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 A B S T R A C T

Deep learning has been shown repeatedly to be a successful method of obtaining accurate classifiers. This also 
applies to orchid identification from digital photographs. However, deep neural networks possess the major 
weakness of lack of explainability, missing the ability to explain the reasons behind a decision. Nevertheless, 
most current research regarding automated orchid identification applies this blackbox approach. By contrast, 
in this paper we propose a new method for trustworthy automated orchid identification combining two 
complementary methods: deep neural networks and feature-based Bayesian networks, where the Bayesian 
network is also utilized for providing an explanation of the generated solutions. We use other deep neural 
networks to extract flower characteristics, the features, from the images which are subsequently fed into the 
Bayesian network as uncertain evidence. When combining the deep neural network and the Bayesian network 
as an ensemble classifier, both reaching the same conclusion, an accuracy of 89.4% is achieved, the most 
trustworthy outcome. With a human-in-the-loop ensemble classifier, validation results are even better, yielding 
an accuracy of 98.1%. Our approach also exploits the taxonomic knowledge represented in the Bayesian 
network to provide an explanation of the solutions for every case, reinforcing further trust in the method. 
The result is an explainable user-in-the-loop ensemble classifier. Providing explainability can help build user 
trust in a system and may play a major role when it is used as a learning aid for new orchid enthusiasts. 
Finally, the proposed method may be also of value in many fields other than plant determination.
1. Introduction

Plant determination has a very long history, with a major role in its 
development by the famous physician Carl Linnaeus, who firmly estab-
lished the systematic method of plant categorization based on observed 
characteristic features (Linnaeus, 1735). Manual plant identification 
involves examining physical plant characteristics, such as the number 
of leaves, their shape, texture, and color, whether or not it bears 
flowers, or fruit, and if it does, how the flowers or fruits look, whether 
it produces seeds, the number and shape of seeds, etc., resulting in a 
plant’s name. Any plant has a binomial (two-part) name, after Lin-
naeus, consisting of a genus name, describing a group of similar plants, 
and an epithet used to characterize a specific plant, usually called a
species name. For example, the orchid named Cypripedium parviflorum
has genus Cypripedium and its species is Cypripedium parviflorum; a 
species name is meaningless without its associated genus name.

The process of identifying a plant species can be quite challenging, 
even for the experts. In manual plant identification, the experts have 
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1 https://gobotany.nativeplanttrust.org/
2 https://www.cpbr.gov.au/cpbr/cd-keys/RFKOrchids/key/rfkorchids/Media/Html/identify.htm

to observe the characteristics of the plant accurately and compare 
it with the literature using what is called an identification key. An
identification key is a list of plant characteristics that can lead the 
experts to a species name, the identity of the plant. This method has 
been used by botanists, also amateur botanists, for many centuries. 
Originally, and still today, there are botanic books on plant taxonomy 
(e.g. Casey (2020), O’Byrne (2008)) that can be consulted. In addition, 
within the laboratory setting, modern molecular, in particular genome 
analytic methods can be used (Behura et al., 2024). However, these are 
of little use in the field and are thus outside of the scope of this paper.

In the present paper, we take digital photographic images of orchids, 
as made by a smartphone’s camera or a special-purpose digital camera, 
as the starting point for identifying orchids. Manual orchid identifi-
cation involves examining physical flower characteristics such as the 
number of flowers, inflorescence, the shape of a flower, the texture 
of a flower, and so on, resulting in an orchid’s name (de Vogel et al., 
2025). Specialized botanic books on orchids, such as O’Byrne (2008), 
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that may be helpful in determining an orchid species, generally require 
considerable knowledge about orchids for their effective use. However, 
increasingly taxonomic plant information is on the World Wide Web, 
often specialized for particular genera of plants. There also exist several 
web-based applications that cover orchids, such as GoBotany1 and the 
website of the Centre for Australian National Biodiversity Research 
(CAPBR2) and these are quite valuable for orchid enthusiasts, but 
they also presume that the user has considerable botanic knowledge. 
Alternatively, consulting a plant taxonomist for any plant that one 
wishes to identify is also not practically feasible. With the current 
international challenge of conserving our natural environment against 
further deterioration due to industrialization and climate change, there 
is an urgent need to archive information about plants, such as orchids, 
in their natural habitat before it is too late (Schiff, 2018). Thus, orchid 
identification is not only of interest to the orchid enthusiast.

Not surprisingly, in recent years computer-vision methods are in-
creasingly applied to investigate automated orchid identification, with 
an emphasis on deep learning for identifying orchid species from digital 
photographic images (Liu et al., 2019; Seeland et al., 2017; Hiary et al., 
2018). After training from image datasets, deep learning methods are 
often able to recognize features that may not be noticeable by humans, 
which can increase the identification accuracy. However, the advantage 
of high performance comes at a cost: lack of explainability. Deep 
neural networks (DNNs) act as a blackbox, which many users find 
unacceptable, in particular when they not only wish to obtain the right 
answer, but also wish to understand the reasons why this answer was 
provided. Lack of explainability undermines the trustworthiness of a 
system.

According to Petkovic (Petkovic, 2023), a trustworthy system
requires both high accuracy and explainability. Providing users with 
understandable information on how machine learning models reach 
their decisions will increase user trust, and orchid identification is no 
exception to that rule. For several centuries, plant determination was 
done using characteristic features as described in botanic taxonomic 
books and manuals, a method at which taxonomists excel. It is this 
method that we chose as our starting point for our research with 
Bayesian networks (BNs) as the chosen machine learning method to 
represent and interpret orchid features and their uncertainty (Koller 
and Friedman, 2009a).

BNs are known as knowledge representation and machine learning 
methods that have the capability of explaining decisions based on their 
network structure plus their underlying joint probability distribution. 
An attractive feature is that expert knowledge can be incorporated 
to guide the learning process, which makes this method stand apart 
from other machine learning methods. The excellence of BNs for inter-
pretable machine learning was already mentioned by Mihaljević et al. 
(2021), and Nicora et al. (Nicora et al., 2024).

In our research, orchid-flower features were extracted by end-to-end 
image-based deep learning; the extracted features were subsequently 
fused with a BN to express feature uncertainty. The resulting BN reflects 
traditional taxonomic determination based on flower features, taking 
into account the uncertainty of the DNN’s feature extraction process. 
It is not only able to identify orchids from photographic images; in 
addition, it provides an explanation of why or why not a particular 
name of an orchid species has been associated with an image. However, 
although the above-mentioned limitations of DNNs are very relevant, 
their high performance remains an attractive reason for their use. 
Hence, we decided to combine both methods, whole-image deep 
neural-network classification with feature-based Bayesian network 
classification and interpretation, resulting in a new method that 
one could call an explainable ensemble classifier (Hastie et al., 
2009). This way we achieve the best of both worlds: accuracy and 
interpretability.

To summarize, the scientific contributions of this paper are as 
follows:
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• By combining two, very different, types of classifiers, a flower-
feature-based Bayesian network and an end-to-end whole-image 
deep neural network, as a kind of ensemble classifier, solutions 
can be obtained that are augmented by an indication of their
trustworthiness.

• The Bayesian network can be used to generate an explanation 
of provided solutions, taking into account ground flower features 
and uncertain, by deep neural networks extracted image features.

• The algorithm (Fig.  7) offers state-of-the-art performance for 
identification of orchids from photographic images.

Although we have not yet applied the algorithm to a field other than 
orchid identification, its principles are domain-agnostic, and, thus, 
there is no clear obstacle for applying it to other fields.

Details will be provided in the remainder of the paper. As far as we 
know, this is the first time that such a combined taxonomic-feature-
based probabilistic and deep-neural-network-based method appears in 
literature.

The remaining part of the paper is organized as follows. Section 2 
reviews related work in the different areas covered by our paper. In 
Section 3 the methods used and developed for the research are sum-
marized, sometimes in detail when needed. Experiments and associated 
results are reported in Section 4. Finally, in Section 5 we discuss what 
has been achieved by our research. Its implications for the area of 
image-based plant, in particular orchid, identification are elaborated 
in Section 6.

2. Related work

2.1. Orchid flower recognition and deep learning

From a general point of view, Hindarto and Amalia, describe the 
kind of obstacles one may come across if one wishes to develop a flower 
recognition system using modern neural-network technology; they also 
argue why developing such systems is increasingly of importance given 
current ecological threats (Hindarto and Amalia, 2023). Nevertheless, 
there have been notable advancements in automated orchid identifi-
cation in recent years, driven largely by the power of deep learning. 
Several studies have demonstrated the effectiveness of deep learning 
architectures in recognizing orchid species from images, which is why 
we restrict ourselves here to the description of these relatively new 
deep learning approaches.

Arwatchananukul et al. built a system that utilizes computer vision 
to identify Paphiopedilum orchids, also known as Venus slippers (Ar-
watchananukul et al., 2020). The system relies on a dataset of 1,500 
images, with 100 samples for each of 15 different orchid species 
covered by the data. All images were captured at Paphiopedilum orchid 
gardens and meticulously classified by experts. The core of the system 
is a deep learning approach that combines a convolutional neural net-
work with the Inception-v3 feature extractor from TensorFlow (Abadi 
et al., 2015). This combination achieved remarkable recognition rates, 
reaching up to 98.6%. Part of this success may be explained by the 
high photographic quality of the pictures: all orchids are similar in size 
and were positioned in the center of the picture. The good design of 
the employed deep neural network will also have played a role here. 
Finally, the researchers also developed a practical application —- a 
mobile app for Android devices. A limitation of the work is that only 
part of one orchid genus, viz. Paphiopedilum, is covered: 15 of about 
100 different species.

