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 A B S T R A C T

Objectives: Establishing causal dependencies is crucial in applied domains, such as medicine and healthcare, 
where decision-making must be explainable. In these settings, small sample sizes and missing data call for 
federated approaches to maximise the amount of information we can use.
Methods: We propose a novel federated causal discovery algorithm capable of pooling information from 
multiple sources with heterogeneous missing data to learn a graph representing cause–effect relationships. 
In particular, we learn a causal graph on a centralised server while taking into account both prior knowledge 
and missingness mechanism specific to each client.
Results: We applied the proposed algorithm to synthetic data and real-world data from a multicentric study on 
endometrial cancer, validating the obtained causal graph through quantitative analyses and a clinical literature 
review.
Conclusion: Our approach learns an accurate model despite data missing not-at-random.
1. Introduction

Causal discovery aims to learn a casual graph representing the 
underlying data generating mechanism [1,2], which is a crucial re-
quirement in causal inference [3,4]. Tackling this issue is increasingly 
relevant in many fields, such as economics [5,6], psychology [7,8] and 
medicine [9–11]. Federated learning consists in performing distributed 
queries across multiple data sources and aggregating the partial results 
to obtain the final overall model. It is an effective solution [12–14] 
when we cannot pool data due to privacy policies, data regulations and 
integration costs.

Federated causal discovery assumes that data are complete: no miss-
ing values exist in any data source. To our knowledge, the literature has 
not investigated this task when data are incomplete. Causal discovery 
in the presence of missing data has its own set of challenging issues: 
not only it requires to model the data generating mechanism but also 
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the missingness mechanism [2,15] which describes how the data are 
missing and why [16,17, see Section 3]. Simultaneously modelling the 
missingness mechanisms in multiple sources makes federated learning 
from incomplete data substantially different from causal discovery in a 
single source. Accounting for the specific missingness patterns in each 
data source allows for reducing bias when learning the data generating 
mechanism.

In this paper, we:

• Propose a novel federated causal discovery algorithm capable of 
dealing with missing data with different missingness mechanisms 
in individual sources.

• Evaluate the interaction between aggregation techniques and 
scoring criteria for federated causal discovery for small sample 
sizes.
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Table 1
Statement of significance.
 Problem or Issue  
 Missing values introduce bias during the estimation process, especially in multiple 
data source settings.

 

 What is Already Known  
 Although prior works investigated either the estimation from multiple data sources 
or the missing bias, none addressed these issues jointly.

 

 What This Paper Adds  
 This study aims to relax the assumption that values are missing for the same causes 
across different data sources, which is an unrealistic assumption due to how data are 
collected in clinical practice. Additionally, this paper presents an application of the 
proposed approach to a multicentric clinical study on endometrial cancer, 
highlighting its effectiveness compared to existing solutions.

 

• Simulate different scenarios to assess the impact of violations 
of the global missingness mechanism assumption when multiple 
sources are available, varying sample size, missingness type and 
aggregation method.

• Analyse a real-world, multicentric study on endometrial cancer 
(EC) involving multiple oncological clinics part of the European 
Network for Individualised Treatment of Endometrial Cancer (EN-
ITEC) study and the PIpelle prospective ENDOmetrial carcinoma 
(PIPENDO) study.

Federated learning helps us address limited sample sizes and data 
missingness. Learning a causal graph capable of disentangling the 
interplay between the administered treatments and other covariates 
can support clinicians in choosing the optimal treatment for each 
patient, maximising the chance of survival and reducing the risk of 
relapse. Overall, federated causal discovery offers new insights into 
how these factors interact with the observed variables (see Table  1). 
Our experimental findings are discussed in light of previous work on 
this study [18–20].

The remainder of this article is organised as follows: Section 2 
reports the state-of-the-art for causal discovery w.r.t. federated learn-
ing and missing data; Section 3 introduces the existing methodology, 
Section 4 explains the proposed approach; Section 5 reports the ex-
periments performed to evaluate the proposed approach; Section 6 
discusses the experimental findings in detail; Section 7 summarises the 
conclusions from previous sections. We include supplementary material 
in Appendix  A.

2. Related works

Causal discovery has attracted renewed interest from the scientific 
community, industry, and government because of regulatory require-
ments on transparency and explainability. In the context of federated 
learning, [12] proposed the Regret-based Federated Causal Discovery 
(RFCD) algorithm to construct a causal graph from data sources by 
collecting only regret values from each client. This capability is es-
sential in privacy-sensitive settings, where sharing client models could 
reveal information about the client data. The same authors proposed 
an improvement to RCFD, called PERI [13], that leverages distributed 
min–max regret optimisation. This technique provides a consistent scor-
ing criterion that can perform causal discovery in a privacy-preserving 
way when paired with a score-based algorithm. [14] proposed the
Federated Causal Structure Learning (FedCSL) algorithm that tackles 
the problem using a client-to-server learning strategy to distribute 
computations across clients. This approach is coupled with a novel 
weighted aggregation strategy, allowing partial score pooling without 
relying on an encryption layer. Authors in [21] introduced Feder-
ated GES (FedGES), a novel federated learning approach tailored to 
2 
structure learning with the Greedy Equivalence Search (GES) algo-
rithm. FedGES enhances privacy by exchanging only evolving network 
structures rather than model parameters or raw data. It iteratively in-
tegrates partial models from clients through structural fusion, enabling 
collaborative structure development while preserving data confiden-
tiality. In the context of distributed causal discovery, [22] proposed 
Distributed Annealing on Regularised Likelihood Score (DARLS), a 
federated method for learning causal graphs across multiple clients. 
DARLS simulates an annealing process to explore the space of topo-
logical sorts, using distributed optimisation to determine the optimal 
graphical structure. Multiple rounds of communication between local 
clients and a central server refine the estimation, ensuring convergence 
to the solution an oracle would obtain with full data access. [23] intro-
duced the FedCausal algorithm, a strategy designed to learn a unified 
global causal graph from heterogeneous, decentralised data. FedCausal 
employs a global optimisation formulation to aggregate client-specific 
causal graphs while enforcing acyclicity constraints without exposing 
local data, unifying local and global optimisation, and offering a flexi-
ble and scalable solution. Finally, [24] proposed FedCASL, a method 
based on continuous bi-level optimisation where clients and servers 
iteratively refine the causal structure while exchanging only model 
parameters. By incorporating a carefully designed sparse penalty term, 
FedCASL guides the optimisation towards a more interpretable and 
accurate causal graph under acyclicity constraints.

As for handling missing data, the work of [16,17] on recovering the 
joint missing data distribution allowed for the derivation of new causal 
discovery techniques. For instance, the Missing Values PC (MVPC) [15] 
algorithm deals with incomplete data following different missingness 
mechanisms by estimating the associated conditional independence 
statements to construct the causal graph. The Hill-Climbing with Adaptive 
Inverse Probability Weighting (HC-aIPW) score-based procedure proposed 
by [25] performs a greedy search using pairwise deletion and inverse 
probability weighting to reduce the bias caused by missing values. 
Authors in [26] introduced MissDAG, a general framework for causal 
discovery from incomplete data. MissDAG operates under the assump-
tions of ignorable missingness and identifiable additive noise models 
(ANMs), maximising the expected likelihood of observed data within an 
expectation-maximisation (EM) framework. When closed-form poste-
rior distributions are unavailable, the likelihood is approximated using 
Monte Carlo EM. Extending this line of research, [27] explored the ef-
fectiveness of additive noise models for causal discovery in the presence 
of self-masking missingness. Their work investigates the identification 
problem of learning causal graphs under different missingness mecha-
nisms, demonstrating that the traditional no self-masking missingness 
assumption can be appropriately relaxed.

