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Abstract

Objectives: Although the course of single diseases can be studied using traditional epidemiologic techniques, these methods cannot
capture the complex joint evolutionary course of multiple disorders. In this study, multilevel temporal Bayesian networks were adopted
to study the course of multimorbidity in the expectation that this would yield new clinical insight.

Study Design and Setting: Clinical data of patients were extracted from 90 general practice registries in the Netherlands. One and half
million patient-years were used for analysis. The simultaneous progression of six chronic cardiovascular conditions was investigated, cor-
recting for both patient and practice-related variables.

Results: Cumulative incidence rates of one or more new morbidities rapidly increase with the number of morbidities present at base-
line, ranging up to 47% and 76% for 3- and 5-year follow-ups, respectively. Hypertension and lipid disorders, as health risk factors, increase
the cumulative incidence rates of both individual and multiple disorders. Moreover, in their presence, the observed cumulative incidence
rates of combinations of cardiovascular disorders, that is, multimorbidity differs significantly from the expected rates.

Conclusion: There are clear synergies between health risks and chronic diseases when multimorbidity within a patient progresses over
time. The method used here supports a more comprehensive analysis of such synergies compared with what can be obtained by traditional
statistics. © 2013 Elsevier Inc. All rights reserved.
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1. Introduction [2,3]. Multimorbidity can be simply measured by comput-
ing various basic statistics: the number of chronic disorders
per patient; corrected for age, gender, and socioeconomic
demographics [4—7]; odds that describe the ratio between
observed and expected prevalence rates for specific disease
combinations [8§—11]; and disease clusters using principal
component analysis [12—15].

Although systematic reviews [16—18] have given insight
into the rates of cross-sectional co-occurrence, the progres-
sion over time of interactions between chronic cardiovascular
diseases and related disorders is sparsely documented [19].
More insight into such interactions would help in personaliz-
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Recent epidemiologic research indicates that up to two-
third of all patients older than 65 years in the Western world
have more than one chronic disorder at the same time. This
is referred to as comorbidity or multimorbidity. Although
comorbidity is usually defined in relationship to a specific
index condition, as in the seminal definition by Feinstein
[1], the term ‘““multimorbidity” has been introduced to refer
to any co-occurrence of two or more medical, especially
chronic, conditions within a person at the same time
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What is new?

Key findings

e The urbanization level of a general practice is asso-
ciated with the cumulative incidence of chronic
cardiovascular conditions, in particular those with
a high prevalence, that is, obesity, hypertension,
dyslipidemia, diabetes mellitus, and ischemic heart
disease.

e The overall multimorbidity rate of chronic cardio-
vascular (related) disorders rapidly increases when
multimorbidity is already present at baseline.

e When multimorbidity progresses over time, certain
disease combinations develop more quickly than
what can be expected from individual disease pro-
gression. This synergistic effect happens particularly
in the presence of hypertension and dyslipidemia.

What this adds to what was known?

e Multimorbidity is about not only pairs of diseases
but also how multiple diseases in patients interact
and how this interaction changes over time. For
the first time, this proper perspective on multimor-
bidity is described and analyzed using the new
technique of multilevel temporal Bayesian net-
works. This new method supports not only finding
multiple associations and how these change over
time but also which of these represent a direct as-
sociation or a confounder, and how factors indi-
rectly influence each other.

What is the implication and what should change

now?

e Although standard multilevel regression methods
are very useful to explain a single disease with re-
spect to a set of patient and practice-related observ-
able variables, multilevel Bayesian networks allow
exploring the joint distribution of multiple diseases
and their interactions, which are highly relevant in
multimorbidity research.

e Clinical guidelines for patients with multimorbid-
ity can be improved when the advice incorporates
all the patient’s specific characteristics. Because
the network in the methodology used here can be
personalized for a specific patient, it provides
a valuable tool for the development of such tailored
clinical guidelines.

Recent explorations of patient data from primary care
registries to quantify associations between chronic disor-
ders have shown these to be valuable for obtaining a broad

picture of multimorbidity [21,23,24]. In this article, we will
use such registries to assess three aspects of the joint
progression of chronic cardiovascular multimorbidity:
(1) its dependency on the practice’s urbanity, (2) the syner-
gistic effects between disorders when they evolve over
time, and (3) the progression of the overall multimorbidity
rate.

