zanga@unimib.it
https://doi.org/10.1016/j.jbi.2025.104877
https://doi.org/10.1016/j.jbi.2025.104877
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2025.104877&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Zanga et al.

Table 1
Statement of significance.
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Problem or Issue

Missing values introduce bias during the estimation process, especially in multiple

data source settings.

What is Already Known

Although prior works investigated either the estimation from multiple data sources
or the missing bias, none addressed these issues jointly.

What This Paper Adds

This study aims to relax the assumption that values are missing for the same causes
across different data sources, which is an unrealistic assumption due to how data are
collected in clinical practice. Additionally, this paper presents an application of the
proposed approach to a multicentric clinical study on endometrial cancer,
highlighting its effectiveness compared to existing solutions.

+ Simulate different scenarios to assess the impact of violations
of the global missingness mechanism assumption when multiple
sources are available, varying sample size, missingness type and
aggregation method.

» Analyse a real-world, multicentric study on endometrial cancer
(EC) involving multiple oncological clinics part of the European
Network for Individualised Treatment of Endometrial Cancer (EN-
ITEC) study and the PIpelle prospective ENDOmetrial carcinoma
(PIPENDO) study.

Federated learning helps us address limited sample sizes and data
missingness. Learning a causal graph capable of disentangling the
interplay between the administered treatments and other covariates
can support clinicians in choosing the optimal treatment for each
patient, maximising the chance of survival and reducing the risk of
relapse. Overall, federated causal discovery offers new insights into
how these factors interact with the observed variables (see Table 1).
Our experimental findings are discussed in light of previous work on
this study [18-20].

The remainder of this article is organised as follows: Section 2
reports the state-of-the-art for causal discovery w.r.t. federated learn-
ing and missing data; Section 3 introduces the existing methodology,
Section 4 explains the proposed approach; Section 5 reports the ex-
periments performed to evaluate the proposed approach; Section 6
discusses the experimental findings in detail; Section 7 summarises the
conclusions from previous sections. We include supplementary material
in Appendix A.

2. Related works

Causal discovery has attracted renewed interest from the scientific
community, industry, and government because of regulatory require-
ments on transparency and explainability. In the context of federated
learning, [12] proposed the Regret-based Federated Causal Discovery
(RFCD) algorithm to construct a causal graph from data sources by
collecting only regret values from each client. This capability is es-
sential in privacy-sensitive settings, where sharing client models could
reveal information about the client data. The same authors proposed
an improvement to RCFD, called PERI [13], that leverages distributed
min-max regret optimisation. This technique provides a consistent scor-
ing criterion that can perform causal discovery in a privacy-preserving
way when paired with a score-based algorithm. [14] proposed the
Federated Causal Structure Learning (FedCSL) algorithm that tackles
the problem using a client-to-server learning strategy to distribute
computations across clients. This approach is coupled with a novel
weighted aggregation strategy, allowing partial score pooling without
relying on an encryption layer. Authors in [21] introduced Feder-
ated GES (FedGES), a novel federated learning approach tailored to

structure learning with the Greedy Equivalence Search (GES) algo-
rithm. FedGES enhances privacy by exchanging only evolving network
structures rather than model parameters or raw data. It iteratively in-
tegrates partial models from clients through structural fusion, enabling
collaborative structure development while preserving data confiden-
tiality. In the context of distributed causal discovery, [22] proposed
Distributed Annealing on Regularised Likelihood Score (DARLS), a
federated method for learning causal graphs across multiple clients.
DARLS simulates an annealing process to explore the space of topo-
logical sorts, using distributed optimisation to determine the optimal
graphical structure. Multiple rounds of communication between local
clients and a central server refine the estimation, ensuring convergence
to the solution an oracle would obtain with full data access. [23] intro-
duced the FedCausal algorithm, a strategy designed to learn a unified
global causal graph from heterogeneous, decentralised data. FedCausal
employs a global optimisation formulation to aggregate client-specific
causal graphs while enforcing acyclicity constraints without exposing
local data, unifying local and global optimisation, and offering a flexi-
ble and scalable solution. Finally, [24] proposed FedCASL, a method
based on continuous bi-level optimisation where clients and servers
iteratively refine the causal structure while exchanging only model
parameters. By incorporating a carefully designed sparse penalty term,
FedCASL guides the optimisation towards a more interpretable and
accurate causal graph under acyclicity constraints.

As for handling missing data, the work of [16,17] on recovering the
joint missing data distribution allowed for the derivation of new causal
discovery techniques. For instance, the Missing Values PC (MVPC) [15]
algorithm deals with incomplete data following different missingness
mechanisms by estimating the associated conditional independence
statements to construct the causal graph. The Hill-Climbing with Adaptive
Inverse Probability Weighting (HC-aIPW) score-based procedure proposed
by [25] performs a greedy search using pairwise deletion and inverse
probability weighting to reduce the bias caused by missing values.
Authors in [26] introduced MissDAG, a general framework for causal
discovery from incomplete data. MissDAG operates under the assump-
tions of ignorable missingness and identifiable additive noise models
(ANMs), maximising the expected likelihood of observed data within an
expectation-maximisation (EM) framework. When closed-form poste-
rior distributions are unavailable, the likelihood is approximated using
Monte Carlo EM. Extending this line of research, [27] explored the ef-
fectiveness of additive noise models for causal discovery in the presence
of self-masking missingness. Their work investigates the identification
problem of learning causal graphs under different missingness mecha-
nisms, demonstrating that the traditional no self-masking missingness
assumption can be appropriately relaxed.

