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Background:  Clinical  knowledge  about  progress  of diseases  is characterised  by  temporal  information  as
well as  uncertainty.  However,  precise  timing  information  is often  unavailable  in medicine.  In  previous
research  this  problem  has  been  tackled  using  Allen’s  qualitative  algebra  of  time,  which,  despite  successful
medical  application,  does  not  deal  with  the  associated  uncertainty.
Objectives:  It  is  investigated  whether  and  how  Allen’s  temporal  algebra  can  be extended  to handle  uncer-
tainty  to  better  fit available  knowledge  and  data  of disease  processes.
Methods:  To bridge  the  gap between  probability  theory  and  qualitative  time  reasoning,  methods  from
probabilistic  logic  are  explored.  The  relation  between  the  probabilistic  logic  representation  and  dynamic
Bayesian  networks  is analysed.  By studying  a  typical,  and  clinically  relevant  problem,  the  detection  of
exacerbations  of  chronic  obstructive  pulmonary  disease  (COPD),  it is determined  whether  the  developed
probabilistic  logic  of  qualitative  time  is medically  useful.

Results:  The  probabilistic  logic  extension  of  Allen’s  temporal  algebra,  called  Qualitative  Time  CP-logic
provides  a  tool  to model  disease  processes  at a natural  level  of  abstraction  and  is  sufficiently  powerful
to  reason  with  imprecise,  uncertain  knowledge.  The  representation  of the  COPD  disease  process  gives
evidence  that the framework  can  be applied  functionally  to  a clinical  problem.
Conclusion:  The  combination  of  qualitative  time  and  probabilistic  logic  offers  a useful  framework  for
modelling  knowledge  and  data  to describe  disease  processes  in  clinical  medicine.
. Introduction

In solving clinical problems such as diagnosis or prognosis, con-
erning the signs and symptoms of a disease, one often has to take
nto account the time when a particular event has occurred or is
xpected to occur. In many cases, the actual temporal details about
hen events have occurred are not available, or at least impre-

ise, whereas one is more certain about the order of the events.
I researchers have traditionally used Allen’s interval algebra [1]

o model imprecise temporal events. It forms the foundation of a
emporal logic that supports reasoning about temporal events in

 qualitative fashion [2]. Work by Shahar [3] indicates the useful-

ess of Allen’s algebra for describing temporal events in medicine.
owever, Allen’s algebra does not allow expressing uncertainty
bout the occurrence of the events or their qualitative, temporal
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relationships. Yet, uncertainty is a feature of many problems
where precise temporal information is missing, such as in clinical
medicine.

In the work described in this paper it is investigated in what way
Allen’s interval algebra can be extended to incorporate uncertainty
reasoning. Recently developed probabilistic logics can be used as a
basis for such a more general language and in particular we  build
upon the work on CP-logic [4]. The aim is to design a framework
that allows describing disease processes in a way similar to what is
found in the clinical literature, i.e. imprecise yet with uncertainty
made explicit.

Developing sophisticated decision-support systems for realis-
tic clinical problems requires one to handle both the imprecision
and uncertainty of medical knowledge and data. The methods
developed in this paper are expected to contribute to meeting
these challenges. Evidence that this is justified comes from exam-
ples taken from important clinical problems, one of which is the
management of chronic obstructive pulmonary disease (COPD) for

which we  have developed a smartphone-based decision-support
system [5].

We claim that to model disease progression it is often easier
to start from imprecise notions of temporal ordering compared

dx.doi.org/10.1016/j.artmed.2013.09.003
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
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o directly constructing for example a dynamic Bayesian network.
hat is, the kind of information readily available from questioning

 patient and from general clinical knowledge about the disease,
ffers a good starting point. From there on we can add uncertainty
o obtain a temporal probabilistic model. This way  of modelling
larifies the structure of the process and makes it more explicit
hat kind of assumptions are made.

The topic of temporal reasoning has already received much
ttention, also in a medical context, exemplified by the book of
ombi et al. [6]. However the work described there is almost
ompletely symbolic in nature, focussing on logic properties. We
rgue that in a realistic clinical setting one cannot and should not
gnore the uncertainties that arise due to hidden complexity, lack
f information or measurement error. Whereas pure probabilis-
ic frameworks tackle only the uncertainty, our qualitative time
robabilistic logic seeks to model temporal uncertain processes at

 practical level of abstraction.
This paper is organised as follows. In the next section we

ntroduce two motivating examples, typical for the problems
ncountered in biomedicine, which will be used later to validate the
ramework being developed. In Section 3 we discuss related work
nd in Section 4 we provide some preliminaries. In Section 5 we
escribe the probabilistic temporal framework that seems suitable
or the description of disease processes, and give some properties
f the language. In Section 6 we return to our examples and show
hat the developed framework can be usefully applied to describe
he temporal, uncertain evolution of disease processes.

. Motivation

.1. HIV drug resistance

Our first example, from [7], is modelling HIV mutations and
rug resistance. In contrast to the COPD example which will be

ntroduced next, HIV mutations are uncertain temporal events
ithout recurrence. In [7] they represent the problem using tempo-

al nodes Bayesian networks (TNBN), where random variables take
ime intervals as values to denote time frames in which a mutation
ould occur. In Section 6 we show that TNBNs can be represented
n our framework.

.2. The management of COPD

Throughout the paper we will use the management of chronic
bstructive pulmonary disease, COPD for short, to motivate the
eveloped methods. COPD is a progressive lung disease charac-
erised by a mixture of chronic bronchitis and emphysema, leading
o decreased respiratory capacity and potentially to respiratory fail-
re and death. Although there are a number of causes, exposure
o (tobacco) smoke is the most prevalent. Because COPD is a pro-
ressive disease, its temporal development is quite important and
ven more so because of the occurrence of exacerbation events –

 worsening of symptoms with possibly a large negative influence
n health status.