Research conducted by Sarachai et al. (2022) focused on the de-
velopment of another architecture specifically designed to classify or-
chid species from images, this time not restricted to one genus. The 
architecture tackles this challenge by incorporating a three-pronged 
approach:
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(1) A Global Prediction Network (GPN). This network acts as a broad 
observer, analyzing the overall characteristics of the orchid flower 
in an image. By examining these global features, the GPN makes 
an initial prediction about the name of the orchid species.

(2) A Local Prediction Network (LPN) focuses on the finer details. It 
utilizes a spatial transformer network to zoom in on specific areas 
of the flower. This allows the network to analyze local features, 
such as the intricate details of individual flower organs. Based on 
these local analyses, the LPN generates its own prediction for the 
orchid species.

(3) An Ensemble Neural Network (ENN) acts as a harmonizer, com-
bining the predictions from both the GPN (global features) and 
the LPN (local features) to a final classification.

Evaluation was done on three datasets: the well-known Oxford 17 and 
102 datasets (Nilsback and Zisserman, 2008), containing 17 and 102 
different species, respectively, and their own dataset containing 52 
orchid species. The performance varied from 94.18% to 98.39%, where 
the lowest performance was achieved for their own, harder orchid 
dataset due to higher variation in picture quality, compared to the 
Oxford datasets.

An ensemble voting-scheme method, related to the previously de-
scribed method, was used to predict orchid species from three pre-
trained deep learning models by Ou, et al. Ou et al. (2023). The three 
pre-trained models are ResNet50, EfficientNet, and Big Transfer (BiT). 
The method could improve the accuracy of the best single pre-trained 
model by 2.8% to 3.1% when validated by different datasets.

The effectiveness of deep learning architectures was also observed 
by Wang and Wang (Wang and Wang, 2024). They applied transfer 
learning technology to recognize 12 different types of orchid from 
12,227 images. The method was able to achieve an accuracy of 96.16%. 
In another research, Wang et al. (2024) proposed to merge features 
extracted from multiple layers and different stages, and subsequently 
trains the classifier on this integrated representation. The model ob-
tained a 92.89% classification accuracy rate, which was higher than 
when only using Resnet34.

To conclude deep neural networks performance for orchid identi-
fication varies, dependent on size of the dataset, quality of the photo-
graphic images, number of species distinguished, and DNN architecture 
employed, between 93% and 98.5%.

2.2. XAI and deep neural networks

Due to the impact of deep learning and deep neural networks, many 
different methods have been proposed to improve the explainability 
of neural networks, and these methods have become known as eX-
plainable AI, XAI for short (Longo et al., 2024). The term XAI was 
introduced by DARPA and has since become widely recognized and 
used (Holzinger et al., 2022). One should realize that providing an 
explanation of solutions generated by an intelligent system has been 
explored already since the 1970s (Lucas and van der Gaag, 1991). As 
an example, the capability of providing an explanation of a solution 
(why a question was asked and how a solution was achieved) was 
already part of the 1970s rule-based MYCIN system; it was considered 
an essential ingredient for a system that was intended for use by 
clinicians (Shortliffe, 1976; Lucas and van der Gaag, 1991). Hence, the 
topic of explanation is by no means new, but has become an important 
issue of debate regarding the acceptance of blackbox neural networks.

A diagrammatic overview of the concept of XAI as proposed by 
DARPA is depicted in Fig.  1 (Gunning and Aha, 2019). An XAI sys-
tem should be able to provide explanations that help users know the 
system’s strengths, weaknesses, and future performance, while sup-
porting making corrections. Humans have both explicit and implicit 
knowledge, which they use in tandem. Understanding and explaining 
things requires explicit knowledge, while a DNN that learns from data 
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to create a probabilistic model essentially acquires implicit knowl-
edge. Knowledge-representation systems, using e.g., logic, rules, or 
knowledge graphs, are based on explicit, symbolic knowledge. Whereas 
currently these two approaches to AI, neural and symbolic, are seen 
as each other’s opposite, researchers are working to bridge the gap 
between the two (Xu et al., 2019).

According to Kenny et al. (2021), two main types of XAI system 
can be distinguished. Firstly, transparency by design, i.e., designing a 
system in a transparent fashion supporting the understanding of how a 
system or model is working. The second type is post-hoc explanation, 
which is an explanation that is based on evidence that supports the 
conclusion, e.g., by showing pixel importance. There exist several XAI 
methods based on the first approach. One of these, called Prototypical 
Part Network (ProtoPNet), is able to identify parts of the test image 
having similar appearance to the learned prototypes (Chen et al., 
2019). Another method, called Neural Prototype Tree (ProtoTree), 
developed by Nauta et al. (2021), was built based on ProtoPNet but 
generates fewer prototypes. It consists of training a convolutional neu-
ral network followed by a binary tree. This approach simplifies model 
understanding and error detection by segmenting the reasoning into 
smaller steps.

One particularly influential approach that can be categorized as 
the second one is called LIME (Local Interpretable Model-agnostic 
Explanations). It explains a prediction made by a model by fitting a 
local surrogate model, e.g., a simple linear function, whose predictions 
are easier to explain than the original model (Ribeiro et al., 2016). 
Another XAI method that applies this second approach is rule-based and 
called anchors (Ribeiro et al., 2018). An anchor is a rule that ‘anchors’ 
– hence the name of the method – a prediction locally, such that 
changes of other features of a data instance does not change the anchor. 
This method is capable of interpreting the behavior of various models 
and can be applied to different domains such as tabular data, images 
and text. Finally, SHapley Additive explanation (SHAP) is also a type 
of XAI that uses post-hoc explanations. SHAP employs a method based 
on cooperative game theory that results in what are called ‘Shapley 
values’. They are used to determine the contribution and importance 
of different feature combinations on a model’s output (Lundberg and 
Lee, 2017).

Unfortunately, none of the XAI methods mentioned above are in our 
opinion particularly suitable for representing and explaining uncertain 
taxonomic knowledge.

2.3. Bayesian networks as means for XAI

Bayesian classifiers are Bayesian networks with a restrictive, rela-
tively simple tree topology and they have been popular for a very long 
time, at least since the end of the 1960s (e.g. de Dombal et al. (1972), 
Chow and Liu (1968)). Nonrestrictive Bayesian networks are a more 
recent invention from the end of the 1980s (Pearl, 1988; Cowell et al., 
1999; Koller and Friedman, 2009b). There are several papers that have 
shown that despite its restrictive nature, the simple, often called ‘naive’, 
Bayesian classifier performs remarkably well (Domingos and Pazzani, 
1997; Friedman et al., 1997). Nevertheless, often, as in our research, it 
pays off when adding some extra complexity to a Bayesian network as 
it adds to their explainability and sometimes also performance.

Bayesian networks are examples of white-box representation meth-
ods, as they allow explaining their conclusions based on both their 
network structure and associated probability distribution. There are 
several papers that offer evidence that Bayesian networks are a promis-
ing XAI method, e.g. Butz et al. (2022), Lacave and Diez (2002), van 
Leeuwen et al. (2024). This evidence explains why we decided to use 
Bayesian networks as a backbone of our research.
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Fig. 1. The XAI concept as proposed by DARPA (diagram courtesy of DARPA (Gunning and Aha, 2019)).
3. Methods

Modern computer vision methods are good at providing end-to-
end solutions, in particular, as those offered by deep neural networks 
(DNNs). The input is just an image that includes a particular object, and 
without explicitly taking into account the plant’s visual characteristics, 
or features, that taxonomists would use to distinguish them from each 
other. That is the reason why we decided to explore a second method: 
plant feature extraction, based on exactly the same images used for 
training the end-to-end DNNs, where again DNNs, although different 
ones – specialized feature extractors – were employed. As feature ex-
traction would yield uncertainty, meaning that some features obtained 
by the automated extraction process were wrong in comparison to 
the ground truth, all the features had to be combined to predict the 
plant’s species. A modern way to do this is by building a Bayesian 
network (BN) (see below for details). By combining the two methods, 
we basically combine an implicit method, to some extent akin to the
thinking fast method of Daniel Kahneman  (Kahneman, 2011), and 
the explicit rational, taxonomic methods, related to the thinking slow 
method. The explainable ensemble method that combines a BN and DNN 
was born.

An overview of how the methods explored in this paper are intended 
to work together for practical use, is depicted in Fig.  2, whereas the 
actual algorithm is presented in Fig.  7, and will be discussed later. 
Explicit flower characteristics such as texture, number of flowers, and 
so on (see Section 3.1) are extracted by deep neural network (DNN) 
classifiers. The extracted features are then fed into a Bayesian network 
(BN) to predict the orchid species. The BN also supports the generation 
of an explanation. To increase the accuracy of the entire system, we 
also employ another DNN. Although similar in architecture, the main 
difference with the DNN feature classifiers is that it classifies an image, 
purely based on image data rather than flower features. Finally, the 
DNN classification is combined with the BN predictions, where the 
latter is also used to explain the solution. The result is an explainable, 
high accuracy automated orchid identification system, which may be 
seen as an ensemble classifier, although an uncommon one as will 
become clear below.