Still, no causal discovery algorithm can deal with missing data and
multiple distributed data sources. Applying existing solutions indepen-
dently to each data source would result in biased estimates due to
the unlikely assumption that the missingness pattern remains constant
across each source.
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3. Preliminaries
3.1. Representing missing data with graphs

Probabilistic graphical models [28] are probabilistic models that
represent the joint probability distribution of a vector of random vari-
ables using graphs. We denote a graph G as a pair of sets (V, E), with
V the set of vertices and E the set of edges. The parents IT ,g of a vertex
V; in a graph G are the vertices with an edge into V;.

Definition 1 (Probabilistic Graphical Model). A probabilistic graphical
model (PGM) is a pair (G, X), where ¢ is a graph and X is a random
vector s.t. each vertex V; € V is associated to a random variable X; € X.
The graph ¢ is a structure over the joint probability distribution P(X).

Since vertices in V correspond to random variables in X, we can
use V; and X, interchangeably. PGMs are particularly effective when
it comes to encoding dependence and independence statements of the
joint probability distribution P(X) directly into the graph G.

Definition 2 (Independence Map, Dependence Map & Perfect Map). Let G
be a graph and P(X) be a joint probability distribution. Then, ¢ is:

an independence map (I-Map) if: ViiugVilVi = X, 1, X;|X,,
a dependence map (D-Map) if: ViV |V, <= X, 1p X;|X,,
a perfect map (P-Map) if: Vil ViV <= X, Lp X;| Xy,

with 1i; and 1, denoting graphical and probabilistic independence
respectively.

While 1L, denotes the usual probabilistic independence, 1. refers
to graphical separation. This property allows querying G to verify the
validity of a given independence statement, which arises from graphical
separation as defined by d-separation (short for “directed separation”).

Definition 3 (d-separation). Let G be a directed acyclic graph (DAG) and
let {X,Y} and Z be two disjoint subsets of V. Then, an undirected path
from X to Y is said to be d-separated by Z, denoted as X 1 Y | Z, if
it contains:

caforkV; « V; > VyorachainV; -V, - ¥, so that V; is in Z, or
+ a collider V; » V; « V, so that V}, or any descendant of it, is not
in Z.
This definition of d-separation extends to sets of variables to express
complex independencies.

Definition 4 (General d-separation). Let G be a DAG and let X,Y,Z be
three disjoint subsets of V. Then, Z d-separates X and Y, denoted as
X li; Y | Z, if every undirected path from X to Y is d-separated by Z:

XU Y|Z < XU Y|Z VX, Y)eXXY

While ¢ is defined as an I-map of P, we often treat it as a P-map
when G is learnt from data. Therefore, we can simplify the notation of
lig and 1 p and use 1 directly. However, to encode causal dependencies
as a graph, we need to explicitly model the data generating mechanism.

Assumption 1 (Causal Edge Assumption). Let G be a DAG, X be a
random vector and F a set of functions. Then, the values assigned to
each variable X; € X is completely determined by the function f; € F
given its parents IT ,g

X, = £, (mf)

with := the assignment operator.

VX, eX

Assumption 1 establishes a functional dependency graph represent-
ing the data-generating distribution.
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Definition 5 (Causal Graph). A causal graph G [29] is a graph in which
Assumption 1 holds.

In turn, causal graphs imply a formal definition of cause and effect.

Definition 6 (Causes & Effects). Let G be a causal graph. Then, for each
directed edge V; — V; € E, V; is said to be a cause of V;, whereas V; is
an effect of V. If V; is a cause of V; and V is a cause of Vj, then V; is
a cause of V.

While causal graphs effectively describe why particular values are
present (the data generating mechanism), they are not semantically
adequate to express why values are missing; that is, the missingness
mechanism. According to Rubin’s classification [30], they can be:

» Missing Completely At Random (MCAR): the probability of a
variable being missing is independent of both observed and un-
observed variables,

» Missing At Random (MAR): the probability of a variable being
missing is independent of the unobserved variables given the
observed variables,

» Missing Not At Random (MNAR): neither MCAR nor MAR.

Missingness graphs [17] extend causal graphs to represent the missing-
ness mechanism.

Definition 7 (Missingness Graph). A missingness graph M = (V,E) is a
causal graph where the vertices in V are partitioned into five disjoint
subsets:

V=0OuUUuMUSUR
where:

+ O is the set of the fully observed variables, that is, variables with
no missing values,

+ U is the set of fully unobserved variables, also called the latent
variables,

» M is the set of the partially observed variables, that is, the variables
with at least one missing value,

» S is the set of the proxy variables, that is, the variables that are
observed,

* R is the set of the missingness indicators such that :

m; if r,=0,

? if =1

S; 1= f,(M,,R) = {

with m; the observed value of M; and “ ? ”” a placeholder for the
missing value.

Different missingness mechanisms correspond to different
d-separations and thus independence statements encoded by the miss-
ingness graph, shown in Fig. 1: MCAR implies OUU UM 1 R, MAR
implies UUM 1 R | O. In contrast, MNAR does not imply either
statement. Note that R; has no parents in Gycag, While has only fully
observed parents in Gyar. The key difference between MCAR/MAR and
MNAR is that V; itself is a parent of R; in Gyag-

3.2. Causal discovery with missing data

When G is unknown, we can learn it from data and prior knowledge
via causal discovery [1,2]. Formally, let G be the set of graphs defined
over the variables V of a dataset D and G* € G be the true but unknown
graph of the generating model of D.