Still, no causal discovery algorithm can deal with missing data and 
multiple distributed data sources. Applying existing solutions indepen-
dently to each data source would result in biased estimates due to 
the unlikely assumption that the missingness pattern remains constant 
across each source.



A. Zanga et al. Journal of Biomedical Informatics 169 (2025) 104877 
3. Preliminaries

3.1. Representing missing data with graphs

Probabilistic graphical models [28] are probabilistic models that 
represent the joint probability distribution of a vector of random vari-
ables using graphs. We denote a graph  as a pair of sets (𝐕, 𝐄), with 
𝐕 the set of vertices and 𝐄 the set of edges. The parents 𝜫

𝑖  of a vertex 
𝑉𝑖 in a graph  are the vertices with an edge into 𝑉𝑖. 

Definition 1 (Probabilistic Graphical Model). A probabilistic graphical 
model (PGM) is a pair (,𝐗), where  is a graph and 𝐗 is a random 
vector s.t. each vertex 𝑉𝑖 ∈ 𝐕 is associated to a random variable 𝑋𝑖 ∈ 𝐗. 
The graph  is a structure over the joint probability distribution 𝑃 (𝐗).

Since vertices in 𝐕 correspond to random variables in 𝐗, we can 
use 𝑉𝑖 and 𝑋𝑖 interchangeably. PGMs are particularly effective when 
it comes to encoding dependence and independence statements of the 
joint probability distribution 𝑃 (𝐗) directly into the graph . 

Definition 2 (Independence Map, Dependence Map & Perfect Map). Let 
be a graph and 𝑃 (𝐗) be a joint probability distribution. Then,  is:
an independence map (I-Map) if: 𝑉𝑖 ⫫ 𝑉𝑗 ∣ 𝑉𝑘 ⟹ 𝑋𝑖 ⫫𝑃 𝑋𝑗 ∣ 𝑋𝑘 ,

a dependence map (D-Map) if: 𝑉𝑖 ⫫ 𝑉𝑗 ∣ 𝑉𝑘 ⟸ 𝑋𝑖 ⫫𝑃 𝑋𝑗 ∣ 𝑋𝑘 ,

a perfect map (P-Map) if: 𝑉𝑖 ⫫ 𝑉𝑗 ∣ 𝑉𝑘 ⟺ 𝑋𝑖 ⫫𝑃 𝑋𝑗 ∣ 𝑋𝑘 ,

with ⫫ and ⫫𝑃  denoting graphical and probabilistic independence 
respectively.

While ⫫𝑃  denotes the usual probabilistic independence, ⫫ refers 
to graphical separation. This property allows querying  to verify the 
validity of a given independence statement, which arises from graphical 
separation as defined by d-separation (short for ‘‘directed separation’’). 

Definition 3 (d-separation). Let  be a directed acyclic graph (DAG) and 
let {𝑋, 𝑌 } and 𝐙 be two disjoint subsets of 𝐕. Then, an undirected path 
from 𝑋 to 𝑌  is said to be d-separated by 𝐙, denoted as 𝑋 ⫫ 𝑌 ∣ 𝐙, if 
it contains:

• a fork 𝑉𝑖 ← 𝑉𝑗 → 𝑉𝑘 or a chain 𝑉𝑖 → 𝑉𝑗 → 𝑉𝑘 so that 𝑉𝑗 is in 𝐙, or
• a collider 𝑉𝑖 → 𝑉𝑗 ← 𝑉𝑘 so that 𝑉𝑗 , or any descendant of it, is not 
in 𝐙.

This definition of d-separation extends to sets of variables to express 
complex independencies. 

Definition 4 (General d-separation). Let  be a DAG and let 𝐗,𝐘,𝐙 be 
three disjoint subsets of 𝐕. Then, 𝐙 d-separates 𝐗 and 𝐘, denoted as 
𝐗 ⫫ 𝐘 ∣ 𝐙, if every undirected path from 𝐗 to 𝐘 is d-separated by 𝐙:
𝐗 ⫫ 𝐘 ∣ 𝐙 ⟺ 𝑋 ⫫ 𝑌 ∣ 𝐙 ∀(𝑋, 𝑌 ) ∈ 𝐗 × 𝐘

While  is defined as an I-map of 𝑃 , we often treat it as a P-map 
when  is learnt from data. Therefore, we can simplify the notation of 
⫫ and ⫫𝑃  and use ⫫ directly. However, to encode causal dependencies
as a graph, we need to explicitly model the data generating mechanism. 

Assumption 1 (Causal Edge Assumption).  Let  be a DAG, 𝐗 be a 
random vector and 𝐅 a set of functions. Then, the values assigned to 
each variable 𝑋𝑖 ∈ 𝐗 is completely determined by the function 𝑓𝑖 ∈ 𝐅
given its parents 𝜫

𝑖 :

𝑋𝑖 ∶= 𝑓𝑖
(

𝜫
𝑖

)

∀𝑋𝑖 ∈ 𝐗

with ∶= the assignment operator.
Assumption  1 establishes a functional dependency graph represent-

ing the data-generating distribution. 
3 
Definition 5 (Causal Graph). A causal graph  [29] is a graph in which 
Assumption  1 holds.

In turn, causal graphs imply a formal definition of cause and effect. 

Definition 6 (Causes & Effects). Let  be a causal graph. Then, for each 
directed edge 𝑉𝑖 → 𝑉𝑗 ∈ 𝐄, 𝑉𝑖 is said to be a cause of 𝑉𝑗 , whereas 𝑉𝑗 is 
an effect of 𝑉𝑖. If 𝑉𝑖 is a cause of 𝑉𝑗 and 𝑉𝑗 is a cause of 𝑉𝑘, then 𝑉𝑖 is 
a cause of 𝑉𝑘.

While causal graphs effectively describe why particular values are 
present (the data generating mechanism), they are not semantically 
adequate to express why values are missing ; that is, the missingness 
mechanism. According to Rubin’s classification [30], they can be:

• Missing Completely At Random (MCAR): the probability of a 
variable being missing is independent of both observed and un-
observed variables,

• Missing At Random (MAR): the probability of a variable being 
missing is independent of the unobserved variables given the 
observed variables,

• Missing Not At Random (MNAR): neither MCAR nor MAR.

Missingness graphs [17] extend causal graphs to represent the missing-
ness mechanism. 

Definition 7 (Missingness Graph). A missingness graph  = (𝐕,𝐄) is a 
causal graph where the vertices in 𝐕 are partitioned into five disjoint 
subsets:

𝐕 = 𝐎 ∪ 𝐔 ∪𝐌 ∪ 𝐒 ∪ 𝐑

where:

• 𝐎 is the set of the fully observed variables, that is, variables with 
no missing values,

• 𝐔 is the set of fully unobserved variables, also called the latent
variables,

• 𝐌 is the set of the partially observed variables, that is, the variables 
with at least one missing value,

• 𝐒 is the set of the proxy variables, that is, the variables that are 
observed,

• 𝐑 is the set of the missingness indicators such that :

𝑆𝑖 ∶= 𝑓𝑖(𝑀𝑖, 𝑅𝑖) =

{

𝑚𝑖 if 𝑟𝑖 = 0,
? if 𝑟𝑖 = 1.

with 𝑚𝑖 the observed value of 𝑀𝑖 and ‘‘ ? ’’ a placeholder for the 
missing value.