To model exacerbations we have to take into account that
atients are usually in a home care situation which lacks precise
igh-frequency measurement-equipment. As a consequence we
ave to rely on imprecise information. Probability theory provides

 tool to quantify our uncertainty about the state of the system,

n this case the health status of a COPD patient. We  focus on a
imited number of random variables that characterise the events
f the uncertain process: two main symptoms, dyspnea and cough,

 common cause infection and the outcome exacerbation. As we  will
ligence in Medicine 59 (2013) 143– 155

be using a probabilistic logic the relations between these variables
can be specified in terms of causal rules:

dyspnea ← infection.

cough ← infection.

exacerbation← dyspnea ∧ cough.

Limited information also leads to temporal uncertainty, yet it
is often possible to determine qualitative temporal relations. We
use time intervals to model the duration of symptoms and other
variables of interest. Allen’s algebra then provides a language to
state ordering relations between symptoms in time. The rules above
can be extended to incorporate the temporal information:

dyspnea(I) ← infection(J), allen(I, J).

cough(K) ← infection(J), allen(K, J).

exacerbation(L) ← dyspnea(I) ∧ cough(K) ∧ allen(L, I) ∧ allen(L, K).

where I, J, K, L denote the intervals which we  associate with the
events and allen denotes some qualitative time relation between
the relevant intervals. To predict exacerbations, we have to quantify
the uncertainty of temporal relations between symptoms. This will
be the main example, and in Section 6 we will study the situation
introduced here in detail.

3. Related work

Allen’s algebra has received much attention over the years and
finds applications in fields from planning to clinical medicine and
many more. However there are also numerous other temporal rep-
resentation and reasoning frameworks. A comprehensive overview
lies outside the scope of a related work section, but we mention
some important work. For an overview of topics related to time in
medicine we refer the reader to [6].

Besides Allen’s work [1,2], McDermott’s work on temporal logic
[8] is well-known. Interesting to note is McDermott’s observation
that quite a few problems result as a consequence of uncertainty,
and that no formal framework exists that satisfactorily combines
logic and probability. Fortunately this has changed in recent years,
leading to our current work on temporal reasoning in probabilis-
tic logic. Combi et al. [9] describe an extension of Allen’s logic that
generalises to different temporal granularities, which is often nec-
essary in a clinical context.

Also important to mention is the work on temporal constraint
networks by Dechter et al. [10] and on combined metric and Allen
constraints by Kautz and Ladkin [11]. Jonsson and Bäckström [12]
later showed that disjunctive linear relations subsume these and
a number of other temporal constraint formulations. An applica-
tion of temporal constraints in a medical context can be found in
modelling clinical guidelines, see e.g. [13].

In the probabilistic model field there has also been interest in
temporal models, and although not directly connected to quali-
tative time representations, dynamic Bayesian networks [14,15]
are a well-known instance of temporal probabilistic models. Many
variants and extensions exist such as the networks of probabilistic
events [16] where nodes are associated with events and the value
of a node represents an occurrence of the event at a particular time
point; temporal Bayesian networks of events [17] which are similar
and use a subset of Allen relations to relate (quantified) temporal
nodes; and the work by Tawfik and Neufeld [18] on temporal rea-
soning in Bayesian networks. These frameworks do not focus on
representing qualitative time as we  do in this paper.
Other work on combining probabilistic and qualitative temporal
reasoning includes probabilistic temporal interval networks [19],
a probabilistic extension of the interval constraints network often
used with Allen’s algebra. This is similar to our current proposal, but
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by repeated application of the following closure operator until a
ig. 1. Graphical representation of the seven basic relations that can hold between
wo time intervals. These relations and their inverse make up Allen’s algebra.

ur work also allows modelling uncertainty in the events. Proba-
ilistic temporal networks, as defined by Santos and Young [20],
re network models that incorporate Allen’s constraints on condi-
ional probabilities. They make the assumption however that the
ntervals of interest are known beforehand and can be specified
xplicitly, therefore not allowing uncertainty in what intervals are
r will be of interest.

Then, recently, probabilistic logic has been applied to represent
tochastic processes [21]. The proposed language CPT-L extends
P-logic to represent fully-observable homogeneous Markov pro-
esses. Our work differs in focussing on using CP-logic for
ualitative time stochastic processes. Distributional clauses [22]
xtend the probabilistic logic approach (based on Sato’s distribu-
ion semantics [23] like CP-logic) to continuous distributions.

. Preliminaries

.1. Allen’s interval algebra

Allen’s algebra builds upon qualitative relations between time
ntervals. An interval implicitly refers to an event that takes place
uring that interval. In Fig. 1 the relations that can hold between
wo intervals are shown graphically.

We  define intervals as right-open I = [I−, I+) on a linearly ordered
ime line of points (T, ≤), with T a subset of the set of real numbers R

r, if necessary, restricted to a finite subset of the natural numbers
. The special points I−, I+ are defined as I− = inf I and I+ = sup I.

We can now define relations, letting I be the set of all intervals
f T.  A binary temporal interval relation R is defined as R ⊆ I × I.
nstead of temporal interval relations, we shall in the following use a
redicate logic representation, where the logical atom R(I, J), having
he meaning of (I, J) ∈ R in the relational form, will be denoted in
nfix form as IRJ.