Definition 8 (Causal Discovery Problem). The causal discovery prob-
lem [31] consists in recovering the true graph ¢* from the set of graphs
G given the dataset D.
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The cardinality of G grows exponentially with the number of ver-
tices [32]. The Hill-Climbing (HC) [33,34] algorithm is one of the
simplest and most computationally efficient algorithms to search it. HC
traverses G looking for the graph ¢* that maximises the goodness of a
DAG G in modelling the data generating mechanism of D, an objective
function called scoring criterion S:

g = arg max S | D). (@]

We can estimate S efficiently if the scoring criterion is decomposable
into a local score for each vertex:
[\

SGID) =Y SV, | ,,D).
i=0

In practice, several decomposable scoring criteria are penalised log-
likelihoods of the form:

SV | 1I;,D) = log P(V; | I;,0,)— f(V; | I, 0,),

Scoring Criterion Log-Likelihood Penalty

where 0; is the local conditional probability distribution parameters
induced by the variables (V;,II;) and f is a non-negative function
penalising model complexity. For this reason, we often use an f from

the model selection literature [35], see 2.

If D is complete, we can estimate P(V; | IT;) from all the samples
in D because they contain no missing values. If D is incomplete, we
can discard samples containing missing values via list-wise deletion,
removing samples that contain at least one missing value when estimat-
ing all local distributions, or pair-wise deletion, removing samples that
contain missing values in {¥;} U IT; when estimating the corresponding
local distribution. Deletion itself relies on the assumption that the local
pair-wise deleted data distribution is an unbiased estimate of the local
complete data distribution:

?
PV, | II;)) = P(V; | II, R, :O,RnR_ =0) 2)
—— !

Local Complete

Data Distribution Local Pair-Wise Deleted

Data Distribution

Algorithm 1 Learn the parents of the missingness indicators.

Input: A dataset D and a conditional independence test 1. p.
Output: A map ITy with R; as keys and I, as values.

1: procedure PARENTSMIsSINGINDICATORS( D, 1L p )

2 Iy <@ > Allocate the candidate parents.
3 for V; e M do > Iterate over the partially observed variables.
4: g < V\{V;} > Initialise the candidate parents.
5: k <0 > Initialise the cardinality of the conditioning set.
6 while |IT R >k do > While there are still variables. ..
7 n /Ri « Mg, > Copy the candidate’s parents.
8 forvV, el ,R,v do > For each candidate parent...
9: forSeC(H’Ri\{VJ-},k) do > For each set ...
10: if (R, Lp V; | S, R; = 0,Rg = 0) then
11: Oy < g \{V;} > ...remove the parent.
12: break > Exit the inner loop.
13: k< k+1 > Increment the cardinality.
14: Iy < Og U Iy, > Store the parents of R;.
15: return ITy > Return the parents of each missingness indicator.
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Algorithm 2 Learn the causal graph that maximises the scoring
criterion.

Input: A dataset D, a scoring criterion S and the parents ITg.
Output: A causal graph G.

1: procedure HC-AIPW( D, S, ITy )
2: § « 400 > Initialise the delta score.
3 G > Initialise empty graph.
4: G < {G} > Initialise the set of already visited graphs.
5: while § # 0 do > While the delta score is increasing...
6 5«0 > Set delta score to zero.
7 H<g > Set the current best graph.
8 for ¢’ € Ne(§)\ G do > For each candidate graph...
9: Z < Necessary variables W > See [25] for lines 8-10.
10: if Ty, "M = @ then
11: Z  Sufficient variables U
12: D' « Pair-wise deletion on D w.r.t. Z > Delete missing.
13: B < Eq. (3) on D’ and ITy > Estimate IPWs.
14: §' « S | D,p)—-S(C| D, p) > Compute the new delta.
15: if 5’ > 5 then > If the new delta is higher...
16: 5« & > ...update the current delta.
17: H < > ...and update the current graph.
18: if 6 > 0 then > If the best delta score is positive. ..
19: G—H > ...update the best graph.
20: G—GuU{H} > ...update the already visited graphs.
21: return G > Return graph with the highest score.

In general, Eq. (2) holds under MCAR but not under MAR/MNAR
[36]. However, [15,16,25] have used missingness graphs to show that,
when the parents of the missingness indicators ITy are known, P(V)
can be recovered from missing data as:
PR = 0) Vi Py [ Ry, =0)

Ly P(R,=0|Ry, =0) g PUTR [R=0.Ry =0

P(V)= P(V|R=0) -

1. List-Wise Deleted
Data Distribution

3. Inverse Probability Weights

3

2. Missingness Indicators Distribution

where IT are the parents of the missingness indicator R; and Ry, is
the set of missingness indicators of IT g . Eq. (3) decomposes the joint
probability distribution P(V) into three terms:

1. The list-wise deleted data distribution.

2. The missingness indicators distribution, which is the probability
P(R = 0) of the complete sample scaled by probability P(R; =
0| Ry 0 = 0) of each variable to be complete given its parents.

3. The inverse probability weights (IPWs) that account for IT, # @
in MAR/MNAR.

Since the objective is to maximise le(‘) log P(V; | II;) and the distribu-
tion of the missingness indicators is fixed, we can approximate Eq. (3)
following the graph G:

VI P(ITy | Ry, =0)
P(V)x P(V|R=0) - '
(V) e PV | ) HP(HR’|R,-:(),R,7R -0

i=0
M PUTg | Ry, =0)
=T1|pv,1m.R =0.R;; =0)- ’
g ( i | i N 1l g, ) P(HRI |R’ ZO*RIIR[ =0)
M
= [P(Vi | I, R, =0Rp, =0)- .
i=0

The local pair-wise deleted data distribution re-weighted with IPWs is
an unbiased approximation of the local complete data distribution:

PV | II) «P(V;|H,R;=0.Ry, =0)- f . (4)
N—— N——
Local Complete IPW

Local Pair-Wise Deleted

Data Distribution Data Distribution
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(a) Gmoar (b) Gmar (c) Gunar

Fig. 1. Missingness graphs for missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR), respectively.