Different missingness mechanisms correspond to different
d-separations and thus independence statements encoded by the miss-
ingness graph, shown in Fig.  1: MCAR implies 𝐎 ∪ 𝐔 ∪ 𝐌 ⫫ 𝐑, MAR 
implies 𝐔 ∪ 𝐌 ⫫ 𝐑 ∣ 𝐎. In contrast, MNAR does not imply either 
statement. Note that 𝑅3 has no parents in MCAR, while has only fully 
observed parents in MAR. The key difference between MCAR/MAR and 
MNAR is that 𝑉3 itself is a parent of 𝑅3 in MNAR.

3.2. Causal discovery with missing data

When  is unknown, we can learn it from data and prior knowledge 
via causal discovery [1,2]. Formally, let  be the set of graphs defined 
over the variables 𝐕 of a dataset  and ∗ ∈  be the true but unknown
graph of the generating model of . 

Definition 8 (Causal Discovery Problem). The causal discovery prob-
lem [31] consists in recovering the true graph ∗ from the set of graphs 
 given the dataset .
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The cardinality of  grows exponentially with the number of ver-
tices [32]. The Hill-Climbing (HC) [33,34] algorithm is one of the 
simplest and most computationally efficient algorithms to search it. HC 
traverses  looking for the graph ∗ that maximises the goodness of a 
DAG  in modelling the data generating mechanism of , an objective 
function called scoring criterion : 

∗ = argmax
∈

( ∣ ). (1)

We can estimate  efficiently if the scoring criterion is decomposable
into a local score for each vertex:

( ∣ ) =
|𝐕|
∑

𝑖=0
(𝑉𝑖 ∣ 𝜫 𝑖,).

In practice, several decomposable scoring criteria are penalised log-
likelihoods of the form:

(𝑉𝑖 ∣ 𝜫 𝑖,)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Scoring Criterion

= log𝑃 (𝑉𝑖 ∣ 𝜫 𝑖, 𝛩𝑖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Log-Likelihood

− 𝑓 (𝑉𝑖 ∣ 𝜫 𝑖, 𝛩𝑖)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Penalty

,

where 𝛩𝑖 is the local conditional probability distribution parameters 
induced by the variables (𝑉𝑖,𝜫 𝑖) and 𝑓 is a non-negative function 
penalising model complexity. For this reason, we often use an 𝑓 from 
the model selection literature [35], see 2.

If  is complete, we can estimate 𝑃 (𝑉𝑖 ∣ 𝜫 𝑖) from all the samples 
in  because they contain no missing values. If  is incomplete, we 
can discard samples containing missing values via list-wise deletion, 
removing samples that contain at least one missing value when estimat-
ing all local distributions, or pair-wise deletion, removing samples that 
contain missing values in {𝑉𝑖}∪𝜫 𝑖 when estimating the corresponding 
local distribution. Deletion itself relies on the assumption that the local 
pair-wise deleted data distribution is an unbiased estimate of the local 
complete data distribution: 

𝑃 (𝑉𝑖 ∣ 𝜫 𝑖)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Local Complete
Data Distribution

?
= 𝑃 (𝑉𝑖 ∣ 𝜫 𝑖, 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖

= 𝟎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Local Pair-Wise Deleted
Data Distribution

(2)

Algorithm 1 Learn the parents of the missingness indicators.
Input: A dataset  and a conditional independence test ⫫𝑃 .
Output: A map 𝜫𝐑 with 𝑅𝑖 as keys and 𝜫𝑅𝑖

 as values.
1: procedure ParentsMissingIndicators( ,⫫𝑃  )
2:  𝜫𝐑 ← ∅ ⊳ Allocate the candidate parents.
3:  for 𝑉𝑖 ∈ 𝐌 do ⊳ Iterate over the partially observed variables.
4:  𝜫𝑅𝑖

← 𝐕 ∖ {𝑉𝑖} ⊳ Initialise the candidate parents.
5:  𝑘 ← 0 ⊳ Initialise the cardinality of the conditioning set.
6:  while |𝜫𝑅𝑖

| > 𝑘 do ⊳ While there are still variables. . .
7:  𝜫 ′

𝑅𝑖
← 𝜫𝑅𝑖

⊳ Copy the candidate’s parents.
8:  for 𝑉𝑗 ∈ 𝜫 ′

𝑅𝑖
 do ⊳ For each candidate parent. . .

9:  for 𝐒 ∈ (𝜫 ′
𝑅𝑖

∖ {𝑉𝑗}, 𝑘) do ⊳ For each set . . .
10:  if (𝑅𝑖 ⫫𝑃 𝑉𝑗 ∣ 𝐒, 𝑅𝑗 = 0,𝐑𝐒 = 𝟎) then
11:  𝜫𝑅𝑖

← 𝜫𝑅𝑖
∖ {𝑉𝑗} ⊳ . . . remove the parent.

12:  break ⊳ Exit the inner loop.
13:  𝑘 ← 𝑘 + 1 ⊳ Increment the cardinality.
14:  𝜫𝐑 ← 𝜫𝐑 ∪𝜫𝑅𝑖

⊳ Store the parents of 𝑅𝑖.
15:  return 𝜫𝐑 ⊳ Return the parents of each missingness indicator.
4 
Algorithm 2 Learn the causal graph that maximises the scoring 
criterion.
Input: A dataset , a scoring criterion  and the parents 𝜫𝐑.
Output: A causal graph .
1: procedure HC-aIPW( , ,𝜫𝐑 )
2:  𝛿 ← +∞ ⊳ Initialise the delta score.
3:   ← ∅ ⊳ Initialise empty graph.
4:   ← {} ⊳ Initialise the set of already visited graphs.
5:  while 𝛿 ≠ 0 do ⊳ While the delta score is increasing. . .
6:  𝛿 ← 0 ⊳ Set delta score to zero.
7:   ←  ⊳ Set the current best graph.
8:  for ′ ∈ Ne() ∖ do ⊳ For each candidate graph. . .
9:  𝐙 ← Necessary variables 𝐖 ⊳ See [25] for lines 8–10.
10:  if 𝜫𝐑𝐙

∩𝐌 = ∅ then
11:  𝐙 ← Sufficient variables 𝐔
12:  ′ ← Pair-wise deletion on  w.r.t. 𝐙 ⊳ Delete missing.
13:  𝛽𝛽𝛽 ← Eq. (3) on ′ and 𝜫𝐑 ⊳ Estimate IPWs.
14:  𝛿′ ← (′ ∣ ′, 𝛽𝛽𝛽)−( ∣ ′, 𝛽𝛽𝛽) ⊳ Compute the new delta.
15:  if 𝛿′ > 𝛿 then ⊳ If the new delta is higher. . .
16:  𝛿 ← 𝛿′ ⊳ . . . update the current delta.
17:   ← ′ ⊳ . . . and update the current graph.
18:  if 𝛿 > 0 then ⊳ If the best delta score is positive. . .
19:   ←  ⊳ . . . update the best graph.
20:   ←  ∪ {} ⊳ . . . update the already visited graphs.
21:  return  ⊳ Return graph with the highest score.