Patient data in primary care registries are often clustered
by practices, introducing particular biases in the patient’s
diagnosis due to practice-related effects. For example, the
urbanity of the practice’s area or the physician’s experi-
ence. Multilevel regression analysis is the standard method
of choice in these situations [25]. However, it does not al-
low analyzing multiple disease outcomes simultaneously.
Therefore, we adopted the method of multilevel Bayesian
networks (MBNs) that do offer such support [26]. When
used for the analysis of temporal data, the advantage of
an MBN is that the disorders and their interaction are
treated as uncertain. The representation goes beyond show-
ing how pairs of disorders are associated to each other. Fur-
thermore, we can extend an MBN to analyze multiple
outcomes at multiple time points. The latter gives rise to
multilevel temporal Bayesian networks (MTBNs).

In summary, we developed a multimorbidity model that
yields a much better insight into interactions, progression
over time, and the accumulation of chronic disorders than
that existing statistical models are able to provide. More-
over, we show that posterior probabilities computed from
the model at follow-ups can be tailored to any set of condi-
tions present at baseline, which can provide valuable input
for personalized clinical decision-making.

2. Methods
2.1. Data collection

The data used for analysis were obtained from the Neth-
erlands Information Network of General Practice (LINH).
All Dutch inhabitants are obligatory registered with a gen-
eral practice, and the LINH registry contains information of
routinely recorded data from almost all patients of approx-
imately 90 general practices. Longitudinal data of approx-
imately one and half million patient-years, covering the
decade 2002—2011, from patients aged more than 35 years,
were used in our analysis. Patient data are available for the
whole time frame, unless patient moved out of the practice
or the practice itself opted out.

We used the definition of a ““chronic disorder” given by
O’Halloran et al. [27], which in turn was based on the In-
ternational Classification of Primary Care (ICPC) codes.
Principally, our focus was on chronic cardiovascular dis-
eases and related disorders, and in our model, we included
the following chronic disorders: obesity, hypertension, lipid
disorder, diabetes mellitus, heart failure, stroke, ischemic
heart disease, retinopathy, and nephropathy. The first three
disorders are seen as health risks. Previous research has
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indicated that also some noncardiovascular comorbidities
are associated with cardiovascular disorders [21,28]. There-
fore, the diagnoses of other chronic noncardiovascular dis-
orders were modeled as well but only as a single variable.

Laboratary results and medication were not always con-
sistent with the diagnoses present in the LINH database.
For example, insulin was sometimes prescribed to patients
who were not diagnosed with diabetes mellitus according to
the data. To compensate for such missing or incorrect infor-
mation, we used laboratary results and medication to infer
the diagnosis of obesity, hypertension, dyslipidemia, and
diabetes mellitus, in conjunction to the ICPC codes. This
correction method has some limitations. For example, al-
though statins are typically prescribed for lipid disorders,
one cannot conclude that any patient who uses this drug
has a lipid disorder [29]. Similarly, blood pressure—lower-
ing medication is sometimes prescribed for other cardiovas-
cular disorders than hypertension.

Corrections were made using the following rules adopted
from the Dutch guidelines on cardiovascular risk management
[30], which are in line with the European guidelines on
cardiovascular risk management in clinical practice [29].
For obesity, a body mass index of more than 30 kg/m?;
for hypertension, a high blood pressure (systolic >
140 mm Hg or diastolic >90 mm Hg) within at least two
recurring measurements; for dyslipidemia, an abnormal
blood lipid profile (low-density lipoprotein >3 mmol/l,
high-density lipoprotein <1 mmol/l, or triglycerides >
2 mmol/l); and for diabetes mellitus, a fasting glucose >
6 mmol/l, or a prescription of either insulin or oral
blood glucose—lowering medication. See Appendix at www.
jclinepi.com for more details on data collection and the ICPC
codes used for identification of the disorders used in the
model.

2.2. Statistical analyses

As the patient data in the LINH data set were obtained
from several general practices, differences among those
general practices may have a confounding effect on the
probability distributions. Taking into account the hierarchi-
cal structure into statistical models demands for a multilevel
approach. We used MBNs in our analysis [26]. Bayesian
networks provide a powerful framework for the representa-
tion of knowledge and reasoning under uncertainty [31],
and they have had a significant impact on the modeling
and the analysis of medical data [32]. The statistical rela-
tionships in such models can be learned from patient data.
Recently, it was shown that when applying MBNs to a set
of hierarchically structured disease variables, the outcome
of multiple diseases can be very well predicted using an
MBN [26]. With a receiver operating characteristic curve,
it was demonstrated that a single MBN outperformed the
use of multilevel regression models for each disease
separately.