(@) 6" Vol Vs (b) G VoL Va | Vi () G':Va L V| Vi (d) G2: Vol Vi | Vi

PN PN PN

’ N ’ N ’ \
Ve 'V2,‘ 'V2,‘

(€) G": Vo L Vs Vo L Vs | VE (g) G Ve L Vs |V (h) G2 : VoL V|V

Fig. 2. The parents of R, change and conditioning on R, impact the independence statements.
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Thanks to this unbiased estimate of S, causal discovery in the presence
of missing data simplifies to:

1. Learn the parents of the missingness indicators ITy from D: [15]
proposed to test each missingness indicator R; for indepen-
dence against other variables V; conditionally on a subset of V.
Algorithm 1 efficiently performs this procedure.

2. Search the graph ¢* that maximises S using Eq. (4) and IIg:
Algorithm 2 from [25] adapts HC to perform such procedure.

3.3. Source-dependant missingness mechanism

So far, we tackled the causal discovery problem where both D
and ITy were unique. In federated learning we usually have multiple
sources D = {DY, D!, ..., DJ,..., D" !} induced from the same under-
lying causal graph G*. Nonetheless, there could be multiple associated
missingness graphs.

Example 1 (One Causal Graph, Multiple Missingness Graphs). Consider
the graph reported in Fig. 2. For each row, the first graph on the left
is the true causal graph G*, while the other graphs {G°,G',G?} are
different missingness graphs associated to the same G*. In particular,
GV represents the typical MCAR mechanism where the missingness in-
dicator R, has no parents, while ¢ I'and ¢2 describe a MAR mechanism
where R, does have parents. Each graph G/ describes a data generating
mechanism that, in turn, induces a dataset D/ and a sample probability
distribution P/. Following Eq. (2), we observe:

P*(Vy | ) = P°(Vy | 1. Ry =0.Rpp, =0)

and it holds true also for P! since R My, =9 in ¢° and G!, but not for
P? due to Ry, ={R,}in G2

P*(Vy | ) # P?(Vy | 14, Ry =0.Rpp, =0)

Hence, in order to obtain an unbiased estimate of P* from a given P/
using IPW as in Eq. (4), we need to model individual R;IR for each
data source D/, leading to multiple missingness graphs ¢/.

Therefore, even if a single causal graph exists, the data collection in
each data source may be affected by different missingness biases, which
we must model in the missingness graphs along with the respective
causes.

4. Federated causal discovery via mixture distributions

We will formally state the federated causal discovery problem and
propose a novel algorithm.

Definition 9 (Federated Causal Discovery Problem). The federated causal
discovery problem [14] consists in recovering the true graph ¢* from
the set of graphs G given the set of datasets D.

Recovering the global probability distribution P(V) is a non-trivial
task when multiple sources D/ with source-dependant missingness
mechanism IT 14 are present. A possible solution is to model the global
distribution using a mixture of local distributions:

D={D°.D',...., D"}, m:wfzo,zﬁ{)wle, P(V)=Zﬂ)aﬂP’(V)

Multiple Sources Mixture Weights Mixture Distribution

This approach allows us to model the contribution of each source to
the final global distribution flexibly by specifying the mixture weights
, see 3. To solve the problem stated in Definition 9, we must provide
the associated optimisation problem we want to solve. We recast Eq. (1)
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to allow for multiple sources setting via Eq. (5):

Server-side Optimisation

Ve

ID| V]
o = J o j
G = argrgneaéP(Q | D) = argrgneaé;) ; []og(oi +log P/(V; | IT))|. 5)

Federated Causal Discovery Client-side Estimation

Refer to Appendix A for a detailed derivation. Eq. (5) has two parts:

+ Server-side optimisation - Finding the graph ¢* that maximises
the objective function across all data sources in D by aggregating
the partial results computed by each client in a centralised server.

+ Client-side estimation - Estimating the mixture component of a
specific client independently, without transferring any data to the
server.

Finally, when missing data are present, we can plug Eq. (4) into
Eq. (5) to obtain an unbiased estimate of the objective function:

ID| |V]
argrgneaéz Z [logw{ +log P/(V; | 17,.)] =
Jj=0 i=0
ID| V] ) ) ) :
j j i_oR = j
arggléléz) ZO [logwi +log P/(V; | I R = O.R}, = 0)+1og ;] .(6)
=0 i=

To solve this optimisation problem, we propose the novel Fep-HC-AIPW
algorithm, reported in Algorithm 3, that extends Algorithm 2 to a
client-server configuration. Algorithm 3 is divided into four stages:

1. Server-side initialisation - Allocates the resources on the server,
namely, the graph ¢, the delta score 6 and a cache C, which min-
imises the number of evaluations on each data source, reducing
the latency and the overall computational burden.

2. Client-side initialisation - Learn the parents of the missingness
indicators IT 14 for each data source D/ to model the local miss-
ingness mechanisms.

3. Initial evaluation - Evaluate the initial graph by aggregating the
local 6{ .

4. Solve optimisation - Find the graph that maximises the score by
evaluating the neighbours of G, that is, all the graphs ¢’ obtained
by adding, removing or reversing an edge w.r.t. G and K.

Key computational information regarding Algorithm 3:

Lines in red, namely 6, 9-12 and 21-24, are executed on the
clients and sent to the server to perform the aggregation.

The cache C avoids redundant local computation and, in turn, the
communication effort between the server and the clients.

The neighbours Ne(G, K) are the candidate graphs that can be
reached by adding, deleting or reversing an edge in the current
best graph G. The prior knowledge K applies additional con-
straints to the exploration space. Such constraints are usually in
the form of forbidden and required edges elicited from domain
knowledge experts.