In general, Eq. (2) holds under MCAR but not under MAR/MNAR 
[36]. However, [15,16,25] have used missingness graphs to show that, 
when the parents of the missingness indicators 𝜫𝐑 are known, 𝑃 (𝐕)
can be recovered from missing data as: 

𝑃 (𝐕) = 𝑃 (𝐕 ∣ 𝐑 = 𝟎)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

1. List-Wise Deleted
Data Distribution

⋅
𝑃 (𝐑 = 𝟎)

∏

|𝐕|
𝑖=0 𝑃 (𝑅𝑖 = 0 ∣ 𝐑𝜫𝑅𝑖

= 𝟎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2. Missingness Indicators Distribution

⋅
|𝐕|
∏

𝑖=0

𝑃 (𝜫𝑅𝑖
∣ 𝐑𝜫𝑅𝑖

= 𝟎)

𝑃 (𝜫𝑅𝑖
∣ 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖

= 𝟎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
3. Inverse Probability Weights

(3)

where 𝜫𝑅𝑖
 are the parents of the missingness indicator 𝑅𝑖 and 𝐑𝜫𝑅𝑖

 is 
the set of missingness indicators of 𝜫𝑅𝑖

. Eq. (3) decomposes the joint 
probability distribution 𝑃 (𝐕) into three terms:

1. The list-wise deleted data distribution.
2. The missingness indicators distribution, which is the probability 

𝑃 (𝐑 = 0) of the complete sample scaled by probability 𝑃 (𝑅𝑖 =
0 ∣ 𝐑𝜫𝑅𝑖

= 𝟎) of each variable to be complete given its parents.
3. The inverse probability weights (IPWs) that account for 𝜫𝑅𝑖

≠ ∅
in MAR/MNAR.

Since the objective is to maximise ∑|𝐕|
𝑖=0 log𝑃 (𝑉𝑖 ∣ 𝜫 𝑖) and the distribu-

tion of the missingness indicators is fixed, we can approximate Eq. (3) 
following the graph : 

𝑃 (𝐕) ∝ 𝑃 (𝐕 ∣ 𝐑 = 𝟎) ⋅
|𝐕|
∏

𝑖=0

𝑃 (𝜫𝑅𝑖
∣ 𝐑𝜫𝑅𝑖

= 𝟎)

𝑃 (𝜫𝑅𝑖
∣ 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖

= 𝟎)

=
|𝐕|
∏

𝑖=0

[

𝑃 (𝑉𝑖 ∣ 𝜫 𝑖, 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖
= 𝟎) ⋅

𝑃 (𝜫𝑅𝑖
∣ 𝐑𝜫𝑅𝑖

= 𝟎)

𝑃 (𝜫𝑅𝑖
∣ 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖

= 𝟎)

]

=
|𝐕|
∏

𝑖=0

[

𝑃 (𝑉𝑖 ∣ 𝜫 𝑖, 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖
= 𝟎) ⋅ 𝛽𝑖

]

.

 The local pair-wise deleted data distribution re-weighted with IPWs is 
an unbiased approximation of the local complete data distribution: 

𝑃 (𝑉𝑖 ∣ 𝜫 𝑖)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Local Complete

∝ 𝑃 (𝑉𝑖 ∣ 𝜫 𝑖, 𝑅𝑖 = 0,𝐑𝜫𝑅𝑖
= 𝟎)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Local Pair-Wise Deleted

⋅ 𝛽𝑖
⏟⏟⏟
IPW

. (4)
Data Distribution Data Distribution
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Fig. 1. Missingness graphs for missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR), respectively.

Fig. 2. The parents of 𝑅4 change and conditioning on 𝑅4 impact the independence statements.
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Thanks to this unbiased estimate of , causal discovery in the presence 
of missing data simplifies to:

1. Learn the parents of the missingness indicators 𝜫𝐑 from : [15] 
proposed to test each missingness indicator 𝑅𝑖 for indepen-
dence against other variables 𝑉𝑗 conditionally on a subset of 𝐕. 
Algorithm 1 efficiently performs this procedure.

2. Search the graph ∗ that maximises  using Eq. (4) and 𝜫𝐑: 
Algorithm 2 from [25] adapts HC to perform such procedure.

3.3. Source-dependant missingness mechanism

So far, we tackled the causal discovery problem where both 
and 𝛱𝛱𝛱𝐑 were unique. In federated learning we usually have multiple 
sources  = { 0, 1,… , 𝑗 ,… , 𝑛−1} induced from the same under-
lying causal graph ∗. Nonetheless, there could be multiple associated 
missingness graphs.

Example 1 (One Causal Graph, Multiple Missingness Graphs). Consider 
the graph reported in Fig.  2. For each row, the first graph on the left 
is the true causal graph ∗, while the other graphs { 0, 1, 2} are 
different missingness graphs associated to the same ∗. In particular, 
 0 represents the typical MCAR mechanism where the missingness in-
dicator 𝑅4 has no parents, while  1 and  2 describe a MAR mechanism 
where 𝑅4 does have parents. Each graph  𝑗 describes a data generating 
mechanism that, in turn, induces a dataset  𝑗 and a sample probability 
distribution 𝑃 𝑗 . Following Eq. (2), we observe:

𝑃 ∗(𝑉4 ∣ 𝜫4) = 𝑃 0(𝑉4 ∣ 𝜫4, 𝑅4 = 0,𝐑𝜫𝑅4
= 𝟎)

and it holds true also for 𝑃 1 since 𝐑𝜫𝑅4
= ∅ in  0 and  1, but not for 

𝑃 2 due to 𝐑𝜫𝑅4
= {𝑅2} in  2:

𝑃 ∗(𝑉4 ∣ 𝜫4) ≠ 𝑃 2(𝑉4 ∣ 𝜫4, 𝑅4 = 0,𝐑𝜫𝑅4
= 𝟎)

Hence, in order to obtain an unbiased estimate of 𝑃 ∗ from a given 𝑃 𝑗

using IPW as in Eq. (4), we need to model individual 𝐑 𝑗
𝜫𝑅4

 for each 
data source  𝑗 , leading to multiple missingness graphs  𝑗 .

Therefore, even if a single causal graph exists, the data collection in 
each data source may be affected by different missingness biases, which 
we must model in the missingness graphs along with the respective 
causes.

4. Federated causal discovery via mixture distributions

We will formally state the federated causal discovery problem and 
propose a novel algorithm. 

Definition 9 (Federated Causal Discovery Problem).  The federated causal 
discovery problem [14] consists in recovering the true graph ∗ from 
the set of graphs  given the set of datasets .

Recovering the global probability distribution 𝑃 (𝐕) is a non-trivial 
task when multiple sources  𝑗 with source-dependant missingness 
mechanism 𝜫 𝑗

𝐑 are present. A possible solution is to model the global 
distribution using a mixture of local distributions: 

 = { 0, 1,… , 𝑛−1}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Multiple Sources
, 𝜔𝜔𝜔 ∶ 𝜔 𝑗 ≥ 0,

∑

||

𝑗=0 𝜔
𝑗 = 1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mixture Weights

, 𝑃 (𝐕) =
∑

||

𝑗=0 𝜔
𝑗𝑃 𝑗 (𝐕)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mixture Distribution

 This approach allows us to model the contribution of each source to 
the final global distribution flexibly by specifying the mixture weights 
𝜔, see 3. To solve the problem stated in Definition  9, we must provide 
the associated optimisation problem we want to solve. We recast Eq. (1) 
6 
to allow for multiple sources setting via Eq. (5): 

∗ = argmax
∈

𝑃 ( ∣)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Federated Causal Discovery

=

Server-side Optimisation
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

argmax
∈

||

∑

𝑗=0

|𝐕|
∑

𝑖=0

[

log𝜔 𝑗
𝑖 + log𝑃 𝑗 (𝑉𝑖 ∣ 𝜫 𝑖)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Client-side Estimation

. (5)

Refer to Appendix  A for a detailed derivation. Eq. (5) has two parts:

• Server-side optimisation - Finding the graph ∗ that maximises 
the objective function across all data sources in  by aggregating 
the partial results computed by each client in a centralised server.

• Client-side estimation - Estimating the mixture component of a 
specific client independently, without transferring any data to the 
server.