Before we can actually use the DNN and BN in the way just de-
scribed, we first need to train both using data. Most of the remainder 
of this section is about the methods of machine learning we developed 
for that purpose. In addition, the features used to characterize orchid 
flowers are introduced. Also described is how image features can be 
extracted using DNNs and much is devoted to explaining how we can 
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build a BN for flower identification using a mixture of descriptive 
flower features from textual data and uncertain image features obtained 
by DNNs.

3.1. Descriptive features of orchids

A flower of an orchid consists of several parts as depicted in Fig. 
3. These parts are described by means of flower features, typically 
also used by taxonomists; they are essential for differentiating between 
various types of plants or flowers. In current research on automated 
plant recognition systems, researchers use implicit features, i.e., image 
features that say nothing specific about the flower color, form, texture, 
etc. Instead, in our research we also use explicit, descriptive features 
inspired by how taxonomists characterize plants. Descriptive features
are based on the description of the characteristics of a flower. For 
example, the Cypripedium parviflorum has a flower with color ‘green’ 
and ‘red’, has a ‘pouch shape’ of the labellum; orchid Cypripedium 
reginae has a flower which is ‘red’, and has a ‘simple shape’ of the 
labellum, etc. The identity of a plant, i.e., its species, is represented 
by the variable ‘CLASS’ and refers to the name of an orchid species. In 
our research the focus is on the identification of species (which thus by 
default also gives the genus).

The following features 𝐹  and their associated domain, indicated by 
𝐷(𝐹 ), were selected to describe the images in the dataset on the basis of 
being easily identifiable by both humans and computer vision systems 
and by their occurrence in the descriptions associated with the images 
in our dataset:

(1) T: Texture of the labellum with domain {spots, nospots}.
(2) NF: Number of Flowers, a count of the number of distinguishable 

flowers in the picture, with a qualitative domain of three values: 
‘single or pair’, ‘a few’, and ‘many’.

(3) IN: INflorescence with domain ‘single or pair’, ‘panicle’, ‘raceme’, 
and ‘spike’.

(4) CF: Color of Flower describing the color of sepals and petals, 
in terms of 8 color pairs: ‘GreenGreen’ (all flowers are entirely 
green), ‘GreenRed’, ‘GreenYellow’, ‘PurplePurple’, ‘PurpleYellow’, 
‘RedRed’, ‘RedYellow’, and ‘YellowYellow’.

(5) CL: Color of Labellum described with the same 8 color pairs as 
for CF.

(6) LC: shape of Labellum with a domain consisting of ‘fringed’, 
‘simple’, ‘lobed’, and ‘pouched’.
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Fig. 2. An overview of the various methods, and their relationship, for automatically identifying an orchid from a photographic digital image, augmented by an 
explanation provided by the orchid-flower Bayesian network; DNN: Deep Neural Network. There are two types of DNN mentioned in this flow diagram: feature 
classifiers, DNN1-6, (one DNN for each feature), and a whole-image classifier, DNNwi. The algorithm that corresponds to this flow chart is presented in Fig.  7.
Fig. 3. Parts of an orchid flower. The flower consists of sepals and petals; 
there is only one labellum which may have its own separate color, different 
from the sepals and petals.

Fig.  4 illustrates some of the characteristic features of orchids. An 
effective method to describe color features, here CF and CL, using two 
colors in combination was developed in previous research (Apriyanti 
et al., 2021). Other features, e.g., geographical location and season of 
flowering, were not used by us as the orchids we have in our dataset 
come from one geographical area.

Descriptive features of orchid species provide the gold standard 
for describing orchids, and although there is some variation among 
species, e.g., a particular orchid species may vary in color, in general 
this variation is very limited. As the goal of the research is to determine 
an orchid species based on an analysis of digital photographs, the 
flower features mentioned above also exist in a digital image version, 
obtained by feature extraction using DNN. The descriptive features and 
the orchid species fill part of the orchid dataset – a small sample of it 
is shown in Table  A.3 – we put together. How the descriptive features 
are complemented by image flower features is described in the next 
subsection.

3.2. Deep neural networks for feature extraction and flower–image inter-
pretation

To extract the orchid image features from digital photographic 
image data, each descriptive feature was taken as the ground truth 
label for the corresponding image feature. Six different DNN classifiers 
were trained, using supervised learning, one for each individual feature 
mentioned above. After extensive experimentation with many different 
DNN architectures, described in detail in a previously published paper 
(Apriyanti et al., 2023), Xception (Chollet, 2017) was chosen as the 
backbone of the classifiers.

The training inputs for the DNNs were images with a dimension 
of 224 × 224 × 3. For this research, the pre-trained architecture of 
Xception was used by freezing the first layer and unfreezing the rest. 
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We added a flatten layer and one dense layer with 256 neurons using 
a ReLU activation function (Agarap, 2018). We also added a dropout 
layer of which the value was 0.5. As final layer of the DNN we used the 
softmax function. The features derived using this process are uncertain 
because uncontrolled conditions of the images, such as lighting, pose 
variation, and scaling, may have a big influence on the actual feature 
value extracted. The Xception architecture and the hyperparameters 
used for the whole-image interpretation were the same as for feature 
classifiers, except for the output target (orchid species rather than an 
orchid feature).

As we will describe below, the probabilistic information needed for 
including the image features into a Bayesian network consists of the 
true positive rates and true negative rates for each of the features, 
which were already reported in a previous paper (Apriyanti et al., 
2023) and are repeated for completeness in Table  A.5. The sample 
dataset in Table  A.3 contains the image features for the orchids; note 
that these are not always the same as the ground truth features. For 
example, for obtaining the color of flower, the human interpreter 
defines that the color is white, however, if the illumination of the image 
is low then the computer defines it as gray. This uncertainty, however, 
can be represented adequately in a Bayesian network.

3.3. Design of the Bayesian network

3.3.1. Basic notions
A Bayesian Network  = (𝐺, 𝑃 ) represents a joint probability distri-

bution over a set of random variables 𝑋 = {𝑋1,… , 𝑋𝑛} in the shape of 
a graphical model 𝐺 = (𝑉 ,𝐴) that expresses conditional independence 
assumptions, and therefore also conditional dependence assumptions, 
the complement. It consists of a set of nodes 𝑉 = {1,… , 𝑛} and a set 
of directed edges 𝐴 ⊆ 𝑉 × 𝑉 , with an edge (𝑖, 𝑗) ∈ 𝐴, also denoted 
as 𝑖 → 𝑗, that together form a directed acyclic graph 𝐺. Each node 
𝑖 ∈ 𝑉  corresponds one-to-one to a random variables 𝑋𝑖 and vice versa, 
while directed edges 𝑖 → 𝑗 represent the relationship between random 
variables (𝑋𝑖, 𝑋𝑗 ).

A Bayesian network specifies all the conditional probabilities that 
are needed to compute the joint probability distribution of the variables 
it contains using the following equation: 

𝑃 (𝑋1, 𝑋2,… , 𝑋𝑛) =
𝑛
∏

𝑖=1
𝑃 (𝑋𝑖 ∣ 𝑋Pa(𝑖)) (1)

where Pa(𝑖) = {𝑘 ∣ (𝑘, 𝑖) ∈ 𝐴} denotes the set of parents of node 𝑖, where 
𝑋Pa(𝑖) is the associated set of random variables (Lucas et al., 2004). 
This expression implies that all ancestor variables 𝑋𝑗 (variables with a 
path to 𝑋𝑖) of 𝑋𝑖 are conditionally independent of variable 𝑋𝑖 given the 
parent variables 𝑋Pa(𝑖). This usually results in a compact specification 
of the joint probability distribution. One should also realize that a 
joint probability distribution allows one to compute any (conditional) 
probability of any subset of variables given any other subset of variables 
just by using the basic rules of probability theory.

To build a Bayesian network, we can use one of the following 
approaches: (i) exploiting (in particular) causal knowledge of experts 
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Fig. 4. Morphological features: (a) Inflorescence, (b) Labellum characteristic.
in a given domain; (ii) learning from data; (iii) combining the two ap-
proaches. In our research, the third approach is employed, i.e., learning 
from data combined with expert background knowledge.

3.3.2. Learning Bayesian networks from data
There are two steps in learning a Bayesian network from data: 

firstly, its graphical structure has to be learned from the data, and sec-
ondly, the probabilistic parameters 𝑃 (𝑋𝑖 ∣ 𝑋Pa(𝑖)) need to be estimated 
before we can do inference.

Structure learning is the process of finding the structure that fits 
the data best. Finding the best structure is a challenging task since 
the number of model structures is large (super-exponential), even if 
the network contains few nodes (Robinson, 1976). As a consequence, 
structure learning is not done by exhaustively exploring the entire space 
of directed acyclic graphs, as this would be prohibitive for graphs with 
more than 6 or 7 nodes. Rather, structure learning is accomplished by 
carrying out conditional independence tests in a local fashion, where 
only subsets of variables are considered. This type of algorithm is 
called constraint-based. One may also learn the graph structure by 
traversing the space of directed acyclic graphs in a heuristic manner, 
using various score metrics to guide the search; these algorithms are 
called score-based.