The set V’ identifies the local scores that must be computed. If
an edge V; < V; is added or deleted from G, then it will change
just one parent set at the time, triggering the computation of the
modified IT ig’_ On the contrary, if the same edge is reversed, we
must recompute the local score for the parent sets IT ig’ and IT /9’.

Eq. (6) can be extended to the broader family of penalised log-
likelihood functions by adding a penalty term based on the pair-
wise deleted dataset D{ . Hence, lines 11 and 23 refer to the
scoring criterion S. See 2.

We provide asymptotic time and space complexity in Appendix B.
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Scoring criteria often used in the model selection context.

Scoring criterion

Penalty function

Akaike Information Criterion (AIC) [37]

Bayesian Information Criterion (BIC) [38]

AIC with small sample size correction (AICc) [39]

BIC with small sample size correction (BICc) [40]

Hannan-Quinn Information Criterion (HQC) [41]

A
3 -log|D| - 16,1

Dl .
max{ CECER 1} 1611

Algorithm 3 Learn for the causal graph that maximises the score.

Input: Data D, knowledge K, scoring S and independence test 1 p.
Output: A causal graph G.
1: procedure Fep-HC-AIPW(D, K, S, 1L p)
# Stage 1 - Server-side initialisation.

2: 6 « 400 > Initialise the delta score.

3: G > Initialise the empty graph.
4: C—@ > Initialise the empty cache.
# Stage 2 - Client-side initialisation.
5: for D/ € D do > For each data source, learn the local...
6: n l’{ « Algorithm 1 (D/,1L,) > ... missingness mechanism.
# Stage 3 - Initial evaluation.
7: for V; € Vdo > For each vertex...
8: for D/ € D do > For each data source...
9: D,/ « Pair-wise deletion on D’ w.r.t. V; > [25]
10: p! < Eq. (3) on D’ and IT}, > Estimate IPWs.
11: 5,.’ < S| @.D{,ﬁif) > Compute the new score.
12: ClV; | @] < ZLZ(') 6{ > Aggregate scores in cache.

# Stage 4 - Solve optimisation.

13: while 6 > 0 do > While the score increases...

14: §<0 > Set the delta score to zero.
15: H<G > Set the current best graph.
16: for ¢’ € Ne(G, K) do > For each candidate graph...
17: V' —{V; ] III.QI # II[.Q VvV, eV} > Restrict parents.
18: for V; € V' do > For each vertex...
19: if (V; | Hig') & C then > If the score is cached...
20: for D/ € D do > For each data source...
21: D{ « Pair-wise deletion on D/ w.r.t. V; > [25]
22: p! < Eq. (3) on D’ and IT} > IPWs.
23: 6,.’ « S | ﬂf;’, D{,ﬂlj) > Compute the score.
24: Ccv; | Hig,] « Zg) 5,/ > Cache the score.
25: &« Z,‘,Z(')‘ crv; | H,.g/] -C[v; | H,.g]) > Compute the delta.
26: if 5’ > 5 then > If the new delta score is higher...
27: 5« & > ...update the current delta score.
28: H < > ...update the current graph.
29: G H > Update the best graph.
30: return G > Return graph with the highest score.

5. Experimental setup

We evaluated the proposed Algorithm 3 against a simulation study
and a multicentric study on endometrial cancer, performing a grid
search across:

+ Scoring methods: we explored a list of candidate scoring criteria,
namely [AIC, AICC, BIC, BICC, HQC] in Table 2, to evalu-
ate the impact of different penalisation functions. For instance,
some apply small sample size corrections to deal with distor-
tions introduced by insufficient observations during parameter
estimation.

1 _ol o D] -
1 -max{ ‘D‘_IQI‘_Z,I}-105|D| 16,1
loglog D] - |6;]

Table 3

Weights aggregation methods and their formula.
Mixture Weights Mixture Formula
Uniform weights (GS) EEI] P/(V)
Global weights (GW) Z(Z:’l') FUDID - P/(V)
Local weights (LW) S S FADID - PV, | T

Local weights on sufficient statistics (LS) Z{z:):] ZJZ(‘) P/ (fUD/) -0y 1)

Mixture methods: we evaluated multiple aggregation methods,
listed as [GS, GW, LW, LS] in Table 3, to fine-tune the granular-
ity of the weighting scheme. We could then re-weight each local
score according to the sample size of the local pair-wise deleted
dataset, controlling the contribution of each partial result to the
aggregated score.

Balancing methods: we removed the missing values with [IPW,
ATPW]. Refer to [25] for more details about the deletion process.

5.1. Simulation study

We conducted a simulation study generating synthetic data from the
models listed in Table 4. Each data set has sample size |D| = |O|p,
where |©] is the number of parameters of the model and p a sample
ratio coefficient in [0.1,0.2,0.5,1.0,2.0,5.0]. For each sample ratio, we
generated a training set and a test set for in-sample and out-of-sample
evaluation.

Moreover, we simulated the effect of MCAR, MAR and MNAR by
generating missingness masks using the experimental setup from [25].
We repeated the data generation process five times, changing the
sample size |D| with a correction factor ¢ € [0.5,1.5] to obtain a
1-to —5 server-clients configuration. Overall, this approach simulates
the common scenario where data are spread across multiple sources
with both different sample sizes and missingness mechanisms. As a
baseline, we also pooled clients’ data into a single dataset, violating
the assumption of a global missingness mechanism (which we relax in
our federated proposal). Following the grid search described above, we
applied Algorithm 3 and computed the F1 metric between the learned
and true graphs of the selected models. Results are shown in Fig. 3. The
source code can be found here.