Finally, when missing data are present, we can plug Eq. (4) into 
Eq. (5) to obtain an unbiased estimate of the objective function:

argmax
∈

||

∑

𝑗=0

|𝐕|
∑

𝑖=0

[

log𝜔 𝑗
𝑖 + log𝑃 𝑗 (𝑉𝑖 ∣ 𝜫 𝑖)

]

=

argmax
∈

||

∑

𝑗=0

|𝐕|
∑

𝑖=0

[

log𝜔 𝑗
𝑖 + log𝑃 𝑗 (𝑉𝑖 ∣ 𝜫 𝑖, 𝑅

𝑗
𝑖 = 0,𝐑𝑗

𝜫𝑅𝑖
= 𝟎) + log 𝛽 𝑗

𝑖

]

.(6)

To solve this optimisation problem, we propose the novel Fed-HC-aIPW
algorithm, reported in Algorithm 3, that extends Algorithm 2 to a 
client–server configuration. Algorithm 3 is divided into four stages:

1. Server-side initialisation - Allocates the resources on the server, 
namely, the graph , the delta score 𝛿 and a cache , which min-
imises the number of evaluations on each data source, reducing 
the latency and the overall computational burden.

2. Client-side initialisation - Learn the parents of the missingness 
indicators 𝜫 𝑗

𝐑 for each data source  𝑗 to model the local miss-
ingness mechanisms.

3. Initial evaluation - Evaluate the initial graph by aggregating the 
local 𝛿 𝑗

𝑖 .
4. Solve optimisation - Find the graph that maximises the score by 
evaluating the neighbours of , that is, all the graphs ′ obtained 
by adding, removing or reversing an edge w.r.t.  and .

Key computational information regarding Algorithm 3:

• Lines in red, namely 6, 9–12 and 21–24, are executed on the 
clients and sent to the server to perform the aggregation.

• The cache  avoids redundant local computation and, in turn, the 
communication effort between the server and the clients.

• The neighbours 𝐍𝐞(,) are the candidate graphs that can be 
reached by adding, deleting or reversing an edge in the current 
best graph . The prior knowledge  applies additional con-
straints to the exploration space. Such constraints are usually in 
the form of forbidden and required edges elicited from domain 
knowledge experts.

• The set 𝐕′ identifies the local scores that must be computed. If 
an edge 𝑉𝑖 ← 𝑉𝑗 is added or deleted from , then it will change 
just one parent set at the time, triggering the computation of the 
modified 𝜫′

𝑖 . On the contrary, if the same edge is reversed, we 
must recompute the local score for the parent sets 𝜫′

𝑖  and 𝜫′
𝑗 .

• Eq. (6) can be extended to the broader family of penalised log-
likelihood functions by adding a penalty term based on the pair-
wise deleted dataset  𝑗

𝑖 . Hence, lines 11 and 23 refer to the 
scoring criterion . See 2.

• We provide asymptotic time and space complexity in Appendix  B.
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Table 2
Scoring criteria often used in the model selection context.
 Scoring criterion Penalty function  
 Akaike Information Criterion (AIC) [37] |𝛩𝑖|  
 Bayesian Information Criterion (BIC) [38] 1

2
⋅ log || ⋅ |𝛩𝑖|  

 AIC with small sample size correction (AICc) [39] max
{

||

||−|𝛩𝑖 |−2
, 1
}

⋅ |𝛩𝑖|  
 BIC with small sample size correction (BICc) [40] 1

2
⋅max

{

||

||−|𝛩𝑖 |−2
, 1
}

⋅ log || ⋅ |𝛩𝑖| 
 Hannan-Quinn Information Criterion (HQC) [41] log log || ⋅ |𝛩𝑖|  
Algorithm 3 Learn for the causal graph that maximises the score.
Input: Data , knowledge , scoring  and independence test ⫫𝑃 .
Output: A causal graph .
1: procedure Fed-HC-aIPW(,, ,⫫𝑃 )
# Stage 1 - Server-side initialisation.

2:  𝛿 ← +∞ ⊳ Initialise the delta score.
3:   ← ∅ ⊳ Initialise the empty graph.
4:   ← ∅ ⊳ Initialise the empty cache.
# Stage 2 - Client-side initialisation.

5:  for  𝑗 ∈  do ⊳ For each data source, learn the local. . .
6:  𝜫 𝑗

𝐑 ← Algorithm 1 ( 𝑗 ,⫫𝑃 ) ⊳ ... missingness mechanism.
# Stage 3 - Initial evaluation.

7:  for 𝑉𝑖 ∈ 𝐕 do ⊳ For each vertex. . .
8:  for  𝑗 ∈  do ⊳ For each data source. . .
9:   𝑗

𝑖 ← Pair-wise deletion on  𝑗 w.r.t. 𝑉𝑖 ⊳ [25]
10:  𝛽 𝑗

𝑖 ← Eq. (3) on  𝑗
𝑖  and 𝜫

𝑗
𝐑 ⊳ Estimate IPWs.

11:  𝛿 𝑗
𝑖 ← (𝑉𝑖 ∣ ∅, 𝑗

𝑖 , 𝛽
𝑗
𝑖 ) ⊳ Compute the new score.

12:  [𝑉𝑖 ∣ ∅] ←
∑

||

𝑗=0 𝛿
𝑗
𝑖 ⊳ Aggregate scores in cache.

# Stage 4 - Solve optimisation.
13:  while 𝛿 > 0 do ⊳ While the score increases. . .
14:  𝛿 ← 0 ⊳ Set the delta score to zero.
15:   ←  ⊳ Set the current best graph.
16:  for ′ ∈ Ne(,) do ⊳ For each candidate graph. . .
17:  𝐕′ ← {𝑉𝑖 | 𝜫

′
𝑖 ≠ 𝜫

𝑖 ∀𝑉𝑖 ∈ 𝐕} ⊳ Restrict parents.
18:  for 𝑉𝑖 ∈ 𝐕′ do ⊳ For each vertex. . .
19:  if (𝑉𝑖 ∣ 𝜫′

𝑖 ) ∉  then ⊳ If the score is cached. . .
20:  for  𝑗 ∈  do ⊳ For each data source. . .
21:   𝑗

𝑖 ← Pair-wise deletion on  𝑗 w.r.t. 𝑉𝑖 ⊳ [25]
22:  𝛽 𝑗

𝑖 ← Eq. (3) on  𝑗
𝑖  and 𝜫

𝑗
𝐑 ⊳ IPWs.

23:  𝛿 𝑗
𝑖 ← (𝑉𝑖 ∣ 𝜫

′
𝑖 , 𝑗

𝑖 , 𝛽
𝑗
𝑖 ) ⊳ Compute the score.

24:  [𝑉𝑖 ∣ 𝜫
′
𝑖 ] ←

∑

||

𝑗=0 𝛿
𝑗
𝑖 ⊳ Cache the score.

25:  𝛿′ ←
∑

|𝐕′
|

𝑖=0 ([𝑉𝑖 ∣ 𝜫
′
𝑖 ] −[𝑉𝑖 ∣ 𝜫


𝑖 ]) ⊳ Compute the delta.

26:  if 𝛿′ > 𝛿 then ⊳ If the new delta score is higher. . .
27:  𝛿 ← 𝛿′ ⊳ . . . update the current delta score.
28:   ← ′ ⊳ . . . update the current graph.
29:   ←  ⊳ Update the best graph.
30:  return  ⊳ Return graph with the highest score.