Examples of constraint-based structure learning algorithms are the 
stable PC algorithm (Colombo and Maathuis, 2014) and Grow-Shrink 
(GS) (Margaritis, 2003). All of these algorithms use conditional in-
dependence tests to find a structure that mirrors the independences 
reflected in the data.

The score-based approaches employ a score function to assess how 
well the structure explains the data, possibly taking into account prior 
knowledge about probabilistic parameters and network structure. Most 
score functions used are based on the idea that the likelihood of the 
data given the BN, 𝑃 (Data ∣ BN), is a suitable measure of goodness-
of-fit. However, usually score measures such as Bayesian Dirichlet 
Equivalent (BDe) score (Heckerman et al., 1995; Chickering, 1995) and 
Bayesian Information Criterion (BIC) score (Chickering, 1995) are used 
as they penalize complexity of a BN, making complex networks less 
prone to overfitting than simpler networks (Needham et al., 2007). BIC 
is defined as follows: 

BIC( ∣ Data) =
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
log𝑃 (𝑋𝑖

𝑗 ∣ 𝑋
𝑖
Pa(𝑗)) − 𝑑

log𝑚
2

(2)

with 𝑚 = |Data| and 𝑑 a measure of the complexity (dimensions) of 
the probability tables of the BN. The first term in Eq.  (2) is actually 
the log-likelihood of the data given the BN model, i.e., log𝑃 (Data ∣
BN), whereas the second term acts as a penalty term, which inhibits 
learning complex Bayesian networks. In this paper we will rather use 
the BDe score, which also incorporates the log-likelihood of the data, 
but in addition allows using prior knowledge (in our case we will use 
a uniform prior on the probabilistic parameters and start search with a 
6 
prior network structure). Search algorithms using this approach are the 
hill-climbing algorithm (a greedy search) and tabu search, also greedy 
search but with a mechanism included to prevent revisiting previously 
visited nodes. When using structure learning it is also possible to restrict 
a score-based algorithm by the specification of a white-list (meaning 
that all arcs included should be present in the result) and black-list
(mentioned arcs should not be included in the result) (Scutari, 2025; 
Scutari and Denis, 2021).

The algorithms mentioned above are purely machine-learning
based. Ways to restrict the search process is offered by restrictive
algorithms that are especially used for classification purposes: the 
naive Bayesian classifier (Domingos and Pazzani, 1997) and the tree-
augmented network (Chow and Liu, 1968). The naive Bayesian clas-
sifier is a Bayesian network with a fixed structure (a single class 
variable and feature variables that are assumed to be conditionally 
independent of the class variable) (Friedman et al., 1997), whereas 
the tree-augmented network adds a tree structure to the naive network 
structure. Later in Section 3.6, it will become clear that we developed 
a type of Bayesian network learning that starts with a naive backbone 
to be followed by structure learning, which we call semi-supervised 
structure learning.

Following structure learning, the next step is parameter learning, 
i.e., given the Bayesian-network graph with its encoded conditional 
independence assumptions, the probabilistic parameters have to be 
estimated from the data. The simplest approach to learn the param-
eters is by maximizing the likelihood of the data, called maximum 
likelihood, resulting in the maximum likelihood of the data given the 
BN. For discrete random variables, maximum likelihood corresponds 
to counting the frequencies of the occurrences of values of variables 
in the data. This approach is based on the data only, and often called 
the frequentist approach (Hastie et al., 2009). Another approach is 
to learn the parameter by starting with a prior distribution and using 
a Bayesian approach by updating the probability distribution by the 
new data (Heckerman et al., 1995; Hastie et al., 2009).

3.4. Deterministic random variables and conditional independence

By definition, all the conditional independences in the graph 𝐺 =
(𝑉 ,𝐴), denoted by the triples 𝑈 ⟂⟂𝐺 𝑊 ∣ 𝑍, with 𝑈,𝑊 ,𝑍 disjoint sub-
sets of nodes from 𝑉 , are reflected in the probability distribution 𝑃 , 
denoted by 𝑋𝑈 ⟂⟂𝑃 𝑋𝑊 ∣ 𝑋𝑍 , i.e.
𝑈 ⟂⟂𝐺 𝑊 ∣ 𝑍 ⟹ 𝑋𝑈 ⟂⟂𝑃 𝑋𝑊 ∣ 𝑋𝑍

It is said that the graph 𝐺 is an independence map (I-map) of the 
probability distribution 𝑃 . In words: ‘‘if paths between nodes are dis-
connected or paths are blocked, then there will be corresponding 
conditional independences in the probability distribution 𝑃 ’’.

Independence statements 𝑋𝑈 ⟂⟂𝑃 𝑋𝑊 ∣ 𝑋𝑍 are determined by 
carrying out independence tests that establish that 𝑃 (𝑋 ∣ 𝑋 ,𝑋 ) =
𝑈 𝑊 𝑍
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Fig. 5. The graph 𝐺 of a Bayesian network with functional dependence 𝑋𝑢 =
𝑓 (𝑋𝑦, 𝑋𝑧).

𝑃 (𝑋𝑈 ∣ 𝑋𝑍 ) for any value of the set of variables 𝑋𝑈 , 𝑋𝑊 , and 𝑋𝑍 . If 
the independence test fails, dependence holds: 𝑋𝑈 ̸⟂⟂𝑃 𝑋𝑊 ∣ 𝑋𝑍 .

Statements of the form 𝑈 ⟂⟂𝐺 𝑊 ∣ 𝑍 are read-off from the 
graph 𝐺 by applying the conditions of d-separation, telling that if all 
(undirected) trails from any vertex in 𝑈 to any vertex in 𝑊  is blocked 
by any vertex in 𝑍 the statement holds. A trail is blocked if none of 
the vertices in 𝑍 are colliders, i.e. of the form ⋅ → 𝑤 ← ⋅ on the 
considered trail, or a descendant of 𝑤. If the d-separation test fails, the 
sets of vertices are d-connected, denoted as 𝑈 ̸⟂⟂𝐺 𝑊 ∣ 𝑍. Often a 
directed edge of a directed acyclic graph can be reversed (using Bayes’ 
rule to compute the new probabilities), yielding a network with exactly 
the same d-separation properties. Such networks are called Markov 
equivalent. Arcs that participate in a collider cannot be reversed 
without adding some extra dependences as edges.

However, the independence relationships do not hold when the 
probability distribution 𝑃  also contains deterministic probabilities 
𝑃 (𝑥𝑣 ∣ 𝑥Pa(𝑣)), i.e., with 𝑃 (𝑥𝑣 ∣ 𝑥Pa(𝑣)) ∈ {0, 1}. Deterministic probabilities 
are expected to occur frequently in our research, as part of the data that 
will be used consists of descriptions of orchids, and these are always 
completely certain and precise (although sometimes ambiguous).

As an example, consider the Bayesian network shown in Fig.  5. 
Here we have that {𝑢} ̸⟂⟂𝐺 {𝑤} ∣ {𝑦, 𝑧} (nodes 𝑢 and 𝑤 are directly 
connected), but because of the functional dependence 𝑋𝑢 = 𝑓 (𝑋𝑦, 𝑋𝑧)
it holds that 𝑋𝑢 ⟂⟂𝑃 𝑋𝑤 ∣ {𝑋𝑦, 𝑋𝑧} as 𝑋𝑢 is fully determined by 𝑋𝑦 and 
𝑋𝑧. From data one can only infer probabilistic independence statements 
𝑋𝑢 ⟂⟂𝑃 𝑋𝑤 ∣ 𝑋𝑧, which means that deterministic variables might induce 
extra independences in the learned graphical structure.

In particular the constraint-based structure learning algorithms, 
such as the (stable) PC algorithm, have difficulty in dealing with 
deterministic data. This is due to the use of a test in the algorithm that 
examines the conditional independence of two variables given a subset 
of other variables. A typical example is the use of mutual information
𝐼(𝑋, 𝑌 ∣ 𝐙) defined as follows:

𝐼(𝑋, 𝑌 ∣ 𝐙) = 𝐻(𝑋 ∣ 𝐙) −𝐻(𝑋 ∣ 𝑌 ,𝐙)

=
∑

𝐙

∑

𝑋

∑

𝑌
𝑃 (𝑋, 𝑌 ,𝐙) log 𝑃 (𝑋, 𝑌 ∣ 𝐙)