5.2. Multicentric study on endometrial cancer

We analysed a case study on endometrial cancer (EC) involving
the 19 gynaecological oncological clinics that are part of the European
Network for Individualised Treatment of Endometrial Cancer (ENITEC)
and the Plpelle prospective ENDOmetrial carcinoma (PIPENDO) study.
EC is a cancer of the endometrium of the uterus. Approximately 90.000
patients die each year due to EC [42], calling for more research on
personalised EC treatments. In this context, pelvic and para-aortic
lymph node metastases (LNM) are among the most important prognos-
tic factors for choosing adjuvant treatment and improving survival in
node-positive EC. Approximately 10% of endometrial cancer patients
present lymph node metastases at diagnosis according to clinical liter-
ature [42]. Clinical experts selected the variables that they considered
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Summary statistics of the reference models sorted by |©|. The average Markov blanket (Avg. MB) and degree

(Avg. Deg.) are computed as in [28].

Model Parameters Vertices Edges Avg. M.B. Avg. Deg.

ALARM 509 37 46 3.51 2.49

WIN9SPTS 574 76 112 5.92 2.95

INSURANCE 1008 27 52 5.19 3.85

HAILFINDER 2656 56 66 3.54 2.36
Table 5

Variables in the data sources. Variables above the horizontal line are measured preoperatively, and those

below the gap postoperatively.

Variable Abbreviation Tier
Gynaecological clinic Hospital 1
Preoperative cervical cytology Cytology 1
Preoperative tumour grade PreoperativeGrade 0
Cancer Antigen 125 serum levels CA125 1
CT or MRI diagnostic imaging CTMRI 1
Estrogen receptor levels ER 1
Progesterone receptor levels PR 1
L1 cell adhesion molecule L1CAM 1
p53 tumour suppressor gene p53 1
Platelets in blood Platelets 1
Postoperative tumour grade PostoperativeGrade 2
Lymphovascular space invasion LVSI 2
(Abdominal) lymph node metastases LNM -
Tumour invasion of myometrium MyometrialInvasion 2
Treatment by chemotherapeutic drugs Chemotherapy 2
Treatment by radiation Radiotherapy 2
Recurrence of the tumour Recurrence 3
Survival of at least i years Survivaliyr, i € {1,3,5} 4

most important for predicting survival and the presence of LNMs [18-
20,43].

Table 5 reports variables collected at the different gynaecological
clinics where the patients were treated: the cytology of the cervix uteri,
the preoperative tumour grade, the postoperative tumour grade (after
pathological examination of the tumour tissue obtained after surgical
removal of the uterus), treatment by chemotherapy or radiotherapy,
lymphovascular space invasion (that is, whether there is tumour growth
into the lymph or blood vessels), the levels of estrogen and proges-
terone in the blood, the presence of lymph node metastasis according to
CT or MRI imaging, the CA125 tumour marker, L1CAM (an intracellular
protein that promotes tumour cell motility), the p53 tumour suppressor
gene, the number of platelets, presence of lymph node metastases,
recurrence of the tumour, and lastly the survival before and after 1,
3, and 5 years. The tumour markers, such as p53, CA125, L1CAM,
estrogen and progesterone levels, are thought to offer causal prognostic
information about tumour cell behaviour and thus tumour in-growth,
metastases, recurrence, and survival.

To incorporate our prior knowledge of the temporal order of the
variable measurements, we assigned each variable a tier that deter-
mines if the value assignment of a given variable happens before or
after another one.

Following [11], for each combination of scoring method, mixture
method and balancing method, we perform four different analyses:

1. Single-source analysis. To evaluate the impact of the heterogene-
ity and sample sizes of the data sources, we applied Algorithm 3
to each source separately instead of using it as a federated algo-
rithm. Fig. 4 represent two selected instances of this exploratory
analysis.

2. Inference-based analysis. For each learned causal graph, we com-
puted the Node-Average Likelihood (NAL) [44] as an estimate
of the average likelihood for each node based on the incomplete
data. Fig. 5 reports the in-sample and out-of-sample NAL for each
simulation scenario.

3. Sensitivity analysis. We estimated the average confidence by ap-
plying conditional independence testing to test whether we can
remove each edge in each graph. Lower p-values translate to
higher confidence that the arc should be retained, so we show
the complement to 1 of the average across all p-values in each
graph in Fig. 5.

4. Predictive-based analysis. LNM is clinically relevant when evaluat-
ing different treatment strategies. Therefore, predicting its status
in early-stage patients is essential for personalised treatment.
Fig. 6 report associated the area under the curve (AUC) [45].

Except for the single-source analysis, we performed a 10-fold cross-
validation stratified on the Hospital data source identifier to obtain
in-sample and out-of-sample estimates of our metrics while guaran-
teeing a representative patient case mix across each fold. The final
results are min—-max scaled Figs. 5 and 6 to facilitate comparisons across
different analyses.

5.3. Unavailability of reference baselines

As for the baselines, none of the federated causal discovery al-
gorithms cited in Section 2 can handle missing data. For the non-
federated ones, we resorted to evaluating the existing options by pool-
ing data together. The work from [27] does not provide code to run the
proposed algorithm. The MissDAG [26] algorithm assumes ignorable
missingness, which is incompatible with the fundamental assumption of
non-ignorable missingness. The MVPC [15] algorithm implementation
supports binary variables only, which are not representative of the
current experimental setting. Ultimately, the only available baseline
is the HC-aIPW [25] algorithm, which we extended to allow for prior
knowledge and reported in the following section. This lack of direct
comparability with existing methods limits the validity of the proposed
approach.
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Fig. 3. Results of the simulation study. Rows and columns correspond to the reference models in Table 4 and the type of missingness mechanism, respectively. The legend reports
the different mixture weights, such as uniform weights (GS), global weights (GW), local weights (LW) and local weights on sufficient statistics (LS), as defined in Table 3. Higher

values correspond to better models.