5. Experimental setup

We evaluated the proposed Algorithm 3 against a simulation study 
and a multicentric study on endometrial cancer, performing a grid 
search across:

• Scoring methods: we explored a list of candidate scoring criteria, 
namely [AIC, AICC, BIC, BICC, HQC] in Table  2, to evalu-
ate the impact of different penalisation functions. For instance, 
some apply small sample size corrections to deal with distor-
tions introduced by insufficient observations during parameter 
estimation.
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Table 3
Weights aggregation methods and their formula.
Mixture Weights Mixture Formula
Uniform weights (GS) ∑

||

𝑗=0 𝑃
𝑗 (𝐕)

Global weights (GW) ∑

||

𝑗=0 𝑓 (|
𝑗
|) ⋅ 𝑃 𝑗 (𝐕)

Local weights (LW) ∑

||

𝑗=0
∑

|V|
𝑖=0 𝑓 (|

𝑗
𝑖 |) ⋅ 𝑃

𝑗 (𝑉𝑖 |𝛱𝑖)
Local weights on sufficient statistics (LS) ∑

||

𝑗=0
∑

|V|
𝑖=0 𝑃

𝑗 (𝑓 (|𝑗
𝑖 |) ⋅ 𝜃𝑉𝑖 |𝛱𝑖

)

• Mixture methods: we evaluated multiple aggregation methods, 
listed as [GS, GW, LW, LS] in Table  3, to fine-tune the granular-
ity of the weighting scheme. We could then re-weight each local 
score according to the sample size of the local pair-wise deleted 
dataset, controlling the contribution of each partial result to the 
aggregated score.

• Balancing methods: we removed the missing values with [IPW, 
AIPW]. Refer to [25] for more details about the deletion process.

5.1. Simulation study

We conducted a simulation study generating synthetic data from the 
models listed in Table  4. Each data set has sample size || = |𝛩|𝜌, 
where |𝛩| is the number of parameters of the model and 𝜌 a sample 
ratio coefficient in [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]. For each sample ratio, we 
generated a training set and a test set for in-sample and out-of-sample 
evaluation.

Moreover, we simulated the effect of MCAR, MAR and MNAR by 
generating missingness masks using the experimental setup from [25]. 
We repeated the data generation process five times, changing the 
sample size || with a correction factor 𝑐 ∈ [0.5, 1.5] to obtain a 
1-to −5 server-clients configuration. Overall, this approach simulates 
the common scenario where data are spread across multiple sources 
with both different sample sizes and missingness mechanisms. As a 
baseline, we also pooled clients’ data into a single dataset, violating 
the assumption of a global missingness mechanism (which we relax in 
our federated proposal). Following the grid search described above, we 
applied Algorithm 3 and computed the F1 metric between the learned 
and true graphs of the selected models. Results are shown in Fig.  3. The 
source code can be found here.

5.2. Multicentric study on endometrial cancer

We analysed a case study on endometrial cancer (EC) involving 
the 19 gynaecological oncological clinics that are part of the European 
Network for Individualised Treatment of Endometrial Cancer (ENITEC) 
and the PIpelle prospective ENDOmetrial carcinoma (PIPENDO) study. 
EC is a cancer of the endometrium of the uterus. Approximately 90.000 
patients die each year due to EC [42], calling for more research on 
personalised EC treatments. In this context, pelvic and para-aortic 
lymph node metastases (LNM) are among the most important prognos-
tic factors for choosing adjuvant treatment and improving survival in 
node-positive EC. Approximately 10% of endometrial cancer patients 
present lymph node metastases at diagnosis according to clinical liter-
ature [42]. Clinical experts selected the variables that they considered 

https://anonymous.4open.science/r/2607/README.md
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Table 4
Summary statistics of the reference models sorted by |𝛩|. The average Markov blanket (Avg. MB) and degree 
(Avg. Deg.) are computed as in [28].
 Model Parameters Vertices Edges Avg. M.B. Avg. Deg. 
 ALARM 509 37 46 3.51 2.49  
 WIN95PTS 574 76 112 5.92 2.95  
 INSURANCE 1008 27 52 5.19 3.85  
 HAILFINDER 2656 56 66 3.54 2.36  
Table 5
Variables in the data sources. Variables above the horizontal line are measured preoperatively, and those 
below the gap postoperatively.
 Variable Abbreviation Tier

 Gynaecological clinic Hospital 1  
 Preoperative cervical cytology Cytology 1  
 Preoperative tumour grade PreoperativeGrade 0  
 Cancer Antigen 125 serum levels CA125 1  
 CT or MRI diagnostic imaging CTMRI 1  
 Estrogen receptor levels ER 1  
 Progesterone receptor levels PR 1  
 L1 cell adhesion molecule L1CAM 1  
 p53 tumour suppressor gene p53 1  
 Platelets in blood Platelets 1  
 Postoperative tumour grade PostoperativeGrade 2  
 Lymphovascular space invasion LVSI 2  
 (Abdominal) lymph node metastases LNM –  
 Tumour invasion of myometrium MyometrialInvasion 2  
 Treatment by chemotherapeutic drugs Chemotherapy 2  
 Treatment by radiation Radiotherapy 2  
 Recurrence of the tumour Recurrence 3  
 Survival of at least 𝑖 years Survival𝑖yr, 𝑖 ∈ {1, 3, 5} 4  
most important for predicting survival and the presence of LNMs [18–
20,43].

Table  5 reports variables collected at the different gynaecological 
clinics where the patients were treated: the cytology of the cervix uteri, 
the preoperative tumour grade, the postoperative tumour grade (after 
pathological examination of the tumour tissue obtained after surgical 
removal of the uterus), treatment by chemotherapy or radiotherapy, 
lymphovascular space invasion (that is, whether there is tumour growth 
into the lymph or blood vessels), the levels of estrogen and proges-
terone in the blood, the presence of lymph node metastasis according to 
CT or MRI imaging, the CA125 tumour marker, L1CAM (an intracellular 
protein that promotes tumour cell motility), the p53 tumour suppressor 
gene, the number of platelets, presence of lymph node metastases, 
recurrence of the tumour, and lastly the survival before and after 1, 
3, and 5 years. The tumour markers, such as p53, CA125, L1CAM, 
estrogen and progesterone levels, are thought to offer causal prognostic 
information about tumour cell behaviour and thus tumour in-growth, 
metastases, recurrence, and survival.

To incorporate our prior knowledge of the temporal order of the 
variable measurements, we assigned each variable a tier that deter-
mines if the value assignment of a given variable happens before or 
after another one.

Following [11], for each combination of scoring method, mixture 
method and balancing method, we perform four different analyses:

1. Single-source analysis. To evaluate the impact of the heterogene-
ity and sample sizes of the data sources, we applied Algorithm 3 
to each source separately instead of using it as a federated algo-
rithm. Fig.  4 represent two selected instances of this exploratory 
analysis.

2. Inference-based analysis. For each learned causal graph, we com-
puted the Node-Average Likelihood (NAL) [44] as an estimate 
of the average likelihood for each node based on the incomplete 
data. Fig.  5 reports the in-sample and out-of-sample NAL for each 
simulation scenario.
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3. Sensitivity analysis. We estimated the average confidence by ap-
plying conditional independence testing to test whether we can 
remove each edge in each graph. Lower p-values translate to 
higher confidence that the arc should be retained, so we show 
the complement to 1 of the average across all p-values in each 
graph in Fig.  5.

4. Predictive-based analysis. LNM is clinically relevant when evaluat-
ing different treatment strategies. Therefore, predicting its status 
in early-stage patients is essential for personalised treatment. 
Fig.  6 report associated the area under the curve (AUC) [45].

Except for the single-source analysis, we performed a 10-fold cross-
validation stratified on the Hospital data source identifier to obtain 
in-sample and out-of-sample estimates of our metrics while guaran-
teeing a representative patient case mix across each fold. The final 
results are min–max scaled Figs.  5 and 6 to facilitate comparisons across 
different analyses.