𝑃 (𝑋 ∣ 𝐙)𝑃 (𝑌 ∣ 𝐙)
(3)

where 𝐻(𝑋 ∣ 𝐙) =
∑

𝑋 𝑃 (𝑋 ∣ 𝐙) log𝑃 (𝑋 ∣ 𝐙) is the conditional 
entropy. In case that variables 𝑋 and 𝑌  are conditionally independent 
given the set of variables 𝐙 we have that 𝑃 (𝑋, 𝑌 ∣ 𝐙) = 𝑃 (𝑋 ∣ 𝐙)𝑃 (𝑌 ∣
𝐙), i.e., 𝐼(𝑋, 𝑌 ∣ 𝐙) = 0. However, if the conditional probability 
distributions 𝑃 (𝑋𝑖 ∣ 𝑋Pa(𝑖)) are deterministic, when computing the 
entropy lim𝑝↓0 𝑝 log 𝑝 = 0 and for the case that 𝑝 = 1, we have that log 𝑝 =
0, hence, the entropy becomes 0. As a consequence, the arcs between 
the variables 𝑋 and 𝑌  are omitted, despite the fact that there exists 
a deterministic relationship 𝑌 = 𝑓 (𝑋) between 𝑋 and 𝑌 . Although 
a deterministic relationship between variables 𝑋 and 𝑌  means that 
𝑋 and 𝑌  are informational equivalent from a probabilistic point of 
view, i.e., for example 𝑌  could be omitted, this does not imply that 
deterministic relationships are useless. On the contrary, they can be 
useful for prediction (Lemeire et al., 2008), as in the present paper.
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3.5. Virtual evidence

The method of including virtual evidence, sometimes also called
likelihood evidence, is meant to express uncertainty about the ob-
servation of a particular value of a feature, in our case for example 
the uncertainty of observing a particular color of an orchid flower in 
a photograph, according to a deep neural network algorithm (Pearl, 
1988). The idea is that a variable 𝐹  (feature) is linked to a virtual node, 
denoted 𝐹𝑣, in the following graphical form:
𝐹 → 𝐹𝑣

With this subgraph of a bigger Bayesian network, a set of conditional 
probability distributions has to be associated: 𝑃 (𝐹𝑣 = 𝑦𝑒𝑠 ∣ 𝐹 = 𝑦𝑒𝑠) = 𝑥
and 𝑃 (𝐹𝑣 = 𝑛𝑜 ∣ 𝐹 = 𝑦𝑒𝑠) = 1 − 𝑥, and 𝑃 (𝐹𝑣 = 𝑦𝑒𝑠 ∣ 𝐹 = 𝑛𝑜) = 𝑦 and 
𝑃 (𝐹𝑣 = 𝑛𝑜 ∣ 𝐹 = 𝑛𝑜) = 1 − 𝑦. Note that these probabilities correspond 
to the true positive rate (TPR), false negative rate (FNR), false positive 
rate (FPR), and the true negative rate (TNR) for each of the features. 
For the orchid flower Bayesian network, these numbers are provided in 
Table  A.5.

In order to classify an orchid from a photograph, one first needs to 
extract the features using the feature neural networks obtained by deep 
learning. This yields a unique value for each of the features, which 
is used as hard evidence into the Bayesian network. Given a value 
for each of the features 𝐹𝑣, e.g. 𝐹𝑣 = 𝑦𝑒𝑠, computed is the probability 
distribution 𝑃 (𝐹 ∣ 𝐹𝑣 = 𝑦𝑒𝑠) by means of probabilistic inference. This 
actually corresponds to using Bayes’ theorem:

𝑃 (𝐹 ∣ 𝐹𝑣 = 𝑦𝑒𝑠) =
𝑃 (𝐹𝑣 = 𝑦𝑒𝑠 ∣ 𝐹 = 𝑦𝑒𝑠)𝑃 (𝐹 = 𝑦𝑒𝑠)

𝑃 (𝐹𝑣 = 𝑦𝑒𝑠)

3.6. Semi-supervised structure learning

The ground-truth features that are used to describe the features 
verbally are for each orchid very similar and often identical. This 
results in much determinism in the probabilistic relationships between 
the ground-truth feature variables with the consequences summarized 
above in Section 3.4. Despite the fact that there is sometimes still some 
nondeterminism left, it is not possible to determine scoring functions 
(because of zero probabilities) or dependences among variables. One 
could of course use Laplace smoothing when computing conditional 
probabilities from the data; however, that would not do justice to 
the nature of the data in this specific case. A natural way to look at 
this part of the Bayesian network is to see the class variable as an 
(almost) deterministic function of the ground-truth feature variables. 
To represent this as a graph can be done by a naive Bayesian network 
structure with the class variable as root and the ground-truth feature 
variables 𝐹𝑖 as the leaves connected to the class variables, as follows: 
CLASS→ 𝐹𝑖, for 𝑖 = 1,… , 6.

This determinism, however, does not concern the image feature 
variables, because in the extraction process from the images by deep 
learning there is always some, and sometimes significant, uncertainty 
involved. The uncertainty is exemplified in the results for the individual 
image features summarized in Table  A.5. The general idea of the semi-
supervised structure learning method we developed for this specific 
problem with partly deterministic variables and partly uncertain ver-
sions of the same variables, is illustrated in Fig.  6. Thus, each feature 
𝐹𝑖 and image feature IF𝑖 is assumed to be independent (d-separated) 
and the role of structure learning is to find dependences among the 
features and image features variables IF𝑖 from the data that improve 
the score of the resulting Bayesian network.

However, instead of applying structure learning one could also 
link features and corresponding image features together manually as 
follows:

CLASS→ 𝐹𝑖 → IF𝑖, for 𝑖 = 1,… , 6

resulting in what we will call a ‘‘double-naive’’ Bayesian network. 
Alternatively, one could manually add a few arcs based on background 
knowledge, resulting in what we will call a ‘‘semi-naive’’ Bayesian 
network below.
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Fig. 6. General backbone of Bayesian network feature structure learning. Note that each image feature is independent of all other variables; the idea is that 
dependences between the features and image features are learned by structure learning restricted to features and image features. Thus, this Bayesian network is 
used as a start, or backbone, of the search process.
3.6.1. Complexity of the network
When we observed the probability distribution of each feature in 

each class, it became clear that for any of the values of the CLASS 
variable there are deterministic probability distributions among the 
feature variables. This makes it less likely that dependences between 
the feature variables are discovered.

However, if one would allow the CLASS variable to encode every 
individual species of the plant considered in this paper, i.e., the orchids, 
double-naive or semi-naive Bayesian networks, as introduced in the 
previous section, would suffice to describe the individual orchids as 
long as the features offer sufficient discriminative power. As there are 
about 25,000–30,000 different orchid species, the dimension of the 
Cartesian product of the feature variables should be at least 25,000 
in size. The advantage of using double-naive or semi-naive Bayesian 
networks as a representation is that probabilistic inference has linear 
time and space complexity, whereas Bayesian networks in general 
are NP-hard  (Cooper, 1990). Thus, the chosen representation is very 
efficient.

The features should be powerful enough to differentiate between 
different types of flower. However, it is not always possible to dif-
ferentiate between different orchid types based on a description of 
their flowers as sometimes the descriptions are quite similar. As a 
consequence, the only thing we can do is to use a sufficient number 
of easily identifiable features and sometimes accept that some orchids 
cannot be distinguished based on their features.

Using the definition of Bayesian networks it is in principle possible 
to describe flowers (of plants) in terms of their features. The joint 
probability distribution in this case would read as:
𝑃 (CLASS,T,NF, IN,CF, LC,CL)

and can be computed using Formula (1) given a particular graph 
structure associated with the Bayesian network. Note that given the 
various domains of the variables, in this case using multinomial data, 
the conditioning set of the set of conditional probability distributions
𝑃 (CLASS ∣ T,NF, IN,CF, LC,CL)

would be able to index
|𝐷(T)| ⋅ |𝐷(NF)| ⋅ |𝐷(IN)| ⋅ |𝐷(CF)| ⋅ |𝐷(LC)| ⋅ |𝐷(CL)|
= 2 ⋅ 3 ⋅ 3 ⋅ 8 ⋅ 3 ⋅ 8 = 3,456

number of orchids. Given the estimated number of orchids, the result 
obtained above is approximately one-tenth of this number. By adding 
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more features, for example, flowering date (FD) assuming that its value 
is expressed in terms of a specific month, we would in principle be 
able to index each of the 25,000 individual orchids. However, there 
may be overlap of some orchid features and, in addition, it is known 
that there exists some biological variation within one species, e.g., a 
species may have some variation in color. For our orchid database with 
63 species, the features included in our models offer enough expressive 
power, although this does not imply that the image features are always 
able to discriminate between the species because of their uncertainty.

3.7. An explainable ensemble classifier using a DNN and a BN

As Eq.  (1) shows, a Bayesian network represents a factorized prob-
ability distribution and as such allows, in principle, computing any 
probability distribution of any subset of variables conditional on any 
evidence. Whereas at first sight this appears to offer only limited 
explanatory power, one should also realize that the graph structure of 
a Bayesian network allows one to follow the reasoning flow through 
the network, sometimes blocked or unblocked by the d-separation due 
to part of the evidence. In addition, a Bayesian network supports
counterfactual reasoning where the effects of what-if assumptions can 
be explored just by looking at changes due to the assumptions (Pearl, 
2009).