6. Results and discussion

6.1. Simulation study

The results of the simulation study are summarised in Fig. 3. We
reported the F1 score obtained by comparing the edges of the learned
causal graph to the edges of the reference causal graph under different
missingness mechanisms. As we can see, the proposed method can
recover the underlying causal graph better than the baseline. The
difference is statistically significant in most simulated scenarios but
more marked in the MAR and MNAR settings. In MCAR, the parent
sets of the missingness indicators are always empty, making them in-
distinguishable across the clients. Hence, the IPW weights are constant,
but the mixture weights might differ due to a frequency of client-
specific missingness for some variables. However, the parent sets of the
missingness indicators can contain different variables for each client
in MAR and MNAR: IPW weights then vary across clients, leading to
significant differences compared to the baseline. This discrepancy is
more pronounced for complex reference models, where more variables
are subject to different missingness mechanisms. Interestingly, the ag-
gregation method does not seem to affect the results, which could imply

that learning local parent sets for the missingness indicators contributes
the most to the unbiased estimation of the objective function.

6.2. Multicentric study on endometrial cancer

The exploratory single-source evaluation highlighted several lim-
itations of the non-federated approach. For instance, the data from
the 5th Hospital result in a graph in which all variables except LVST
are connected. However, the data from the 9th Hospital result in a
graph with multiple, disconnected components (Fig. 4). In particular,
the survival nodes are disconnected from the rest of the graph, which
is inconsistent with the causal interpretation supported by the prior
knowledge elicited from clinicians. These differences between data
sources can be explained by the upper bound on the size of parent
sets for penalised log-likelihood scores and small samples [46]. Missing
values and pair-wise deletion further exacerbate this issue.

As for the federated evaluation, Fig. 5 shows that aggregation and
scoring impact the average NAL in the inference-based analysis. In
particular, LS outperforms other aggregation methods along with HQC,
which also has stronger theoretical guarantees for model selection [35].
We do not observe any significant difference between different balanc-
ing methods. The combination of these two effects is evident in Fig. 6,
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Fig. 4. Single-source causal graph learnt from the 5th and 9th Hospital only.

where the models that achieve both high in-sample and out-of-sample
AUC are obtained by combining LS and HQC.

Finally, the estimated average confidence in Fig. 5 is an approximate
indicator of the quality of the learned graphs. The difference between
the in-sample (60% to 80%) and out-of-sample (20% to 40%) confi-
dence is expected and arises from the size disparity between training
and test folds in 10-fold cross-validation. Roughly, we can interpret it
as an indicative estimate of how many edges are well-supported by
the out-of-sample folds, that is, of how many of those edges we would
expect to learn correctly. Interestingly, LS and HQC result in models
with higher scores but lower average confidence, as observed in other
real-world case studies [11].

6.3. Validation of the causal relationships

In our application of causal discovery, the obtained graph sum-
marises the causal relationship learned by combining data and prior
knowledge. Each edge points from a cause to its effect, defining the
data-generating mechanism. In this case, validating the causal relation-
ships means verifying that the learned graph matches the underlying
data-generating mechanism.

In the case of synthetic experiments, we generated the data by
sampling directly from the reference models reported in Table 4 and
removing the data as in [25]. Thus, the true graph is given by the graph
of each reference model.

10

In real-world applications, the true graph is usually not available.
Here, causal discovery is primarily used to build a representation of the
multivariate interactions between the observed variables and uncover
previously unknown causal relationships.

Without ground truth, causal graphs learned from observational
data can be validated via prior knowledge. For instance, involving
experts, such as clinicians, during the validation of the model is a
crucial part of the knowledge elicitation. In fact, the actual validation
of a causal model strictly depends on the specific problem and the set
of assumptions underlying the learning step.

Still, when prior knowledge is not available, some high-level quan-
titative validation pipelines can be found in the literature [11]:

» Model averaging - This step involves learning multiple models by
applying bootstrap resampling and averaging them to estimate
the confidence in the obtained edges as a form of non-parametric
sensitivity analysis.

Inference and prediction - The learned model can be validated
by evaluating observational, interventional and counterfactual
queries.

Case study knowledge - Literature reviews provided by experts
can be used to validate the causal claims entailed by the graph.
This process is usually carried out in a multidisciplinary setting,
where experts provide a set of statements that the model must
satisfy.
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Fig. 5. In-sample and out-of-sample NAL and confidence by aggregation, balancing and scoring method. Higher values correspond to better models.
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In our case study on endometrial cancer, we provided inference and
predictive-based validation, as in Figs. 4 to 6. Extensive validation of
the causal claims using experts’ knowledge will be done in future work.

6.4. Limitations of the proposed approach

Although the proposed approach overcomes the assumption that
every data source has the same missingness mechanism, in real-world
use cases it may be that others factors limits its applicability.

An implicit assumption is that every client must collect the same set
of variables to be able to estimate the local scores. This is a common
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assumption in the federated algorithms cited in Section 2. Some
non-federated causal discovery studies investigated the case where
each source might have a different set of variables, a setting called
“non-identical variables sets” or “partial overlapping variables” [47—
49].

Another limitation, closely related to the previous, is given by the
assumption of causal sufficiency [31] that unobserved variables do not
impact the data-generating mechanism under study. Such an assump-
tion may be appropriate in controlled environments, where external
factors can be treated as noise factors, but is trivially false in real-world
case studies, where partial observability is the norm.
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7. Conclusions

In this paper, we proposed the first federated causal discovery
algorithm for learning a global causal graph that accounts for the
local missing data distributions. We extended existing causal discovery
algorithms for missing data to the federated learning setting, relaxing
the underlying assumption of a global missing mechanism. Unlike state-
of-the-art approaches, we can thus model multiple sources and their
local missingness mechanisms independently.