The use of a network-based approach to human disease,
so-called network medicine, was recently acknowledged to
be useful when researching complex disease pathways [33].
In an MBN, the disease variables are also represented as
nodes in a network, but the associations have a direction,
and probabilistic associations are represented by arrows.
When there is an arrow from node i to node j, then i is
called a parent of j, and j is called a child of i. Although
we cannot assume that these arrows represent true causality,
often they do. Temporal arrows always point from the past
to the future, and here, a causal interpretation is even more
natural. Each node is associated with a multinomial proba-
bility distribution for each configuration of the parent no-
des. The interactions or moderating effects between
parent nodes on their common child are therefore captured
in these local probability distributions.

In the MBN used for this paper, we modeled the pa-
tient’s status in terms of the predefined disorders at baseline
using the first 5 years of the data in retrospect, with a regis-
tration minimum of 3 years. The population used here is
a fixed cohort of patients that were alive at baseline. The
disease status 3 and 5 years after the baseline was also in-
cluded in the model, although patients might have been de-
ceased or moved to another practice at that time. Building
the complete MBN required two major steps:

1. Specifying the qualitative nature of the relationships
in the network,

2. Specifying the local probability distributions of the
disease variables.

For step 1, all the disorders were represented as binary
nodes, that is, the disorder is present yes or no. Age was
discretized into four age groups. The subnetworks consti-
tuting the resulted three time slices were then connected
in such a way that each disorder variable had at least one
directed arrow to the same variable in the next time slice.
By doing this, the MBN is transformed into an MTBN.
The urbanity of the practice was operationalized to control
for several potential confounding factors, that is, it was in-
cluded as a higher level variable in the MTBN.

Although the relationships between the disease vari-
ables, that is, the arrows in the network, can be specified
by the user itself, we learned these relationships from the
data. One reason for this is to see whether unknown rela-
tionships could be revealed. Both the relationships between
disease variables within a time slice and between different
time slices were learned using a score-based searching
method in the statistical R package bnlearn (http://www.
r-project.org/) [34]. We assumed that the qualitative nature
of associations between disease variables do not vary over
time, that is, the network structure remains the same for
each time slice. To ensure a multilevel structure and spe-
cific medical knowledge, dependencies between disease
variables can be secured or avoided through black- and
white listing. For example, if an association between a de-
mographic node C and a disease node D was found by the
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structure learning algorithm, the corresponding arrow in the
network clearly should be C — D. Therefore, all possible
arrows D; — C; were blacklisted.

For step 2, we assumed that although the network struc-
ture remains the same for each time slice, the parameters of
the local probability distributions were allowed to change
over time. The latter condition is known as the condition
of nonstationarity. Once the complete structure was deter-
mined, the local probability distributions were estimated
using 1,000 bootstrapped samples from the data set, that
is, we computed P(D!| parents(D!)) with Di=1 if disease
i is present at time 7 and D=0 otherwise. Note that
parents(D!) is determined by the network structure; it can
contain disease variables of several types, for example,
age, a health risk factor, or another disease, from both cur-
rent and previous time slices. The variance induced by the
urbanization level (a practice level variable), age, and gen-
der, in the multilevel model was explained by using Markov
Chain Monte Carlo simulation in WinBUGS (MRC Biosta-
tistics Unit, Cambridge, UK) [35]. For ease of use, the
learned structure and parameters were put into the software
package Samlam (Automated Reasoning Group, University
Of California, Los Angeles).

The total number of disorders present simultaneously in
patients, that is, the multimorbidity rate, was calculated us-
ing nodes M, that kept track of the number of disorders
present in time slice . The probability distribution of these
nodes is deterministic, that is:

P(MtZQ|D,l,D,2,...,D;1)= L if EDt:q. (1)

i=1
0 otherwise

The value g then represents the number of simultaneously
present disorders. See Appendix at www.jclinepi.com for
more details on the implementation of MTBNs.

Once the local probability distributions were deter-
mined, we were able to answer the questions mentioned
in the Introduction. The urbanity effects were derived by
conditioning on a specific value of the corresponding node
in the network. Second, for each time slice, we determined
whether cumulative incidence rates of disease combinations
significantly deviated by increased occurrence from what
might be expected from individual cumulative incidence
rates, assuming statistical independence. Mathematically,
this can be expressed for two disorders i; and i, as:

P(D}', D¢ |R)>> P(D}'|R)P(Dy|R) @)

with R, the set of health risks R¥ present at time 7. Because
the size of the studied patient population favors reaching
significance easily, we also examined the clinical impor-
tance of such deviations.