When restricted to orchid identification based on 𝑚 > 0 explicit 
(descriptive) features, the following probabilistic queries would yield 
explanatory insight:

• The distribution of 𝑃 (CLASS ∣ Evidence);
• Given solution CLASS = 𝑐 (for example obtained by the deep 
neural network based on image data), show which image features 
IF𝑖 are most likely:
argmax𝑓𝑃 (IF𝑖 = 𝑓 ∣ CLASS = 𝑐),

for 𝑖 = 1,… , 𝑚;
• Counterfactual reasoning with some assumptions about the
CLASS, features, and image features entered as evidence into the 
network. For example: Let us assume that CLASS = 𝑐 is offered 
as solution by one classifier, whereas another classifier gives 
CLASS = 𝑑 as result. Comparing the two predictions by computing 
the difference, alternatively one could compute the ratio, yields:
𝑃 (IF𝑖 = 𝑓 ∣ CLASS = 𝑐) − 𝑃 (IF𝑖 = 𝑓 ∣ CLASS = 𝑑)

for 𝑖 = 1,… , 𝑚. The difference (or ratio) will give insight into the 
differences between the image characteristics between these two 
different suggested solutions.
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Fig. 7. DNN (deep neural network) and BN (Bayesian network) as an ensemble classifier for explainable predictions with user-in-the-loop. Process: a neural 
network computational engine. Class: target class variable of the classification; Numfeatures: number of features in the BN; maxrank: maximum number of BN 
predictions taken into account.
A possible algorithm for combining the two representations, DNN 
and BN, as an ensemble classifier is shown in Fig.  7. Selecting a 
particular rank, ‘maxrank’, the ‘maxrank’ first most likely orchid species 
are collected and it is checked whether the orchid identified by the 
DNN is among them. If this is the case, the explanation from the BN is 
presented to the user. However, even if the output of the DNN differs 
from the solutions of the BN, we still can provide an explanation by 
highlighting reasons in terms of the features represented in the BN. 
A correspondence between an identification of an orchid in terms of 
extracted features and a whole-image neural-network classification can 
be interpreted as that there is high confidence that the right orchid 
has been found, i.e., the solution can be trusted. Finally, if the DNN 
solution cannot be trusted, we only have the BN to resort to and we 
select the highest ranked solution, which is also explained in terms of 
the BN. There is a clear role for the explanation facility and the user, 
who in the end decides whether it is better to go for the BN solution. 
Thus, on the one hand DNN and BN are used together to increase the 
number of trusted solutions, compared to simply using them on their 
own, and on the other hand the BN is used to explain solutions in terms 
of the structure and probability distribution of the BN.

The parameter ‘maxrank’ is not given a fixed value; its value should 
be determined by experimentation with a target dataset. In our exper-
imental setting we finally choose the value ‘maxrank = 5 or 4’, which 
will be discussed below in Experimental Results (Section 4). Note that 
9 
by setting ‘maxrank’ to the value of the number of different class values 
(|𝐷(CLASS)| flower species in our case), the BN is completely ignored 
for the purpose of classifying an image, although it is still used for 
generating an explanation. By giving ‘maxrank’ a small value, say 1 or 
2, the number of trusted solutions (agreed by DNN and BN) decreases, 
but the level of trust increases as the two classifiers in the ensemble 
use different methods for the same purpose.

To illustrate that the cases distinguished in the algorithm shown 
in Fig.  7 actually exist, and that the generated explanation may be 
valuable, we discuss three different examples from the dataset used for 
testing:

(Case 1) (dnn-classvalue in classpredictions[1 to maxrank]). An 
orchid image with ground-truth label equal to Amerorchis ro-
tundifolia is correctly predicted by both DNN and BN (top 1). 
This shared solution added by the explanation (evidence and the 
expected image features are equivalent) shown in Fig.  8 support 
trust in the solution.

(Case 2) (dnn-classvalue outside classpredictions[1 to maxrank]). 
The ground truth for this instance is Cypripedium californicum. 
The DNN predicts Cypripedium californicum, whereas
Cypripedium californicum is outside the first 5 ranked BN predic-
tions. Hence, this solution may be doubted and by considering 
the explanation shown in Fig.  9, the user is given information 
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Fig. 8. Two explanations generated for case 1 instances (trustworthy cases) by the algorithm in Fig.  7. An explanation consists of a picture of the orchid in 
question, the predicted orchid species returned by the algorithm, the species predicted by the DNN (with probability), the first 5 ranked species predicted by the 
BN (again with probability attached), the feature evidence extracted by the feature extractors and used as input to the BN, and the predicted BN evidence that 
is compatible with the predicted species according to the DNN, being equal to the first BN solution.
to look into the matter. All the image evidence obtained by the 
feature classifiers corresponds to the BN’s predicted values with 
the exception of T(exture), where the ground truth is ‘Nospots’, 
whereas the extracted feature tells that there are ‘Spots’. This 
corroborates lack of trust in the BN predictions.

(Case 3) (The user is not satisfied). If the user is not satisfied with 
the prediction of the DNN, the system will display the BN top 1 
predictions. Fig.  10 shows an example of this case. The orchid 
image shown is predicted to be Corallorhiza trifida, with the as-
sociated extracted image features presented alongside, alongside 
to the expected image features. The system also displays the 
ground truth image from the species predicted. If the user is not 
satisfied, likely because there is a discrepancy between flower 
features shown in the picture of the flower, and the predicted 
feature evidence, as presented in an explanation, the system 
will display the solution from the BN rank 1 and also give an 
explanation based on the species predicted by the BN.

The time complexity of the algorithm depicted in Fig.  7 is deter-
mined by the subprocedures ‘‘ProbabilisticInference’’ and ‘‘Classify’’. As 
described in Section 3.6.1, time complexity of the BNs is determined 
by a linear-time probabilistic inference algorithm (due to the restricted 
structure of the BNs), followed by the application of a good sorting 
algorithm (e.g. heap sort) with an 𝑂(𝑛 log 𝑛) time complexity. A neural-
network forward pass as implemented in the ‘‘Classify’’ procedure, can 
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be considered as consisting of a sequence of vector multiplications and 
additions, and thus is polynomial time in terms of the dimensions of 
the layers and the depth of the network.

More in detail, Xception, the DNN architecture used by us, has 
a depth-separable convolutional architecture (depth-wise and point-
wise). Let 𝑘 be the kernel size; 𝐻 the height and 𝑊  the width of 
the input feature maps; 𝐶 be the number of input channels; 𝐹  be the 
number of filters. Then, the time complexity for depth-wise compu-
tation is: 𝑂(𝑘2 ⋅ 𝐻 ⋅ 𝑊 ⋅ 𝐶 ⋅ 𝐹 ). The time complexity for point-wise 
computation is: 𝑂(𝐻 ⋅ 𝑊 ⋅ 𝐶 ⋅ 𝐹 ). The complexity for the dense layers 
is: 𝑂(𝑛 ⋅ 𝑚), and, finally, the complexity for flatten layers is equal to 
𝑂(𝑛). As Xception consists of several depth-wise and point-wise layers, 
we have to combine several of the computations, but the result is still 
polynomial time. However, from a practical point of view, because 
of the size of the DNN, one would need a separate GPU unit for 
efficient computation, which at the time of writing are available even 
for standard laptop computers.

4. Experimental results

4.1. Dataset

We used data of 6300 images from 63 species of orchids, where 
each species was described by ground-truth and image-based features 
as described in Section 3.1; a small sample of data is shown in Table 
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Fig. 9. Two explanations generated for case 2 instances by the algorithm in Fig.  7. See the caption of Fig.  8 for more detail. In contrast to Fig.  8, the chosen 
predicted species is the one corresponding to the DNN prediction.
(

(

(

(

A.3. To extract the image features that were added to the dataset that 
originally only contained the ground-truth features, the class variable 
in this experiment was balanced: each species was represented by 100 
images. The dataset was split up into a training set with 5040 instances 
(80% of the dataset), a validation set with 630 instances (10% of the 
dataset) and a separate test set with 630 instances (10% of the dataset). 
The test set included all 63 orchids with an equivalent distribution of 
instances per species. The performance measure we are using below in 
evaluating the two types of classifier (DNN and BN) is accuracy with 
respect to the data, is defined as: 

accuracy =
𝑁correct
𝑁total

(4)

with 𝑁correct the number of correctly classified cases of the dataset.

4.2. Building orchid-identifying Bayesian networks

In our previous publication (Apriyanti et al., 2023), we carried out 
an ablation study with naive BNs, where groups of image features 
were omitted by going through parts of the power set of all 6 image 
features. This experiment demonstrated that including more features 
yielded better performance, and that all image features are needed for 
maximum classifier performance.

In Section 3.6 we have provided motivation for the use of a re-
stricted form of structure learning of Bayesian networks, called semi-
supervised structure learning, where the naive network part was kept 
fixed (by employing white-lists and black-lists, cf. Section 3.3.2). The 
arcs between the image feature variables were determined in four 
different ways (using manual design or learning). We refer to the 
resulting four different Bayesian network graphs as G1 to G4:
11 
G1) by interpreting an image feature purely as virtual evidence of the 
corresponding ground truth feature, which results in a double-
naive network structure, presented in Fig.  11(a).

G2) this ‘‘double-naive’’ Bayesian network was slightly modified by 
manually adding an arc between the color of flowers and the 
image color of the labellum, based on the idea that deep learn-
ing will not always be able to distinguish between the flower 
and labellum (as segmentation is not employed). The resulting 
semi-naive BN is depicted in Fig.  11(b).

G3) score-based structure learning was used only with respect to the 
image features employing tabu search with the backbone network 
from Fig.  6 as input, See Fig.  11(c) for the result.

G4) score-based structure learning was used only with respect to the 
image features using hill climbing and again with the backbone 
network from Fig.  6 as input. See Fig.  11(d) for the output.