5.3. Unavailability of reference baselines

As for the baselines, none of the federated causal discovery al-
gorithms cited in  Section 2 can handle missing data. For the non-
federated ones, we resorted to evaluating the existing options by pool-
ing data together. The work from [27] does not provide code to run the 
proposed algorithm. The MissDAG [26] algorithm assumes ignorable 
missingness, which is incompatible with the fundamental assumption of 
non-ignorable missingness. The MVPC [15] algorithm implementation 
supports binary variables only, which are not representative of the 
current experimental setting. Ultimately, the only available baseline 
is the HC-aIPW [25] algorithm, which we extended to allow for prior 
knowledge and reported in the following section. This lack of direct 
comparability with existing methods limits the validity of the proposed 
approach.
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Fig. 3. Results of the simulation study. Rows and columns correspond to the reference models in Table  4 and the type of missingness mechanism, respectively. The legend reports 
the different mixture weights, such as uniform weights (GS), global weights (GW), local weights (LW) and local weights on sufficient statistics (LS), as defined in Table  3. Higher 
values correspond to better models.
6. Results and discussion

6.1. Simulation study

The results of the simulation study are summarised in Fig.  3. We 
reported the F1 score obtained by comparing the edges of the learned 
causal graph to the edges of the reference causal graph under different 
missingness mechanisms. As we can see, the proposed method can 
recover the underlying causal graph better than the baseline. The 
difference is statistically significant in most simulated scenarios but 
more marked in the MAR and MNAR settings. In MCAR, the parent 
sets of the missingness indicators are always empty, making them in-
distinguishable across the clients. Hence, the IPW weights are constant, 
but the mixture weights might differ due to a frequency of client-
specific missingness for some variables. However, the parent sets of the 
missingness indicators can contain different variables for each client 
in MAR and MNAR: IPW weights then vary across clients, leading to 
significant differences compared to the baseline. This discrepancy is 
more pronounced for complex reference models, where more variables 
are subject to different missingness mechanisms. Interestingly, the ag-
gregation method does not seem to affect the results, which could imply 
9 
that learning local parent sets for the missingness indicators contributes 
the most to the unbiased estimation of the objective function.

6.2. Multicentric study on endometrial cancer

The exploratory single-source evaluation highlighted several lim-
itations of the non-federated approach. For instance, the data from 
the 5th Hospital result in a graph in which all variables except LVSI
are connected. However, the data from the 9th Hospital result in a 
graph with multiple, disconnected components (Fig.  4). In particular, 
the survival nodes are disconnected from the rest of the graph, which 
is inconsistent with the causal interpretation supported by the prior 
knowledge elicited from clinicians. These differences between data 
sources can be explained by the upper bound on the size of parent 
sets for penalised log-likelihood scores and small samples [46]. Missing 
values and pair-wise deletion further exacerbate this issue.

As for the federated evaluation, Fig.  5 shows that aggregation and 
scoring impact the average NAL in the inference-based analysis. In 
particular, LS outperforms other aggregation methods along with HQC, 
which also has stronger theoretical guarantees for model selection [35]. 
We do not observe any significant difference between different balanc-
ing methods. The combination of these two effects is evident in Fig.  6, 
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Fig. 4. Single-source causal graph learnt from the 5th and 9th Hospital only.
where the models that achieve both high in-sample and out-of-sample 
AUC are obtained by combining LS and HQC.

Finally, the estimated average confidence in Fig.  5 is an approximate 
indicator of the quality of the learned graphs. The difference between 
the in-sample (60% to 80%) and out-of-sample (20% to 40%) confi-
dence is expected and arises from the size disparity between training 
and test folds in 10-fold cross-validation. Roughly, we can interpret it 
as an indicative estimate of how many edges are well-supported by 
the out-of-sample folds, that is, of how many of those edges we would 
expect to learn correctly. Interestingly, LS and HQC result in models 
with higher scores but lower average confidence, as observed in other 
real-world case studies [11].

6.3. Validation of the causal relationships

In our application of causal discovery, the obtained graph sum-
marises the causal relationship learned by combining data and prior 
knowledge. Each edge points from a cause to its effect, defining the 
data-generating mechanism. In this case, validating the causal relation-
ships means verifying that the learned graph matches the underlying 
data-generating mechanism.

In the case of synthetic experiments, we generated the data by 
sampling directly from the reference models reported in Table  4 and 
removing the data as in [25]. Thus, the true graph is given by the graph 
of each reference model.
10 
In real-world applications, the true graph is usually not available. 
Here, causal discovery is primarily used to build a representation of the 
multivariate interactions between the observed variables and uncover 
previously unknown causal relationships.

Without ground truth, causal graphs learned from observational 
data can be validated via prior knowledge. For instance, involving 
experts, such as clinicians, during the validation of the model is a 
crucial part of the knowledge elicitation. In fact, the actual validation 
of a causal model strictly depends on the specific problem and the set 
of assumptions underlying the learning step.

Still, when prior knowledge is not available, some high-level quan-
titative validation pipelines can be found in the literature [11]:

• Model averaging - This step involves learning multiple models by 
applying bootstrap resampling and averaging them to estimate 
the confidence in the obtained edges as a form of non-parametric 
sensitivity analysis.

• Inference and prediction - The learned model can be validated 
by evaluating observational, interventional and counterfactual 
queries.

• Case study knowledge - Literature reviews provided by experts 
can be used to validate the causal claims entailed by the graph. 
This process is usually carried out in a multidisciplinary setting, 
where experts provide a set of statements that the model must 
satisfy.
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Fig. 5. In-sample and out-of-sample NAL and confidence by aggregation, balancing and scoring method. Higher values correspond to better models.
Fig. 6. In-sample and out-of-sample AUC by aggregation, balancing and scoring method.
In our case study on endometrial cancer, we provided inference and 
predictive-based validation, as in Figs.  4 to 6. Extensive validation of 
the causal claims using experts’ knowledge will be done in future work.

6.4. Limitations of the proposed approach

Although the proposed approach overcomes the assumption that 
every data source has the same missingness mechanism, in real-world 
use cases it may be that others factors limits its applicability.

An implicit assumption is that every client must collect the same set 
of variables to be able to estimate the local scores. This is a common
11 
assumption in the federated algorithms cited in Section 2. Some
non-federated causal discovery studies investigated the case where 
each source might have a different set of variables, a setting called 
‘‘non-identical variables sets’’ or ‘‘partial overlapping variables’’ [47–
49].

Another limitation, closely related to the previous, is given by the 
assumption of causal sufficiency [31] that unobserved variables do not 
impact the data-generating mechanism under study. Such an assump-
tion may be appropriate in controlled environments, where external 
factors can be treated as noise factors, but is trivially false in real-world 
case studies, where partial observability is the norm.
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7. Conclusions

In this paper, we proposed the first federated causal discovery 
algorithm for learning a global causal graph that accounts for the 
local missing data distributions. We extended existing causal discovery 
algorithms for missing data to the federated learning setting, relaxing 
the underlying assumption of a global missing mechanism. Unlike state-
of-the-art approaches, we can thus model multiple sources and their 
local missingness mechanisms independently.

We performed a simulation study by generating synthetic data 
from well-studied reference models to investigate the properties of 
the proposed method. We assessed the impact of violating the global 
missing mechanism assumption by comparing our aggregation methods 
against the naïve approach of pooling data together. Results show a 
significant improvement in our ability to recover the underlying causal 
graph when this assumption is relaxed, especially for the more complex 
reference models.