Allen defined a set of seven basic interval relations on two time
ntervals. Together with the inverses of these seven relations we
btain a minimal set of relations that can express any qualitative
elation between two intervals. This set of relations with respect to
ntervals in I will be denoted B and the thirteen relations therein are

 = {b, b, m, m, o, o, s, s, d, d, f, f , eq}, where r is the inverse rela-
ion of r, which for intervals I, J is defined as IrJ ≡ JrI. Fig. 1 gives the
efinition of the relations in terms of interval endpoints, with I−

enoting the start point and I+ the end point of interval I, and sim-
larly for J. The basic relations in the set B are mutually exclusive
nd collectively exhaustive with respect to the possible relations
etween two intervals.
In the following examples we will consider events E with an
nterval index I, written as EI, to denote that event E occurs in inter-
al I, instead of pure interval expressions, as this makes it easier to
onvey ideas on how to put time intervals to use. We  will also use
ligence in Medicine 59 (2013) 143– 155 145

the shorthand notation EI R E′J for the formally correct notation
EI ∧ E′J ∧ (IRJ) meaning that event E occurs at time interval I and E′

at interval J and that the relationship between these intervals is
expressed by the Allen expression IRJ.

Example 1. A certain group of COPD patients tends to have rela-
tively frequent exacerbations – events of worsening of symptoms
– that are usually caused by airway infections. Using the basic tem-
poral relations we can describe that an infection in interval I at least
partially precedes the increase in symptoms in interval J. We  then
obtain the expression:

InfI o SymJ ,

which means that symptoms can outlast the infection. Since an
exacerbation is defined as an increase of the relevant symptoms
in the interval we can say for an interval K associated with the
exacerbation:

ExaK eq SymJ .

With the basic relations, the full set of Allen’s relations can be
constructed. Any of these relations is defined as the disjunction of
a subset of the basic relations for the same intervals. Thus, one gets
expressions such as (I N J) ≡ (I R J) ∨ (I R′ J), where N is the new rela-
tion, and R, R′ are basic relations. However, instead of introducing
new names for the resulting new relations, Allen uses set notation
for the new relations, giving rise to the following definition:

Definition 1. An Allen relation is defined as a disjunction of basic
interval relations, represented as a set. The power set of the basic
relations contains all Allen relations and is denoted A  = ℘(B). An
interval formula is then of the form IRJ with I, J intervals and R ∈ A.

Thus, for the example above, (I N J) would be represented by (I {R,
R′} J). Because we  will be using Allen’s relations as logical relations
in what follows, it is useful to notice the effects of Boolean oper-
ations on basic relations. The definition above states that Allen’s
relations are disjunctions of basic relations. From mutual exclu-
siveness it follows that conjunctions of basic relations are false by
definition (at most one relation can hold between any two  inter-
vals). For the negation of a basic relation R ∈ B we obtain ¬R =
B \ {R}. Note that the negation is thus different from the inverse
R.

Example 2. COPD patients often have what is called ventilation-
perfusion inequality – a mismatch between air flow and blood
flow through the lung – which may  develop during an exacerba-
tion due to increased airway obstruction. When an exacerbation
occurs we have a temporal event VpiI which is during, finishes or
is overlapped by ExaJ. Without any further information the rela-
tion between ventilation-perfusion inequality and exacerbation
can thus be described by:

VpiI{o, d, f }ExaJ .

Given a set of interval relations, other temporal relations can
be derived, using the transitivity of time ordering. For example if
IbK and KbJ, then by transitivity it holds that IbJ.  Similar rules can
be constructed for all pairs of basic relations. In many cases the
result will not be a basic relation however, but a set of possible
relations, that is an element from A. Allen [1] provides a table of all
the inference rules.

More in general we  can say that given a finite set of interval
relations, the relations that are entailed by this set can be derived
fixed point is reached [24]:

Definition 2. Let C be a finite set of interval relations. The closure
operator � maps interval formulas to interval formulas using the
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perations of inversion ( · ), intersection (·∩ ·) and composition (·◦ ·).
 (C) is the smallest set satisfying:

 C ⊆ � (C)
 For each I, J that appear in a formula in C : IBJ ∈ � (C)
 For each IRJ ∈ � (C) : JRI ∈ � (C)
 For each (IRJ), (IR′J) ∈ � (C) : I(R ∩ R′)J ∈ � (C)
 For each (IRK), (KR′J) ∈ � (C) : I(R ◦ R′)J ∈ � (C)

The inversion operation is the inverse of each basic relation in
, the intersection operation is simply the set intersection of the
elations R, R′ and composition is the result of resolving the transi-
ivity of the basic relations. Formally, composition is defined as ∀I,

 : I(R ◦ R′)J ⇔ ∃ K : IRK ∧ KR′J.
If there are multiple paths via which a relation between two

ntervals can be derived we are interested in the strongest relation
hat holds. So from � (C) we can derive the reduced closure � ′(C),
here for each R with IRJ ∈ � (C) for given intervals I, J it holds that

R′J ∈ � ′(C) if R′ ⊆ R. In other words, the intersection of the relations
etween two intervals is contained in the reduced closure, because
he intersection is the strongest relation that follows from C. See
lso [24].

xample 3. The temporal relation between the intervals of infec-
ion and exacerbation is:

nfI o ExaJ

hich when combined with the relation,

piK {o, d, f }ExaJ

an be used to infer the relation between ventilation-perfusion
nequality and infection by application of the closure operator:

C = {InfIoExaJ , VpiK {o, d, f }ExaJ }

� ′(C)=C ∪ {VpiK {b, m, o, d, f }InfI , InfI {b, m, o, d, f }VpiK , ExaJ oInfI , ExaJ {o, d, f }VpiK }

.2. Logical reasoning with the interval algebra

As Allen showed [2], this qualitative algebra is well suited to
eason about time in a logic context. Allen’s relations are then rep-
esented by temporal predicates. The logic we will be using derives
rom the logic programming tradition of using Horn clauses,

 ← B1, . . .,  Bn

here H is the head of the clause, B1, . . .,  Bn the body and H and the
is are logical atoms. Variables are denoted with upper case and
re implicitly universally quantified, conjunctions are denoted by
ommas ‘,’ and a semicolon ‘;’ denotes a disjunction, as in Prolog.