By conditioning on the multimorbidity rate M, in a spe-
cific time slice, the model allowed us to predict the multi-
morbidity rate in the next time slice, which is
mathematically expressed by

P(M,=q[M,_,=r). 3)

We are particularly interested in the probabilities for
q > r because if these are large, the number of simulta-
neous disorders increases with time. These probabilities
can be biased because of possible disease shifts, that is,
the patient acquires a new disorder but also loses one, keep-
ing the multimorbidity rate equal. To evaluate this effect,
we calculated how much acquired disorders sustained in
the next time slice, mathematically:

P(D;=1|D;_, =1). (4)

If these probabilities are close to one, the effects of dis-
ease shifts are considered to be minimal.

3. Results

The final MTBN consists of three time slices modeling
chronic cardiovascular disease progression. The associa-
tions in the MTBN are summarized in Table 1. The com-
plete network structure representing all the parent—child
relations, and thus the qualitative nature of the underlying
multivariate distributions, is available online in the
Appendix at www.jclinepi.com together with the corre-
sponding code for parameter estimation. Evidently, age
had a significant association with all other variables. How-
ever, gender did not have a significant association with
CVD, except for ischemic heart disease.

Data of a total of 182,396 patients were used for analy-
sis. The median and mean age of the patients at baseline
were 53 and 55 years, respectively. At the end of the
5-year follow-up, 8.5% of these patients had dropped out
of the registry. This happened because of death, patients
moved to a nursery home, or practice not present in the reg-
istry. Their disease status until this event was included in
our analysis.

For all health risks and chronic disorders that were in-
corporated into the model, cumulative incidence rates, with
their standard errors, were estimated for each time slice.
These were differentiated for age and urbanity, and to ex-
amine the model’s validity further, we also made model
predictions for diabetics and nondiabetics. Besides the indi-
vidual rates, we also calculated rates of comorbidity pat-
terns. Details on demographics and probability
estimations are available online in the Appendix at www.
jclinepi.com. The effect of urbanity on disease probabili-
ties, corrected for age and gender, is shown in Fig. 1.

Table 2 shows the evaluation of synergies, as defined in
Eq. (2), in which cumulative incidence rates of the comor-
bidity patterns are compared with the rates of single disor-
ders. As dyslipidemia and hypertension are the major
predictors of cardiovascular morbidities, we computed the
conditional probabilities in the absence and presence of
these conditions from the MTBN. Some of the comorbidity
patterns deviate significantly from the expected values. For
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Table 1. Associations between cardiovascular diseases, known from the literature, and learned from the data

Chronic disease

Associations known from the literature

Associations learned from the data

Direct®

Indirect”

Diabetes mellitus

Ischemic heart
disease

Heart failure

Age, dyslipidemia, hypertension,
ischemic heart disease, heart failure,
nephropathy, retinopathy obesity,
stroke® [37], and practice [43]

Age, gender, obesity, dyslipidemia,
hypertension, diabetes mellitus,
heart failure, stroke® [29],
retinopathy [44], and practice [23]

Age, obesity, dyslipidemia,
hypertension, diabetes mellitus,
ischemic heart disease,
nephropathy, and stroke® [45]

Age, dyslipidemia, hypertension,
ischemic heart disease, heart failure,
nephropathy, and retinopathy

Age, gender, dyslipidemia,
hypertension, diabetes mellitus, and
heart failure

Age, hypertension, diabetes mellitus,
ischemic heart disease, stroke, and
nephropathy

Age, dyslipidemia, hypertension, and
heart failure

Practice, obesity, and stroke

Practice, obesity, stroke, nephropathy,
and retinopathy

Practice, obesity, dyslipidemia, and
retinopathy

Practice, obesity, diabetes mellitus,
ischemic heart disease,

Stroke Age, obesity, dyslipidemia,
hypertension, diabetes mellitus,
ischemic heart disease, heart failure®
[29], and practice [23]

Nephropathy Age, gender, hypertension, diabetes

mellitus, ischemic heart disease,
heart failure, stroke [46], and
retinopathy [47]

Age, dyslipidemia, hypertension,
diabetes mellitus® [37], ischemic
heart disease [44], and nephropathy
[47]

Retinopathy

Age, hypertension, diabetes mellitus,
and heart failure

Age, hypertension, and diabetes
mellitus

nephropathy, and retinopathy

Practice, obesity, dyslipidemia,
ischemic heart disease, and
retinopathy

Practice, obesity, dyslipidemia,
ischemic heart disease, heart failure,
and nephropathy

Italicisized associations were not directly clear from the used literature.