The four Bayesian networks described above were subsequently 
evaluated using the data of 6300 cases described above in Section 4.1. 
In order to make sure that the performance results were not biased 
because of the selection of the test set (10% of the dataset), we 
employed stratified random sampling in combination with two different 
validation methods: (1) 5-fold cross-validation and (2) bootstrapping, 
respectively. In addition, each 5-fold cross-validation and bootstrapping 
run was repeated 200 times (with different stratified samples every 
time) to obtain information about the variability of the result. We used 
classification error as a measure to compare the four different Bayesian 
network structures, as can be seen in Fig.  12. Note that during each 
of the 200 runs of the cross-validation and bootstrapping algorithms 
the network structure remains the same, whereas the probabilistic 
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Fig. 10. Two explanations generated for case 3 instances by the algorithm in Fig.  7. See the caption of Fig.  8 for more detail. Note that the user did not agree 
with the DNN solution, based on comparing the orchid picture with the predicted evidence; the BN feature evidence prediction shown next, matches the picture 
much better.
parameters are different, being based on a slightly different dataset, 
and the same applies to the test set, which also differs from run 
to run. As the box plots in Fig.  12 show, there is only very little 
variation in the classification performance for both cross-validation and 
bootstrapping. Nevertheless, it appears that the stratified bootstrapping 
produces slightly better results. Similar conclusions can be drawn about 
the four different Bayesian-network structures evaluated, although the 
best results were obtained by the networks obtained from tabu search. 
This network (G3) will be used in the following as our best Bayesian 
network.

This BN was tested on an independent test set of 630 cases (10% 
of the original orchid dataset). As a Bayesian network will produce 
12 
a ranking of solutions, from high to low probability with sometimes 
equal rank because of equal posterior probability, we need to take 
equivalence into account in the ranking rather than just assume that 
probabilities are unique. It basically means that the posterior distri-
bution of the CLASS needs to be partitioned into equivalence classes. 
However, as this is mostly only relevant for the solutions with maxi-
mum probability, we first determined the classification performance of 
the BN by simply taking the first 3, 5, and 10 ranked solutions, as shown 
in Table  1. The exception is the top 1 performance, where we took into 
account the cases of equal maximum probability. The distribution of 
cases with equal maximum probability was 𝜇 = 1.45; s.d. = 0.72, thus, 
usually there was just a single solution or two solutions with equal 
maximum probability.
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Fig. 11. Bayesian networks obtained by manual design ((a) and (b)), or by restrictive, semi-supervised structure learning ((c) and (d)).
Fig. 12. Box plots of cross-validation and bootstrapping results obtained by 200 runs for each validation using stratified random sampling according to the class 
variable’s distribution; a: naive BN (G1); b: semi-naive BN (G2); c: tabu-search BN (G3); d: hill-climbing BN (G4). Note that the y-axes of the two plots are not 
aligned.
4.3. Combining deep neural networks and Bayesian networks

Using for fairness the same test set as for the Bayesian network, that 
was also not used as validation set for training, the whole-image deep 
neural network was evaluated, resulting in a classification performance 
of 95.1%, which is higher than the BN up to the top 5 ranking, although 
there the performance becomes close. The performance of the chosen 
BN is less than that of the DNN due to the uncertain nature of feature 
extraction. Had we been able to improve the performance of the DNN 
13 
feature extractors (the experimental results are reported and analyzed 
in our paper  (Apriyanti et al., 2023)), the BN would also have yielded 
higher performance.

Deep learning excels at predicting the top result (rank 1). In this 
case, the BN also performed well with 552 cases being correct; the 
overlap between the two classifiers yields 530 correctly classified cases. 
An analysis of the results, where we combined the DNN and BN is 
shown in Table  2. For likely results (rank 2 or 3), there are 3.5% cases 
and for rank 4–5, there are 1.8% cases where results coincide. If we 
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Table 1
Classification performance of the tabu-search BN (G3 in 
Fig.  12) ranked solutions according to probability, using 
a 10% independent test set (630 cases) from the orchid 
dataset of 6300 cases.
 Ranked Accuracy  
 Solution set (Inclusion in set) 
 Top 1 87.6%  
 Top 3 91.4%  
 Top 5 93.5%  
 Top 10 96.0%  

Table 2
A combined analysis of the results of the DNN and BN classifiers. Note that 
these are not entirely the same as the results for the ensemble classifier of 
Fig.  7, because when combining predictions of the DNN and BN it is unknown 
whether the classifications are correct; this is only known after the algorithm 
has run. Details are provided in the main text.
 Combined #Correct Pct  
 Case ranked classifications classifications (%)  
 1 DNN top 1, BN top 1 530 84.1 
 2 DNN top 1, BN rank 2–3 22 3.5  
 3 DNN top 1, BN rank 4–5 11 1.8  
 Subtotal 1 Trusted agreement DNN & BN 563 89.4 
 4 DNN top 1, BN rank > 5 36 5.7  
 Subtotal 2 DNN right 599 95.1 
 5 DNN wrong, BN top 1 22 3.5  
 Subtotal 3 DNN or BN right 621 98.6 
 6 DNN wrong, BN rank 2–5 4 0.6  
 7 DNN wrong, BN rank > 5 5 0.8  
 Total Explained solutions 630 100  

go beyond rank 5 for the BN predictions, the correspondence between 
DNN and BN is 5.7%, although clearly the BN results cannot be trusted. 
As may be expected, there are cases where the DNN comes up with the 
wrong classification, but where the BN is right; this happens in about 
3.5% of cases for the top 1 results, increases to 4.1% for the top 5 
ranked predictions (cases 5 and 6 in Table  2 added together). There are 
a few instances (0.8%) where neither model predicts the right outcome. 
The fact that there are cases where the DNN fails and the BN succeeds 
means that a combined approach offers means to leverage performance, 
which will be addressed next.

When using the two classifiers as an ensemble, i.e., the algorithm 
shown in Fig.  7, we have to experimentally determine the value for 
the parameter ‘maxrank’. The results obtained by the algorithm do not 
entire correspond to Table  2, because the ground truth is not utilized 
in the algorithm to select the right DNN or BN solution, simply because 
it should be assumed unknown and only afterwards, when the two 
classifier results have already been combined into one answer, it can 
be used for evaluation. It is for example clear that the number of 
cases 1 to 3 included in Table  2 will be larger than 563, because 
these categories will also include instances where the DNN predicts 
a value within the BN ranks 2–5, i.e., not top 1, and also part of 
case 5 from Table  2 (DNN wrong, BN top 1) will be handled as case 
1 in the algorithm (with higher numbers of cases 2–5 as a result). 
However with the proviso that the user is able to handle the case-
2 branch of the algorithm by making the right decision based on 
the provided explanation, and with a maxrank value equal to 5, an 
accuracy of 98.1% was achieved. For this value of maxrank, a user is 
expected to be able to decide for each of the 59 of the 630 remaining 
cases whether the BN should be trusted more than the DNN, based on 
the explanation provided. This was the maximum performance of the 
algorithm, also achieved for ‘maxrank’ value equal to 4. This role of 
the user is clearly a limitation of the explainable ensemble classifier, 
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although in daily practice it means that there are less than 1 in 10 cases 
( 59
690 ⋅ 100%) a user is asked to say whether or not the DNN solution 
can be trusted. However, a lazy solution is to simply always choose 
the DNN solution (guaranteed by setting ‘maxrank’ to 63), yielding an 
accuracy of 95.1%, the DNN’s accuracy. As we envision a clear role 
for explanation and trustworthiness in the decision process, there are 
good reasons to choose for the less lazy approach. The overall gain in 
performance is limited, but that cannot be said about the trust in the 
solutions provided by the algorithm.

4.4. Qualitative comparison with other XAI methods

As mentioned above, Bayesian networks, being a representation of a 
joint (multivariate) probability distribution, are supplied with inference 
algorithms for computing any conditional probability distribution of 
any subset of variables. The other XAI methods described in Section 2.2 
do not have this capability, and this was one reason to use BNs in our 
research.

However, methods such as ProtoPNet, ProtoTree, LIME, and SHAP 
have their merits as well, in particular when it comes to explaining 
the results obtained from DNNs. Next, we present a brief comparison 
between our proposed method with other XAI methods.

Supposed we need to classify an image of an orchid, as presented 
in Fig.  8. The BN gives us an explanation related to the botanic or 
taxonomic characteristics or features that appear in the picture, such as 
a spotted texture (T), a labellum (LC) that is lobed, many flowers (NF), 
a raceme inflorescence (In), and the colors of flower (CF) and labellum 
(CL) are a combination of purple and yellow. Thus, our BN-based XAI 
method can be considered as an image captioning method because it 
provides a caption or explanation of the content of an image, in this 
case, of an orchid flower.

In contrast, LIME (Ribeiro et al., 2016) offers a local explana-
tions by presenting saliency-like maps to show the reasons behind the 
prediction. It is easy to implement and the computational costs are 
low. However, based on some experimentation, LIME had difficulty in 
extracting relevant orchid parts and was far removed from generating 
an explanation in terms of orchid features as used by taxonomists.