Also instead of using a reified logic approach as Allen does
i.e. using meta-predicates like HOLDS, OCCURS), we opt for the
rguably simpler framework of temporal arguments [25] (see also
26] for a discussion on the (dis)advantages of both methods). This

eans that temporal predicates have a temporal argument speci-
ying the relevant time interval. Note that this implies a typed logic
ith temporal and atemporal terms, which we will leave implicit

s this can always be translated to first order logic at the cost of
otational convenience.

A connection between an interval relation representation and
redicate logic can be made by introducing a predicate that repre-
ents the temporal relation between intervals. Concretely, using a
rolog like syntax, we define the predicate r/3, with the first two

rguments representing the intervals and the last argument a basic
emporal relation; and the predicate allen/3, with two intervals and

 list of basic relations as arguments such that allen(I, J, L) holds if
he disjunction over elements X in list L,

∨
X∈Lr(I, J, X) holds.
ligence in Medicine 59 (2013) 143– 155

Example 4. Consider again our COPD example which we can now
represent somewhat more structured:

exacerbation(P, J) ← patient(P), infection(P, I), r(I, J, o).

vpi(P, J) ← patient(P), exacerbation(P, I), allen(I, J, [o, d, f ]).

Here vpi stands for ventilation-perfusion inequality. As the previous
example showed the temporal relation between infection and vpi can
be derived. In this case the result is a disjunction of five possible
relations:

vpi(P, J) ← patient(P), infection(P, I), allen(I, J, [b, m, o, d, f ]).

4.3. CP-logic

To represent and reason with probabilistic knowledge, we  will
use the probabilistic logic language CP-logic [4]. This language is
based on the theory of logic programming extended with a prob-
abilistic semantics. The main intuition is that probabilistic logic
formulae represent causal rules, that is a logic clause gives a rela-
tion from some cause to a set of possible outcomes (each with some
probability). A CP-logic program thus describes a causal process.

Definition 3. A causal probabilistic rule has the form:

(H1 : ˛1); . . .;  (Hn : ˛n) ← B

where ˛i is the (non-zero) probability of outcome Hi such that∑n
i=0˛i ≤ 1; Hi are logical atoms and B is the body of the clause.

In other words, a causal rule gives a probability distribution
over possible effects of some cause B. Deterministic effects can be
modelled simply by a non-probabilistic logic formula H ← B which
is equivalent to H : 1 ← B. Unconditional probabilistic rules can be
seen as a prior distribution over logical facts. CP-logic is restricted
to finite domains, so although one can write quantified formulae,
these are interpreted as a finite set of ground instances.

The probabilistic semantics are based on the work by Shafer [27]
on probability trees. The main idea behind this is that probabilis-
tic processes are best described by a dynamic unfolding of events.
Each node in the tree represents some state of the domain, tran-
sitions between nodes are probabilistic events as described by the
causal probabilistic rules in the knowledge base, and each outgo-
ing edge is some alternative outcome labelled with its probability.
The leaves of a probability tree each describe a possible outcome
of the events modelled in the knowledge base. All events are con-
sidered to be independent and dependencies have to be modelled
explicitly in the rules. As each causal rule fires independently, it
follows that the probability of a leaf node l is the product of the
labels on the edges from l to the root of the tree. Since there may  be
multiple series of events that lead to the same final state the prob-
ability of an interpretation is the sum over all the leaves in the tree
that share the same interpretation. Each rule is independent, which
means that multiple rules with the same outcome are independent
causes. In CP-logic, these independent causes are interpreted as a
noisy-OR. See Vennekens et al. [4] for details and [28] for alternative
interpretations.

Example 5. In Fig. 2 a CP-logic event tree is shown, representing
the situation of whether a COPD patient suffers an exacerbation
caused by either an infection or by breathing in a noxious substance.
The tree follows from these CP-rules:

exacerbation : 0.6 ← infection.
exacerbation : 0.2 ← noxious substance.

infection : 0.05.

noxious substance : 0.01.
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Fig. 2. A probability tree, where I is short for the infect

he probability of an exacerbation can be computed by summing
ver the leaves l that contain E (short for exacerbation) on the path
rom the root to l. Note that on some branches E occurs twice,
hich is allowed because there are two rules that have E as a

onsequence. The probability of, for example, the leftmost path is
.05 · 0.6 · 0.01 · 0.2 = 0.00006 and the probability of an exacerbation

s:

.00006 + 0.00024 + 0.0297 + 0.00004 + 0.0019 = 0.03194.

.4. Markov processes

Markov processes are commonly used as representation of
ncertainty and time. The following definitions will be useful later
n. Suppose we have a Markov process represented by the chain

1 → X2 → . . . → Xt → · · ·

he joint probability up to some point T is

P(X1:T ) = P(XT | XT−1, XT−2, . . .)P(XT−1, XT−2, . . .)