@ Direct associations correspond to a direct arrow between diseases in the MTBN.
b Indirect associations correspond to diseases that have another disease between them or share a common child or parent in the MTBN.

¢ Clinical guidelines.

example, at 5-year follow-up, the probability of ischemic
heart disease and heart failure together is 5.4% when both
dyslipidemia and hypertension are present. However, using
Eq. (2), the product of their individual rates is only 2.9%.
The true incidence is thus almost twice as high, which in-
dicates an interaction between the two disorders in relation
to hypertension and dyslipidemia. This phenomenon can be
found for several comorbidity patterns through each time
slice. Because probabilities of disease combinations are rel-
atively low, we consider absolute increments, rather than
relative increments, in which an increment of 0.5% is con-
sidered to be of clinical relevance.

Fig. 2 shows the multimorbidity rates, as defined in Eq.
(3). For patients having one or more health risks, the prob-
ability of obtaining a new health risk is relatively low, com-
pared with the presence of other cardiovascular disorders.
In that case, the cumulative incidence rate rapidly increases
with the number of conditions present in the previous time
slice. For example, when having two disorders at baseline,
the probability of obtaining one or more cardiovascular
disorders after 3-year follow-up is approximately
19% + 3% = 22%, following the arrows from node 2 (at
baseline) to nodes 3 and 4 plus (at 3-year follow-up) at
the right-hand side of Fig. 2. From the remaining 78%,
those who attracted no new cardiovascular disorder within
3 years, another 32% gets one or more disorders at 5-year
follow-up, making the total probability 47%.

Table 3 shows the persistence probabilities of individual
disorders at follow-ups, as defined in Eq. (4). For most dis-
orders, more than 90% sustained in the next time slice.
Obesity is the major exception on this.

4. Discussion

In this study, the new method of MTBNs was used to
precisely capture the gqualitative and quantitative time
course of chronic cardiovascular multimorbidity in general
practices. Bayesian network methods have not been used
before in multimorbidity analysis. Although the discovered
network dependences are sometimes similar to the associa-
tions described in medical literature, discovered by stan-
dard statistical means, the global picture of how chronic
disorders and risk factors influence each other, as repre-
sented by a MBN, is new. It gives an overview of direct
and indirect associations and it quantifies transition rates,
all in one representation. The results obtained are discussed
in more detail in the following.

4.1. Evaluation of the network structure

The associations summarized in Table 1 are compared
with current knowledge reflected in recent clinical guide-
lines and the medical literature. A distinction is made be-
tween direct and indirect dependences, something not
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Fig. 1. The effect of the urbanization level, varying from very high urban areas (> 2,500 addresses per km?, orange) to rural areas (<500 addresses
per km?, yellow), on cumulative disease incidence at baseline and 5-year follow-up. Numbers are corrected for age and gender and provided with
a 95% confidence interval (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

possible when using standard statistical methods. For exam-
ple, represented in the MTBN, there is an indirect associa-
tion between dyslipidemia and heart failure via, that is,
conditional on, ischemic heart disease and hypertension.
This is in line with clinical guidelines on heart failure,
which state that there is no reason to prescribe a statin in
the absence of an ischemic cause of heart failure [29].
Other disorders share a common parent in the network
structure, for example, both retinopathy and nephropathy
share diabetes mellitus and hypertension as a common

parent. The investigation of either of them in the presence
of the other is thus only of beneficial value if either diabetes
mellitus or hypertension is also present.

The analysis shows that gender-induced associations are
insignificant or small, and in case it is small, it is of little
clinical significance. The exception on this is ischemic
heart disease, in which it is well established that gender
is significant [36].

The comorbid associations between cardiovascular-
related disorders and other chronic disorders [28] are also
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Table 2. Probability of having comorbid combinations of chronic cardiovascular diseases at baseline, and after 3- and 5-year follow-ups, under the

condition of the presence or absence of health risks

BaseLine

3 years follow-up

5 years follow-up

Risk Factors None DL

HT DL+HT None

DL HT DL+HT None DL HT DL+HT

Comorbidity

DM-+IHD 0.2

1.8 6.2 0.7

DMiHF <1 @ 03 1.3 0.4
DMaNP <1 03 04 0.9 0.3
DMisT <1 07 03 2.6 0.2
DM4RP <1 01 01 0.2 0.1
HD4sT <1 06 02 1.7 0.2
HD4NP <1 <1 02 0.5 0.1
moar < @ @ 0.4
STLHF <1 01 03 0.4 0.2
NP+HF <1 <1 01 0.2 0.1