We performed a simulation study by generating synthetic data
from well-studied reference models to investigate the properties of
the proposed method. We assessed the impact of violating the global
missing mechanism assumption by comparing our aggregation methods
against the naive approach of pooling data together. Results show a
significant improvement in our ability to recover the underlying causal
graph when this assumption is relaxed, especially for the more complex
reference models.

We explored a case study on endometrial cancer involving multiple
gynaecological oncological clinics part of the European Network for
Individualised Treatment of Endometrial Cancer (ENITEC) study and
the PIpelle prospective ENDOmetrial carcinoma (PIPENDO) study. We
evaluated the proposed approach with clinicians against single-source
analysis, inference and predictive-based analyses and an overall sensi-
tivity analysis. Future work involves extensive validation of the causal
claims using experts’ knowledge.

Still, the current approach has limitations that hinder the applicabil-
ity of federated causal discovery to real-world scenarios. For instance,
it would be interesting to explore settings where data sources do not
share the same set of observed variables or show significant distribution
shifts due to selection bias.
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Appendix A. Derivations for Eq. (5)
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Appendix B. Asymptotic time and space complexity

We provide asymptotic time and space complexity with big ©
notation for the worst-case scenario assuming:

+ G is a n x n adjacency matrix,

» D contains p clients, in which the client with the maximum num-
ber of observations contains m samples for n random variables.

» K is a n x n matrix representing the forbidden and required edges
provided by prior knowledge.

* S and L, are the scoring criterion and the conditional indepen-
dence test for categorical random variables, respectively.

The asymptotic time complexity is O(p-m-n-2" - (n+a,)), given by:

+ Stage 1 - The server-side initialisation sets the initial values of the
global solution, taking O(1) time.

Stage 2 - The client-side initialisation requires to compute the
parents of the missingness indicators IT é for each client and each
variable with missing values. Since we assumed we are testing
for conditional independence with categorical random variables,
the sufficient statistics for V; 1Lp V; | S include the computation of
the conditional counts N; ik The counts depend on (i) the number
of categories of each random variable and (ii) the cardinality of
the conditioning set, scaling exponentially as @(2") in the worst
case where S is V\ {V},V,}. The tests are then repeated for each
client in D and for each (R;,V;) pair, with time complexity of
O(p-m-n?-2m.

Stage 3 - Initially, the algorithm evaluates the score once for each
variable and each client. Each score evaluation needs to (i) apply
pair-wise deletion to _obtain D{, (ii) estimate the IPWs ﬂij and (iii)
compute the score &/. The pair-wise deletion takes O(m) time to
delete the samples containing missing values. The estimation of
the inverse probability weights requires to compute the third term
of Eq. (3), where both the numerator and denominator depend on
I ,, which in turn relies on the joint counts Np - Since in the
worst case IT g is V\ {V;}, this step takes O(m-2") time. Initialising
the penalised log-likelihood score relies on the computation of
the marginal counts N; that takes O(m). Finally, summing up the
contribution of each step and taking into account that we need to
repeat it for each variable across and for each client, we obtain a
worst-case time complexity of O(p - m - n-2").

Stage 4 - The solution of the optimisation problem repeats Stage 3,
increasing the cardinality of the conditioning set incrementally. In
the worst-case scenario, where the solution is given by a complete
DAG, we need to evaluate all the DAGs with n vertices. This
number is given by the following recurrence relation [50]:

n
a, = Z(—l)k*1 <Z>2k(”’k)an_k
k=1

The presence of a cache allows us to compute the score of each
(V;, II;) pair exactly once. If we implement the cache C using a
hash map, we can retrieve the scores we already computed in
O(n) time, provided that the time to access the value is amortised
constant and that to compute the key is linear in the number of
vertices. The time complexity for this final step is O(p-m-n-2"-a,).

The asymptotic space complexity is O(n? + p - 2"), given by:
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Stage 1 - The server-side initialisation allocates memory for the
delta score, the graph and the cache. The graph requires O(n?)
allocations for the adjacency matrix. The cache is initially empty
and will grow linearly with the number of score evaluations.
Stage 2 - The client-side initialisation allocates memory for the
parents of the missingness indicators IT 1{ and the independence
test I p. Each client keeps track of the sets of parents of each
missingness indicator, requiring O(n?) allocations. As for the time
complexity, we need to compute the conditional counts N; ;y,
with O(p - 2") allocations each time we perform a test.

Stage 3 - The initial evaluation allocates memory for the scoring
criterion. Similarly to the time complexity, we need to compute
the joint counts N g, obtaining a worst-case space complexity of
O@p - 2M.

Stage 4 - Finally, the solution of the optimisation problem repeats
Stage 3, allocating O(p-2") for each evaluation. In the worst-case
scenario, the cache C grows to O(2") for each client.

While both asymptotic time and space complexity are more than
exponential, there are some practical considerations that we must take
into account:

» The worst-case complexity is in line with other solutions present
in the literature [34].

The number of parameters strictly depends on the type of proba-
bility distribution. For instance, the parameters and the sufficient
statistics of the conditional Gaussian distribution are polynomial
in size.

These bounds take into account the overall complexity, both
on the server and the clients. The term p can be dropped if
the algorithm is executed asynchronously, as in most federated
scenarios.

The terms 2" and a, can be bounded by fixing the maximum
number of parents for each variable to k, where k can be derived
from the penalisation term of the scoring criterion. Refer to
Theorem 3 in [46].
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