=  P(X1)
T∏

t=2

P(Xt | X1:t),

here the notation 1 : t is an abbreviation of the sequence from
 to t. The factorised notation is useful as we  are primar-

ly interested in Bayesian network representations. A common
ndependence assumption is the first order Markov property
(Xt+1 | X1:t) = P(Xt+1 | Xt), which states that the future does not
epend on the past given the present. The joint probability then
implifies to

(X1:T ) = P(X1)
T∏

t=2

P(Xt | Xt−1).

A generalisation of Markov chains is dynamic Bayesian networks
DBNs) that allow modelling independences in the state space
escription. The state space is then described by a graph G = 〈V, A〉

n which vertices V represent variables X at each time point, arcs
 represent dependences either within or between time slices and
he joint probability of the process variables X factorises over the
raph. The joint probability is given by:

P(X1:T,1:n) = P(X1,1:n)
T∏

P(Xt,1:n | Xt−1,1:n)

t=2

=
T∏

t=1

n∏
i=1

P(Xt,i | pa(Xt,i))
ent, N denotes noxious substance and E is exacerbation.

Note that pa(X) denotes the parents in the graph of X, which can
either be in the same time slice or in time slice t − 1, again assuming
the first order Markov property.

It turns out that we can describe Markov processes in CP-logic as
is shown by the work of Thon et al. [21] on CPT-L, which represents
observable homogeneous Markov processes in CP-logic.

5. A probabilistic logic of qualitative time

When modelling real world situations, qualitative time is useful
for those processes for which precise timing information is unavail-
able. However, it may  be possible to obtain likelihood information,
telling us that some event is more likely to happen at a particular
time, even when the timing information is imprecise. This leads to
temporal process descriptions – as represented with Allen’s logic –
extended with probabilistic information. The expressive power of
CP-logic will appear sufficient to act as a basis for such an extended,
qualitative temporal and uncertain logic.

5.1. A framework for uncertain temporal reasoning

To model uncertain processes we are primarily interested in the
occurrence of events. In our context we  consider events that are
uniquely associated with intervals, and this association is expressed
by means of a time-interval index. We  interpret events as taking
place throughout their associated intervals.

Now to define temporal events, we  index facts with time inter-
vals from the set of all time intervals I.

Definition 4. Let E denote the event space containing all proba-
bilistic events of interest. A temporal uncertain event EI is defined as
a probabilistic event E ⊆ E that occurs in time interval I ∈ I.

The Boolean algebra of temporal events B(EI), where EI is defined as
EI = {EI | E ⊆ E, I ∈ I}, should obey certain rules, taking into account
the time interval indices of the events. The elements of the Boolean
algebra are obtained by constructing conjunctions of events (EI ∧
E′J), disjunctions (EI ∨ E′J) and negations ¬EI, with events EI, E′J ∈ EI.

With all the basic ingredients defined above, it is now possible
to define a framework for uncertain temporal reasoning.

Definition 5. A probabilistic qualitative time algebra PQT is defined
as a 4-tuple PQT = 〈 I, EI, B, P 〉, where

• I is the set of all time intervals;
• EI is the set of temporal uncertain events;
• B is the set of basic Allen relations;

• P is an associated joint probability distribution.

Below, we  will use CP-logic as a practical language to implement
the framework.
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.2. On events and intervals

There are certain properties of temporal events which require
urther attention, and which will be considered subsequently.

For E = E′ with temporal events EI and E′J , there is an interac-
ion between the Boolean operations on temporal events and the
llen relationships of the time intervals. For example, when IbJ
olds, then (EI ∧ EJ) cannot be simplified; however, if IeqJ holds, then
EI ∧ EJ) = EI = EJ. In addition, when two intervals I and J meet, i.e. ImJ
olds, then (EI ∧ EJ) = EK with K = I ∪ J. This expresses that event E
ctually occurred during interval K.

roposition 1. For intervals I, J ∈ I and a relation IRJ it holds that

EI ∧ EJ) = EI∪J (5.1)

f R ∈ B \ {b, b}.
n other words, it holds for all cases except when I and J are discon-
ected intervals.

roof. The proposition can be understood by splitting the inter-
als into the intersection K = I ∩ J, and the remainders I′ = I \ K and
′ = J \ K. Note that {b, b, m,  m} are the only relations for which
he intersection K is empty, but that for {m, m} we  have that
up I = inf J and hence I, J are connected. Then by realising that
I′ ∪ K) ∪ (K ∪ J′) = I′ ∪ K ∪ J′ and that the same event in connected
ntervals cannot be distinguished, we obtain EI∪J. �

ote that Eq. (5.1) is true for any temporal relation R if we define
he time-interval index I of a temporal event EI as a set of time
ntervals, rather than as a single time interval, with the singleton set
s a special case. This would generalise Allen’s algebra of temporal
elations to relations between sets of time intervals. As it is not
ur intention in this paper to change the algebraic basis of Allen’s
lgebra, we will not pursue this idea further.

For a disjunction EI ∨ EJ, we can apply the results from the proof
f Proposition 1 to obtain that

EI ∨ EJ) = EK ∧ (EI′ ∨ EJ′ ) (5.2)

here K, I′ and J′ are defined as in the proof above, for IRJ,  with
 ∈ B \ {b, b}.

.3. Uncertainty

There are various ways in which uncertainty can be incorporated
nto the language:

Uncertainty can be expressed with respect to the temporal events
EI.
Uncertainty can be expressed with regard to the relation between
time intervals IRJ.

hen combined for two temporal events EI and E′J , these assump-
ions give rise to a joint probability distribution of the form

(EI, E′J , IRJ),

ith R an Allen relation. Note that this could also be the special case
here we have a single event E associated with both interval I and

nterval J.
Often one is interested in more than two events, which can

e modelled with a joint probability over all the events and pair-
ise temporal relations between the events. For example for three

vents we have the joint probability
(EI, E′J , E
′′
K , IRJ, IR′K, JR′′K).

ometimes this joint probability will simplify due to independences
etween the events. In the following we focus on situations with
ligence in Medicine 59 (2013) 143– 155

two events, yet similar arguments can also be made for multiple
events.