(=2
@
0

0.6 1.0
0.5 0.9

9.0

11.2
() o©

D
3.8 w7
2.4

1.9 2.1 5.3 0.4 2.9 6.4

@ e @ u G Q@ O

D 0 QR
) (30)
(2.0) 3.1

16) (13 (38) 03 (23) (20) (49
20) 02 @) (7)) (34
@ 0-6

() o3 @ @ (2
4 @ Q@O o3

Abbreviations: DL, dyslipidemia; HT, hypertension; DM, diabetes mellitus; IHD, ischemic heart disease; HF, heart failure; NP, nephropathy; ST,

stroke; RP, retinopathy.

Results are shown in percentages. The yellow part of the circle represents the expected value based on individual rates, the surplus is colored in
orange or red (see also Eq. (2) of the article). Red circles represent cumulative incidence rates, which deviate significantly (P < 0.001) from the
expected values and have a clinical importance as well (absolute increase >0.5%). They indicate the clinically significant interactions.

recognized in our model; obesity, hypertension, dyslipide-
mia, and diabetes mellitus are associated with noncardio-
vascular disorders. Moreover, the temporal associations
show that diabetes mellitus is a direct predictor of such dis-
orders in follow-ups.

Although the network structure indicates that obesity is
a good predictor of hypertension and dyslipidemia, we ob-
serve that direct associations between obesity and condi-
tions other than hypertension and dyslipidemia are
missing. For example, one would have expected an arrow
from obesity to diabetes mellitus because it is well known
that an elevated body mass index or waist circumferences
are associated with diabetes mellitus [37]. Hence, the effect
of obesity on other conditions is probably underestimated
in the data explored, in particular because of low persis-
tence at follow-ups in the database. The latter does not
mean that most patients actually lose weight but that regis-
tries do not properly keep track on this matter. However, if
we leave obesity out of the model, it has little effect on the
structure and the associated probabilities are minimally af-
fected (data not shown).

4.2. Quantitative analysis

The prevalences of morbidity and comorbidity patterns
at 3-year follow-up are comparable with prevalences ob-
tained from previous studies using LINH data [11] and
earlier results within the Netherlands [4]. The associations
among age, diabetes, and cardiovascular multimorbidity
are quantitatively well recognized by the model. The mul-
tilevel approach allowed us to differentiate probabilities for
practice-related variables. Where other researchers showed
an association between multimorbidity and socioeconomic
status [8,21], we modeled the urbanity of the practice
along with the disease variables. In case of obesity, hyper-
tension, dyslipidemia, diabetes mellitus, and ischemic
heart disease, the urbanization level had a significant effect
on the prevalence. In these cases, the cumulative inci-
dences of moderate and high-urban areas were mostly
above average, whereas these incidences of low and very
high urban areas were mostly below average. Rural areas
show on average incidences comparable with the overall
average.
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Fig. 2. Transition probabilities of (A) health risks and (B) chronic cardiovascular diseases (see also Eq. (3) of the article). Health risks are obesity,
dyslipidemia, and hypertension. Chronic cardiovascular diseases are diabetes mellitus, ischemic heart disease, heart failure, stroke, retinopathy,
and nephropathy. The left (black) percentages and lines represent patients who do not acquire a new determinant or chronic disease within the next
time slice, whereas the middle (orange) and right (red) percentages and lines represent patients acquiring respectively one or two new health risks
or chronic diseases within the next time slice (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article).

The effect of multiple cardiovascular risk factors was al-
ready outlined in Ref. [38], indicating that the 5-year car-
diovascular risk can go up to 44% when certain risk
factors, for example, hypertension, total cholesterol, smok-
ing, high-density lipoprotein, gender, diabetes, and high
age, are present. Their results indicate, for example, that
a smoking male patient of age more than 60 years with di-
abetes, high total cholesterol and low high-density lipopro-
tein has a 5-year cardiovascular risk of 22% and 44% for
low and high systolic blood pressures, respectively. We
can do more or less the same exercise as aforementioned:
the 5-year cardiovascular risk for a male diabetic living
in a rural area, aged between 65 and 80 years, and having
a lipid disorder is 28% for nonhypertensive patients and
55% for hypertensive patients.