SHAP (Lundberg and Lee, 2017) also provides an explanation by 
showing the flower features that are important for explaining an object 
in an image, which works reasonable well in this case. However, these 
features have again no direct relationship to the kind of taxonomic fea-
tures which we wish to use in an explanation: only the important pixels 
are presented. Besides that, the method is computationally expensive 
and for large images, the kernel SHAP is slow.

ProtoPNet and ProtoTree (Chen et al., 2019; Nauta et al., 2021) 
offer very similar approaches, as they both learn from prototypes. Pro-
toPNet computes the similarity scores between the trained prototypes 
and the test image’s latent patches. These similarity scores are weighted 
and summed together to give a final score for the orchid belonging to a 
class. Instead of using all prototypes, ProtoTree build a decision tree to 
reduce the number of prototypes used in the ProtoPNet. Both methods 
show the patches of the images that draw attention and compare them 
to the learned prototypes. Both methods are more intuitive in compari-
son to LIME and SHAP for visualizing model decisions and are closer to 
human reasoning. However, the explanation consists only of patches of 
the image, without labels that can be interpreted as taxonomic features. 
Thus considerable user interpretation is still required.

To summarize, BNs have clearly advantages as an XAI method in 
comparison to other XAI method for the kind of applications we have 
considered in this paper.
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Table A.3
Some examples of data instances of orchids of different type (indicated by the Class variable); T: texture; LC: 
shape of labellum; In: inflorescence; NF: number of flowers; CF: color of flower; CL: color of labellum. With 
‘_image’ is indicated the corresponding image feature extracted by a deep neural network.
Table A.4
Orchid species covered by the developed Bayesian networks and deep neural networks.
 Species name Species name Species name  
 1 Amerorchis rotundifolia 2 Arethusa bulbosa 3 Bletia purpurea  
 4 Brassia caudata 5 Calopogon barbatus 6 Calypso bulbosa  
 7 Cephalanthera austiniae 8 Cleistesiopsis divaricata 9 Coeloglossum viride  
 10 Corallorhiza maculata 11 Corallorhiza mertensiana 12 Corallorhiza odontorhiza  
 13 Corallorhiza striata 14 Corallorhiza trifida 15 Corallorhiza wisteriana  
 16 Cyclopogon elatus 17 Cypripedium acaule 18 Cypripedium arietinum  
 19 Cypripedium californicum 20 Cypripedium candidum 21 Cypripedium fasciculatum 
 22 Cypripedium montanum 23 Cypripedium passerinum 24 Cypripedium reginae  
 25 Cyrtopodium punctatum 26 Dactylorhiza viridis 27 Encyclia tampensis  
 28 Epidendrum nocturnum 29 Epipactis atrorubens 30 Epipactis gigantea  
 31 Epipactis helleborine 32 Epipactis palustris 33 Eulophia alta  
 34 Eulophia graminea 35 Galearis spectabilis 36 Goodyera oblongifolia  
 37 Goodyera pubescens 38 Gymnadenia conopsea 39 Habenaria floribunda  
 40 Habenaria quinqueseta 41 Hexalectris spicata 42 Ionopsis utricularioides  
 43 Malaxis abieticola 44 Oeceoclades maculata 45 Phaius tankervilleae  
 46 Platanthera blephariglottis 47 Platanthera brevifolia 48 Platanthera chapmanii  
 49 Platanthera dilatata 50 Platanthera grandiflora 51 Platanthera lacera  
 52 Platanthera leucophaea 53 Platanthera praeclara 54 Platanthera psycodes  
 55 Platanthera purpurascens 56 Pogonia ophioglossoides 57 Ponthieva racemosa  
 58 Prosthechea cochleata 59 Pseudorchis albida 60 Sacoila lanceolata  
 61 Spiranthes cernua 62 Spiranthes lacera 63 Tipularia discolor  
5. Discussion

The aim of our research was to develop a white-box method that is 
able to determine the species of an orchid from a digital photograph; 
achieving high accuracy and good explainability were our main goals. 
Although research on deep neural networks has shown repeatedly to 
yield remarkably good performing classifiers (Samek et al., 2021), their 
black-box nature has motivated researchers to focus on ways to explain 
neural-network output. The urgency of the matter is reflected by the 
creation of the new research field of ‘‘Explainable AI’’ (XAI). Initially 
it was our goal to develop a Bayesian network that would be able 
to do the job of orchid recognition, partly based on employing DNN 
feature classifiers. The reason is that a Bayesian network is able to 
handle the features or characteristics that human taxonomists would 
use in determining a plant, which offers an excellent opportunity to 
explain a classification to a user of the system. However, as our results 
show, BNs may be good classifiers, they are not optimal classifiers and 
have difficulty in interpreting the subtle details from images that even 
humans may not be able to see. Nevertheless, when properly built, 
a BN contains a lot of information that when combined with a DNN 
offers the kind of insight into a classification that one expects from an 
explanation. Thus, the idea of combining DNN and BNs was born.

When combining both methods – DNN and BN – the aim is to 
obtain a system that increases trustworthiness by combining two 
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completely different methods: a whole-image classification based on 
computer-vision methods delivered by the DNN and a classification 
based on taxonomic image features extracted by feature classifying 
DNNs and interpreted by the BN. When both methods reach the same 
conclusion, it is clear that there is every reason to trust that conclusion. 
In the algorithm depicted in Fig.  7 that situation corresponds to when 
‘dnn-classvalue ∈ classpredictions[1 ∶ maxrank]’ is true. Not only does 
the system produce a trustworthy solution, it also explains it in a proper 
way using taxonomic knowledge represented in the Bayesian network.

When the solutions do not coincide, there is still the possibility 
(somewhere between 3.5–5.7% of cases) that only one method (BN or 
DNN) is right and the other (DNN or BN) is wrong, but the trustworthi-
ness of the solution is lower. However, also in this case an explanation 
is provided by the Bayesian network, consisting of showing the image 
features corresponding to the DNN solution, the option to compare this 
to the extracted image features (the evidence) and ways to explore the 
taxonomic knowledge of the Bayesian network using alternative species 
(counterfactual reasoning (Pearl, 2009)). Hence, the algorithm offers a 
kind of decision-making with the human-in-the-loop, supported by the 
explanations provided by the BN. This means that although our method 
does not offer 100% accuracy (its maximum accuracy is 98.1%), an 
explanation by the BN is always given to the user, who, supported by 
that, is given the opportunity to check whether disagreement between 
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Table A.5
The results of the Xception feature classifiers using multi-class and multi-label 
classification.
 Features Multi-class Multi-label

 TPR (%) TNR (%) TPR (%) TNR (%) 
 T NoSpots 97.0 86.9 89.2 85.4  
 Spots 86.9 97.0 79.9 93.6  
 
In

Panicle 57.9 99.5 68.4 99.1  
 Raceme 91.3 91.0 90.2 87.6  
 SingleOrPair 94.8 97.9 95.9 97.9  
 Spike 85.9 95.3 82.8 94.1  
 
NF

AFew 75.9 88.1 71.2 92.8  
 Many 84.2 86.7 84.2 87.1  
 SinglePair 93.6 98.4 95.3 98.3  
 
LC

Fringed 66.2 98.6 73.2 98.6  
 Lobed 85.9 89.3 80.4 90.8  
 Pouched 89.3 97.8 90.4 96.8  
 Simple 87.7 92.7 83.8 90.9  
 

CF

Green 87.0 94.0 86.8 93.9  
 GreenRed 91.0 94.9 87.5 95.7  
 GreenYellow 50.0 99.7 66.7 97.5  
 Purple 86.0 98.0 88.7 97.6  
 PurpleYellow 72.0 99.4 62.1 98.4  
 Red 80.0 99.0 80.0 99.5  
 RedYellow 90.0 95.4 95.8 96.8  
 Yellow 84.0 96.6 82.5 95.8  
 

CL

Green 82.0 92.8 90.6 94.3  
 GreenRed 57.0 99.7 57.1 98.6  
 GreenYellow 57.0 99.7 71.4 99.6  
 Purple 82.0 97.1 83.2 96.4  
 PurpleYellow 89.0 96.4 81.2 96.3  
 Red 90.0 99.9 87.1 100  
 RedYellow 65.0 99.9 58.8 99.2  
 Yellow 87.0 87.5 86.2 91.3  

DNN and BN may be due to the inaccuracy of one or both of these 
representations.

6. Conclusions

In this study, we develop an automated orchid species identification 
method that incorporates explainability by design through integrat-
ing low-level end-to-end whole-image interpretation by a deep neural 
network and taxonomic knowledge provided by a Bayesian network. 
Combining the two approaches when identifying an orchid increases 
the trustworthiness of the solutions, where in addition an explanation 
is offered for every case by the Bayesian network in understandable 
biological terms used in daily practice by taxonomists in determining 
plants. Our evaluation results, supported by stratified random sampling 
with cross-validation and bootstrapping, showed very little variation in 
the performance of the BN, indicating that our results are robust. As far 
as we know, the described method is new and demonstrates excellent 
classification performance close to 100% combined with explanations 
for every case in terms of taxonomic knowledge. As there is a role for 
the user in the classification algorithm, as described above, in future 
research we wish to explore whether potential users, including plant 
taxonomists, find the method useful and whether or not it should be 
further refined. Whereas we have shown in this paper that the method 
works in the domain of plant identification, it can be quite easily 
applied to other fields where deep learning is a popular method as well.
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