5.3.1. Certain Allen relations
By conditioning on IRJ,  one removes part of the uncertainty,

yielding:

P(EI, E′J | IRJ).

In this case, only events are uncertain, and relations between
interval are considered to be part of the (deterministic) logic spec-
ification. We can now define a distribution over temporal events.

Definition 6. The probability of a Boolean expression of events
is given by the probability function P : B(EI) → [0, 1], where B(EI)
denotes the Boolean algebra over the set of temporal events EI.

Here uncertainty is introduced at the level of events attached to
particular intervals, which means we  are looking at what happens
at a greater level of detail than the qualitative relations describe.
However, the nature of Allen’s qualitative algebra dictates that
relationships between the intervals are more important than the
exact intervals. Consequently, the following parameter invariance
appears appropriate to restrict arbitrary models to those models
where the qualitative relations are the key primitives for temporal
uncertainty:

∀R, I, J, K, L : P(EI, E′J | IRJ) = P(EK , E′L | KRL), (5.3)

i.e. when the Allen relation R between (potentially) different inter-
vals is the same, the probability of joint occurrence of the associated
temporal events is also the same. This invariance ensures that the
influence of time on probabilities of events is governed by the tem-
poral relations.

This invariance is actually related to a common assumption for
dynamic Bayesian networks, where one assumes parameter invari-
ance over time to limit the number of parameters. There is however
a subtle difference. The invariance that is commonly assumed for
DBNs is that P(Xt | Xt−1) is equal for all t. The invariance in Eq. (5.3)
however states that as long as two events are related through the
same temporal relation their probabilities are equal, which is not
about repetition invariance. Yet the relation with Markov processes
is interesting and we will now show that the qualitative time frame-
work can be used to model Markov processes.

The important properties of a Markov process as described in
Section 4.4 for a representation in terms of Allen’s relations are the
ordering of events and the factorisation over time slices. Hence a
chain of events, connected with the relations Ri ∈ {b, m}  represents
the correct ordering:

EIR1E′JR2E
′′
K R3· · ·

Since this results in disjoint time slices, the factorisation property
also holds under the first order Markov assumption.

To generalise to representing a DBN with Allen relations we have
to somehow map  events to time slices depending on the relations
between them. A division in classes of relations turns out to be
useful here:

B = P ∪ P ∪ C ∪ O

where the subsets are the precedence relations P = {b, m},  the
inverse precedence relations P = {b, m}, the concurrent relations
C = {s, s, d, d, f, f , eq} and the overlap relations O  = {o, o}.

Definition 7. A temporal partition � of a set of temporal events
EI is a partition such that for all sets L ∈ � it holds that: EIRE′J with

R ∈ C iff EI, E′J ∈ L; and EIRE′J with R ∈ P ∪ P iff EI ∈ L, E′J ∈ M,  M ∈ �

and L /= M.
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irst, we need to show that the uncertain temporal events can be
inearly ordered. Recall that a linear order ≤ is transitive, antisym-

etric and total.

emma  1. Let EI be a set of temporal events and � a temporal
artition of EI, then, the temporal events can be linearly ordered.

roof. The sets L ∈ � are linearly ordered by the fact that the
recedence relation induces a linear order ≤. Hence, temporal
vents in different sets are also linearly ordered. Events in each
et L are equivalent as they are neither < nor >, showing antisym-
etry. Between any two temporal events in a temporal partition a

elation in B \ O  holds, so totality follows. �

From the linear order that can be imposed on the temporal
vents it follows that one can map  temporal events to a DBN.

roposition 2. A set of temporal events EI with a temporal partition
 can be mapped to a DBN with the first order Markov assumption.

roof. A DBN with the first order Markov assumption has arcs
ither within a time slice or from time slice t to t + 1. The temporal
artition results in a linear order by Lemma  1. Now let each L ∈ �
orrespond to a time slice. Two time slices are connected by arcs in
he DBN graph if L < M with L, M ∈ �,  E′JREI holds with R ∈ P, E′J ∈ M

nd EI ∈ L, and there is no set N ∈ � such that L < N < M.  �

In other words, we can construct a first order Markov DBN for
hose temporal networks that only contain relations in C and P,
esulting in intra and inter time-slice arcs respectively. If we also
ant to take into account the overlap relations IOJ the construction

s less straightforward. The overlapping events can be considered
n indivisible unit, which allows us to assign the combined interval

 ∪ J to a single time slice. An undesirable consequence is that a chain
f overlapping events would result in a single time slice for the
omplete chain. However we can give a restriction that allows us
o deal with some overlapping events.

roposition 3. Let EIOE′J with EI, E′J ∈ EI. EI corresponds to a DBN

f for all E
′′
K ∈ EI we have E

′′
K R EI and E

′′
K R′ E′J with R, R′ ∈ C;  or R,

′ either both in P or both in P.

roof. If R, R′ ∈ C the joined interval I ∪ J is also only related via C,
hich by Proposition 2 results in a single time slice. If R, R′ ∈ P or

, R′ ∈ P the joined interval will by the same proposition result in
 separate time slice for the events. �

.3.2. Uncertain Allen relations
The joint probability P(EI, EJ, IRJ) represents the combined

ncertainty in events and their temporal relations. Quantifying
ncertainty in the relations by means of probability generalises the
se of disjunctions in Allen’s algebra to model for example uncer-
ainty in the ordering of events. Conditioning the joint probability
n the temporal relation, we obtain:

(EI, EJ, IRJ) = P(EI, EJ | IRJ)P(IRJ).