We explored a case study on endometrial cancer involving multiple 
gynaecological oncological clinics part of the European Network for 
Individualised Treatment of Endometrial Cancer (ENITEC) study and 
the PIpelle prospective ENDOmetrial carcinoma (PIPENDO) study. We 
evaluated the proposed approach with clinicians against single-source 
analysis, inference and predictive-based analyses and an overall sensi-
tivity analysis. Future work involves extensive validation of the causal 
claims using experts’ knowledge.

Still, the current approach has limitations that hinder the applicabil-
ity of federated causal discovery to real-world scenarios. For instance, 
it would be interesting to explore settings where data sources do not 
share the same set of observed variables or show significant distribution 
shifts due to selection bias.
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Appendix A. Derivations for Eq. (5)

∗ = argmax
∈

𝑃 ( |) =

= argmax
∈

||

∑

𝑗=0

[

𝜔 𝑗 ⋅ 𝑃 ( | 𝑗 )
]

=

= argmax
∈

||

∑

|𝐕|
∏

[

𝜔 𝑗
𝑖 ⋅ 𝑃

𝑗 (𝑉𝑖 |𝜫 𝑖)
]

=

𝑗=0 𝑖=0
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= argmax
∈

||
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𝑗=0
log

|𝐕|
∏

𝑖=0

[

𝜔 𝑗
𝑖 ⋅ 𝑃

𝑗 (𝑉𝑖 |𝜫 𝑖)
]

=

= argmax
∈

||

∑

𝑗=0

|𝐕|
∑

𝑖=0
log

[

𝜔 𝑗
𝑖 ⋅ 𝑃

𝑗 (𝑉𝑖 |𝜫 𝑖)
]

=

= argmax
∈

||

∑

𝑗=0

|𝐕|
∑

𝑖=0

[

log𝜔 𝑗
𝑖 + log𝑃 𝑗 (𝑉𝑖 |𝜫 𝑖)

]

Appendix B. Asymptotic time and space complexity

We provide asymptotic time and space complexity with big 
notation for the worst-case scenario assuming:

•  is a 𝑛 × 𝑛 adjacency matrix,
•  contains 𝑝 clients, in which the client with the maximum num-
ber of observations contains 𝑚 samples for 𝑛 random variables.

•  is a 𝑛× 𝑛 matrix representing the forbidden and required edges 
provided by prior knowledge.

•  and ⫫𝑃  are the scoring criterion and the conditional indepen-
dence test for categorical random variables, respectively.

The asymptotic time complexity is (𝑝 ⋅𝑚 ⋅ 𝑛 ⋅ 2𝑛 ⋅ (𝑛+ 𝑎𝑛)), given by:

• Stage 1 - The server-side initialisation sets the initial values of the 
global solution, taking (1) time.

• Stage 2 - The client-side initialisation requires to compute the 
parents of the missingness indicators 𝜫 𝑗

𝐑 for each client and each 
variable with missing values. Since we assumed we are testing 
for conditional independence with categorical random variables, 
the sufficient statistics for 𝑉𝑖 ⫫𝑃 𝑉𝑗 ∣ 𝐒 include the computation of 
the conditional counts 𝐍𝑖,𝑗∣𝐤. The counts depend on (i) the number 
of categories of each random variable and (ii) the cardinality of 
the conditioning set, scaling exponentially as (2𝑛) in the worst 
case where 𝐒 is 𝐕 ∖ {𝑉𝑖, 𝑉𝑗}. The tests are then repeated for each 
client in  and for each (𝑅𝑖, 𝑉𝑗 ) pair, with time complexity of 
(𝑝 ⋅ 𝑚 ⋅ 𝑛2 ⋅ 2𝑛).

• Stage 3 - Initially, the algorithm evaluates the score once for each 
variable and each client. Each score evaluation needs to (i) apply 
pair-wise deletion to obtain 𝑗

𝑖 , (ii) estimate the IPWs 𝛽
𝑗
𝑖  and (iii) 

compute the score 𝛿𝑗𝑖 . The pair-wise deletion takes (𝑚) time to 
delete the samples containing missing values. The estimation of 
the inverse probability weights requires to compute the third term 
of Eq. (3), where both the numerator and denominator depend on 
𝜫𝑅𝑖

, which in turn relies on the joint counts 𝐍𝜫𝑅𝑖
. Since in the 

worst case 𝜫𝑅𝑖
 is 𝐕 ∖ {𝑉𝑖}, this step takes (𝑚⋅2𝑛) time. Initialising 

the penalised log-likelihood score relies on the computation of 
the marginal counts 𝐍𝑖 that takes (𝑚). Finally, summing up the 
contribution of each step and taking into account that we need to 
repeat it for each variable across and for each client, we obtain a 
worst-case time complexity of (𝑝 ⋅ 𝑚 ⋅ 𝑛 ⋅ 2𝑛).

• Stage 4 - The solution of the optimisation problem repeats Stage 3, 
increasing the cardinality of the conditioning set incrementally. In 
the worst-case scenario, where the solution is given by a complete 
DAG, we need to evaluate all the DAGs with 𝑛 vertices. This 
number is given by the following recurrence relation [50]:

𝑎𝑛 =
𝑛
∑

𝑘−1
(−1)𝑘−1

(

𝑛
𝑘

)

2𝑘(𝑛−𝑘)𝑎𝑛−𝑘

The presence of a cache allows us to compute the score of each 
(𝑉𝑖,𝜫 𝑖) pair exactly once. If we implement the cache  using a 
hash map, we can retrieve the scores we already computed in 
(𝑛) time, provided that the time to access the value is amortised 
constant and that to compute the key is linear in the number of 
vertices. The time complexity for this final step is (𝑝⋅𝑚⋅𝑛⋅2𝑛 ⋅𝑎𝑛).

The asymptotic space complexity is (𝑛2 + 𝑝 ⋅ 2𝑛), given by:
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• Stage 1 - The server-side initialisation allocates memory for the 
delta score, the graph and the cache. The graph requires (𝑛2)
allocations for the adjacency matrix. The cache is initially empty 
and will grow linearly with the number of score evaluations.

• Stage 2 - The client-side initialisation allocates memory for the 
parents of the missingness indicators 𝜫 𝑗

𝐑 and the independence 
test ⫫𝑃 . Each client keeps track of the sets of parents of each 
missingness indicator, requiring (𝑛2) allocations. As for the time 
complexity, we need to compute the conditional counts 𝐍𝑖,𝑗∣𝐤, 
with (𝑝 ⋅ 2𝑛) allocations each time we perform a test.

• Stage 3 - The initial evaluation allocates memory for the scoring 
criterion. Similarly to the time complexity, we need to compute 
the joint counts 𝐍𝜫𝑅𝑖

, obtaining a worst-case space complexity of 
(𝑝 ⋅ 2𝑛).

• Stage 4 - Finally, the solution of the optimisation problem repeats 
Stage 3, allocating (𝑝 ⋅ 2𝑛) for each evaluation. In the worst-case 
scenario, the cache  grows to (2𝑛) for each client.

While both asymptotic time and space complexity are more than 
exponential, there are some practical considerations that we must take 
into account:

• The worst-case complexity is in line with other solutions present 
in the literature [34].

• The number of parameters strictly depends on the type of proba-
bility distribution. For instance, the parameters and the sufficient 
statistics of the conditional Gaussian distribution are polynomial 
in size.

• These bounds take into account the overall complexity, both 
on the server and the clients. The term 𝑝 can be dropped if 
the algorithm is executed asynchronously, as in most federated 
scenarios.

• The terms 2𝑛 and 𝑎𝑛 can be bounded by fixing the maximum 
number of parents for each variable to 𝑘, where 𝑘 can be derived 
from the penalisation term of the scoring criterion. Refer to 
Theorem 3 in [46].
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