However, the multiple-risk attributions in their approach
could only be derived by adding the risk factors consecu-
tively in a specific order. In our model, there is no restric-
tion on the number of disease variables used as a predictor

Table 3. Persistence of individual chronic diseases, that is, the
probability (in percentages) of a disorder being present at follow-
ups under the condition that this disorder was present in the
previous time slice (see also Eq. (4) of the article)

Chronic disorder h— 4 - b
Obesity 40 33
Dyslipidemia 78 90
Hypertension 95 97
Diabetes mellitus 95 91
Ischemic heart disease 94 98
Heart failure 95 99
Stroke 90 91
Nephropathy 98 99
Retinopathy 99 99
Other 66 90

to = baseline; t; = 3-year follow-up, and t, = 5-year follow-up.

and the number of disease variables being predicted. For
example, the 5-year cardiovascular risk of two or more
new diseases is 10% and 23% for the patient aforemen-
tioned. It also implies that we can condition on a specific
cardiovascular disease already present. When conditioning
on heart failure, the effect on cardiovascular risk is the
highest, for example, a male hypertensive diabetic with
dyslipidemia, living in a rural area, aged between 65 and
80 years, and with heart failure already present at baseline
has a 5-year risk of 71% to obtain another cardiovascular
disease and 27% for two or more diseases.

Although any other cardiovascular risk score also repre-
sents a personalization, the major difference with an MTBN
is that in an MTBN not all disease variables need to be
known. In fact, an MTBN captures all predictions for any
disease variable within the model for any subset of the re-
maining variables. This means that one can also reason the
other way around: given the presence of certain diseases,
one can make predictions about the presence of specific risk
factors, for example, hypertension or lipid disorders are
more likely to be present in the presence of cardiovascular
diseases. In Fig. 3, an example is shown of personalization,
indicating that multimorbidity at baseline predicts future
multimorbidity better than the demographics do. This is
in line with the idea that the patient’s biological age is of
more importance in relationship to morbidity than chrono-
logical age [39] and the relation between frailty and the
accumulation of deficits [40].

In summary, an MTBN can be used to make predictions
for multiple diseases in many ways. To our knowledge, this
is new in multimorbidity research, and Table 2 only reflects
a particular personalization of cardiovascular risk. It reveals
multiple interactions between chronic cardiovascular dis-
eases and related disorders, which occur more frequently at
follow-ups compared with baseline. We shall not discuss
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and diabetes at baseline but without knowledge about the patient’s demographics. The 5-year risk has increased to 61%, and it is estimated that
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are doubled or more. (D) is the combination of (B) and (C), showing that the 5-year risk has gained only a little with respect to (B). CVD, cardio-

vascular disease.

every interaction in detail, but it appears that the presence of
hypertension or dyslipidemia is a necessary precondition for
finding clinically significant interactions. For example, the
combination of ischemic heart disease and heart failure is
much higher as expected after 3- and 5-year follow-ups. Al-
ternatively, although cumulative incidences increase over
time, they behave as expected, for example, in the case of is-
chemic heart disease in combination with stroke. This fits
with the fact that only an indirect association exists in the
model.

Another new aspect of our model is the temporal asso-
ciations. They cause the incidence of chronic disorders to
rise quickly over time. In particular, the probability of
acquiring at least one new chronic cardiovascular disorder
increases with the number of chronic cardiovascular disor-
ders already present, regardless of age (Fig. 2). At 3-year
follow-up, this is respectively 9%, 20%, 22%, and 47%,
for zero to three disorders present at baseline. At 5-year
follow-up, this has increased to respectively 21%, 42%,
47%, and 76%. In reality, these numbers can be even high-
er because of disease shifts. Because the probability of

sustaining a chronic disorder is at least 90%, for the
ones we used in our model, we believe this effect is
minimal.

Cross-sectional research of other registries shows that
the prevalence of multimorbidity can be up to 90%
[4—6,21]. Moreover, 80% of the elderly patients with heart
failure face at least four chronic comorbidities [28]. These
numbers are comparable with the prevalences of cardiovas-
cular comorbidity at follow-ups retrieved in our model.
However, the prevalence of cardiovascular multimorbidity,
in particular for diabetes mellitus, ischemic heart disease,
and stroke, is much lower at baseline in our model. This in-
dicates the importance of the temporal dimension; esti-
mates cannot be directly extrapolated to follow-ups, for
example, using the prevalences of a higher age group.