For fixed intervals I, J, the following holds:

(IBJ) = P(
∨

r∈B
IrJ) =

∑
r∈B

P(IrJ) = 1,

hich is due to the mutual exclusivity of the basic relations. Thus,
or any subset R ⊆ B it holds that:

(IRJ) = P(
∨

IrJ) =
∑

P(IrJ).

r∈R

r∈R

o although the set A  is large (|A| = 213) the probability of a relation
 ∈ A  is simply the sum over the basic relations in R.
ligence in Medicine 59 (2013) 143– 155 149

Closure operations
When using probabilistic relations it is natural to think about

whether the properties of Allen’s algebra can be generalised.
Returning for a moment to relations instead of a logic representa-
tion, we  should reconsider the operations from Definition 2: inverse,
intersection and composition. In [19] some methods were proposed,
explained below. However, in our opinion the motivation is lack-
ing and we  propose an alternative for the probabilistic equivalent
of the intersection operation.

We first introduce the notation P[IBJ] to define a distribution
over the elements of B. So for example if for IRJ we  have P(IeqJ) = 0.3,
P(IbJ) = 0.7 and P(IrJ) = 0 for all r ∈ B \ {eq, b}; we write

P[IBJ] = [eq : 0.3, b : 0.7].

Now, let the following probability distribution for JR′K be given:

P[JBK] = [d : 0.5, o : 0.5].

We can now define the probabilistic operations.
Inverse. The inverse of P[IBJ] is found by elementwise inversion

P[JBI] = [eq : 0.3, b : 0.7].
Composition. If we  compute the composition I(R ◦ R′)K we  obtain

I{bmosd}K, for which we can compute the probabilities via the pro-
cedure in [19]

P(d) = eq ◦ d = 0.3 · 0.5 = 0.15

P(o) = eq ◦ o = 0.3 · 0.5 = 0.15

P(b) = b ◦ d = 0.7 · 0.5 = 0.35

P(bmosd) = b ◦ o = 0.7 · 0.5 = 0.35

Note that P(Ir′′K) = P(IrJ)P(Jr′K) with r′′ = r ◦ r′. The composition
b ◦ o results in multiple relations, which means that the probabil-
ity 0.35 has to be divided over {bmosd}. A non-informative choice
would be a uniform assignment, but in general we  have

P(I{b, o, d, (b ∨ m ∨ o ∨ s ∨ d)}K) = 1

0.15 ≤ P(IdK) ≤ 0.15 + a

0.15 ≤ P(IoK) ≤ 0.15 + b

0.35 ≤ P(IbK) ≤ 0.35 + c

P(ImK) + P(IsK) + a + b + c = 0.35

which implies a, c, b ∈ [0, 0.35].
Intersection.  For the intersection operation we first consider

conditioning. Assume that we  have the following probability dis-
tribution:

P[IBK] = [m : 0.3, o : 0.7]

When we now also learn that I{m, s}K holds this means that accord-
ing to Allen’s algebra only ImK can hold as {m} = {m,  o} ∩ {m, s}.
Probabilistically, this can be viewed as a conditioning event which
leads to the conclusion that meets holds almost surely, as follows:

P(ImK | I{m, s}K) = P(ImK)
P(I{m, s}K)

= P(ImK)
P(ImK) + P(IsK)

= 1

as P(IsK) = 0, and

P(IoK | I{m, s}K) = P(⊥)
P(I{m, s}K)

= 0

Here we  assume that we  know the initial distribution and obtain
additional information on which we  can condition. In this particular
situation we  can solve the problem and compute the probabilities
as in the example. This is different from the approach taken in [19],
where two distributions P ′ (IR′J) and P ′′ (IR′′J) are combined into a
R R

single distribution P(IRJ):

∀x ∈ R : PR(IxJ) = 1
Z

PR′ (IxJ)PR′′ (IxJ)
PR′ (IxJ) + PR′′ (IxJ)

,
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ig. 3. Causal independence model to combine the distributions over the relations
1,R2 via the interaction function g.

here Z is the normalisation Z =
∑

z∈RPR(IzJ). There appears to be
ittle theoretical justification for this approach however. Instead,

e opt to use the framework of causal independence, which offers
 principled approach to model interactions between probabilis-
ic events. Modelling the intersection operation then results in the
raphical model shown in Fig. 3.

The behaviour of the causal independence model depends on the
hoice of interaction function, g in the figure. Using some variant
f the noisy-AND appears appropriate, due to the similarity to the
ogical case. Since the relations are not binary valued the standard
pproach does not apply, but the generalisation by Srinivas [29]
ffers an alternative. The probability of R given R1 and R2 is given
y:

(R | R1, R2) =
∑

{I1,I2|g(I1,I2)=R}

∏
i

P(Ii | Ri)

here the probabilities P(Ii | Ri) are given by:

(Ii = x | Ri = y) =
{

P(pass(Ii)) + P(fail(Ii = x)) if x = y

P(fail(Ii = x)) otherwise

here fail(Ii = x) indicates that Ii takes on the value x irrespective
f the value of Ri, whereas pass(Ii) indicates that no failure occurs
nd hence

(pass(Ii)) = 1 −
∑

z∈val(Ri)

P(fail(Ii = z)).

or the interaction function g an analogue to the conjunction used
n Allen’s algebra is the componentwise AND-function

 = g(I1, I2) with R(i) = I1(i) ∧ I2(i),

here the components correspond to the basic relations B and R(i)
enotes the ith component of R and similarly for I. This then results

n the probabilities

(R = r) = P(g(I1, I2) = r) = P(I1 = r)P(I2 = r),

hich is not a normalised distribution, so after normalisation we
btain

(R = r) = 1
Z

P(g(I1, I2) = r) = 1
Z

P(I1 = r)P(I2 = r),

here Z =
∑

zP(I1 = z)P(I2 = z).