4.3. Strength, limitations, and implications

The major strength of the results is that the obtained
MTBN allows analyzing several aspects of multimorbidity
in a single model. Our research encompassed an analysis of
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data obtained from public health registries, and because of
the size of the data set used, significant results could be es-
tablished. Although the data used here contained more pa-
tients and more disease variables as mostly present in
controlled studies, it also contains more noise and typically
involved more preprocessing. Controlled studies are rela-
tively small in size and often exclude patients with multi-
morbidity. There are some exceptions on this, for
example, recently, a cohort study of nearly 15,000 elderly
people had a focus on the epidemiology of chronic diseases
using a variety of biomarkers and noninvasive measure-
ments [41]. But most of its research had a single-disease fo-
cus. We recommend to apply Bayesian networks here as
well to discover the coherence between the multiple bio-
markers and disorders present in such studies.

Several aspects of the results could have been analyzed
by alternative methods. For instance, multistate models
could have been used to analyze the transition rates in the
multimorbidity number, a separate multilevel regression
model for each disease to investigate the urbanity effects,
and a chi-square test to see if the joint prevalence of two
conditions is higher than would be expected. However, in-
vestigating more complex interactions, like in Table 2,
would require logistic regression with added interaction
terms [42]. Logistic regression demands building a separate
model for each disorder; in this way, the insight into the
qualitative nature of the interactions between the disorders
would be lost.

With an MTBN, we also avoid the redundancy that is
obtained when using multiple separate regression models
for each disease. For example, if we regress disease D on
disease D’ in one model and in another model D’ on D,
we obtain two parameters for the same association. This
could produce certain ambiguity because the two models
do not necessarily have to provide the same odds ratio
for that pair. In summary, the MTBN used here allows an-
alyzing all the results presented in this article without los-
ing any of the epidemiologic coherence between all the
disease variables. To our knowledge, this is new in multi-
morbidity research, and there is no single alternative that
analyzes multimorbidity the way we did.

There are some aspects of registries that introduce a cer-
tain bias. Patients who did not visit their physician within
the used time frame are not included in the data. Although
we explored a decade of patient data within a time frame of
10 years and patients of age 35 years and older, making the
proportion of missing patients likely to be very low, preva-
lences are probably slightly overestimated. On the other
hand, in public health registries, data are missing and there
are also incorrectly coded diagnoses, implying that preva-
lences might also be underestimated. Clinical guidelines of-
ten recommend specific additional investigations, making it
that certain disorders are discovered more likely than
others. For example, retinopathy in a diabetic may only
be discovered because of the recommendation mentioned
in the guideline of visiting an ophthalmologist.

In our results, there is a considerable prevalence change
between the baseline and follow-ups. Partly, this is because
the population has aged 5 years. On the other hand, the ab-
sence of a diagnosis is interpreted as the absence of the cor-
responding disease, however, certain pathophysiology
could already be present at baseline without knowing it.
This delay in diagnosis also makes longitudinal associa-
tions between disorders less detectable.

5. Conclusions

Several attempts have been made in the literature to cap-
ture prevalences of multimorbidity. Lately, electronic data-
bases of general practices are used more and more to
quantify these numbers on a larger scale, but there is no
clear method that fully describes how multiple disease
evolve over time. Traditional statistical techniques are very
useful to evaluate a single-disease framework by which
most medical care, research, and education is configured.
However, a multiple-disease orientation requires a more
complementary strategy.

In that respect, the MTBN used here is a valuable step
forward in multimorbidity research. It combines the advan-
tages of a temporal Bayesian network together with a mul-
tilevel analysis, and it was able to discover complex
multimorbidity patterns of chronic diseases within health
care data. First, the model was shown to be valid by com-
paring known disease interactions for diabetes mellitus with
those present in the network structure. Second, several new
disease interactions, qualitative and quantitative, for 3- and
5-year follow-ups were discovered, showing that cumula-
tive incidence rates are accelerated in the presence of multi-
morbidity. Especially, the presence of conditions such as
hypertension, dyslipidemia, and diabetes mellitus acceler-
ates cardiovascular risk significantly.

The article only discusses the most significant results
that can be obtained from an analysis of the MTBN model.
The model itself can be used to extract many other relevant
conclusions. We conclude that Bayesian network models
make the analysis and visualization of the interactions
between chronic disorders and their evolutionary course
more comprehensive than traditional statistical techniques.
They can be used to answer a variety of clinical and epide-
miologic questions without losing the context of these de-
pendences out of sight. This is of great importance in the
management of multimorbidity and the aim to adopt person-
alized clinical guidelines. The next step in multimorbidity
research might be to address mortality rates, differentiated
for cardiovascular and noncardiovascular chronic diseases,
in the same way as was done here for multimorbidity rates.
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