.4. The framework in CP-logic

Probabilistic logic, and specifically CP-logic, offers a way to
mplement the framework described above. In CP-logic events are

epresented by facts, which are interpreted as independent events.
elations between facts are stated by logical expressions and
hrough these expressions, dependences between events embed-
ed in the facts can be introduced.
ligence in Medicine 59 (2013) 143– 155

We  can now define our language which we  call Qualitative
Time CP-logic as a restriction of CP-logic. The language consists
of CP-rules (Definition 3), where the predicates model temporal
probabilistic events (Definition 4). Furthermore, the special pred-
icates r/3 and allen/3 (defined in Section 4.2), are used to denote
the temporal relations between the events in each rule. We allow
abbreviations where the omission of an interval means that the
event is static over the time of interest and the omission of a relation
in a rule indicates that allen( · , · , [B]) holds. These abbreviations
allow us to incorporate specific static rules in standard CP-logic syn-
tax. The probabilistic semantics are inherited from CP-logic, which
leads to the result in the following section.

5.5. Reasoning with temporal events

Now that we have defined uncertainty with respect to temporal
events we can examine reasoning with uncertainty and time. To
capture the qualitative nature of the time representation in logic,
we represent intervals as atoms, foregoing the need to reason about
the underlying time points.

The probability of temporally related events is of interest, which
is, as we have seen, the probability P(EI, E′J , IRJ). The following
proposition shows how we  can compute this probability via the
CP-logic semantics, given that IRJ is a logical relation between the
intervals associated with the events.

Proposition 4. Let R be a relation R ∈ A, and EI, E′J ∈ EI events; the
probability P(EI, E′J , IRJ) is then obtained as follows:

P(EI, E′J , IRJ) = P(EI | E′J , IRJ)P(E′J | IRJ)P(IRJ)

=
∑

�

I�(EI, E′J , IRJ)
∏
e�

P(e�)

where � denotes a leaf node in the tree, e� is an edge on the path from
� to the root of the tree; and I�(x) is an indicator function that is 1 if x
is true in �.

Proof. (sketch) The proposition follows from the probability tree
semantics of CP-logic. An event EI is either true with a priori prob-
ability p, or is the consequent of a rule EI : p ← B, with B the body
of the clause. A rule decomposes the joint probability P(H, B) into
P(H | B)P(B). The probability of a particular event can hence be com-
puted via a series of rule applications, which can be represented as
a event tree. As CP-rules fire independently, we obtain the product
from the proposition as a path in the tree. As there are multiple
series of rules (logic proofs) that can lead to the same events, the
total probability P(EI, E′J , IRJ) is the sum over those leaves � in which
the events are true. �

The proof relies on properties of CP-logic, the details of which can
be found in [4]. Note that the temporal relations can be seen as a
special kind of event. We  use them only as constraints in the body
of rules, but this is not a technical requirement.

Example 6. We are again interested in modelling the relation
between an infection and the occurrence of an exacerbation. Given
the temporal relations overlaps and equals we  now obtain the CP-
logic rules:

exacerbation(j) : 0.7; ¬exacerbation(j) : 0.3 ← infection(i), allen(i, j, [o, eq]).

r(i, j, o) : 0.8; r(i, j, eq) : 0.2.

infection(i) : 0.01.

It follows that the probability of an exacerbation is a priori
−3
7 × 10 , and if we  would have (definite) evidence for an infection

the probability would be 0.7.

The distribution over possible temporal relations in this case has
the same result as when r(i, j, o) or r(i, j, eq)  holds with probability 1,
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ince the same rule for exacerbation fires in both cases. It does show
owever that by specifying a distribution in this way  the relations
re mutually exclusive also in the reasoning process, which ensures
hat the right probabilities are computed, as given in Proposition 4.

.6. Metric relations

A number of extensions to Allen’s algebra have been proposed
e.g. [10,11]) based on various kinds of constraint reasoning. The
dded value lies mostly in metric constraints, which allow numeri-
al constraints in addition to the pure qualitative relations in Allen’s
lgebra. Jonsson and Bäckström [12] proposed the framework of
isjunctive linear relations, which supports tractable reasoning
ith metric relations, while being at least as expressive as a number

f earlier proposals (see also [30] on tractability results).
For practical medical applications metric constraints seem a

seful addition to qualitative relations, enabling a more precise
odel of the temporal relation in those cases where the neces-

ary level of quantitative detail is attainable. The essence of adding
etric information is that additional constraints between inter-

al endpoints should be satisfied, which can be modelled in the
ogic part of our specification. That is, special instances of temporal
elations can be defined containing a metric constraint. The met-
ic extension is useful to model relations that cannot be expressed
ithin the original algebra, for instance a physical constraint that

ome effect occurs only after a certain amount of time.
Formally, for a qualitative temporal relation R ∈ B, a quantified

ersion Rm(x, y) of this relation has numerical parameters x, y that
ound the distance between interval endpoints. Depending on the
emporal relation, this definition can still be implemented in differ-
nt ways. For instance a constraint like ‘I is at least two  time points
efore J’ can be specified with a single quantitative parameter, lead-

ng to an alternative definition of before:

m(I, J, X, Y) ← I+ + X < J−,

eaning that I is at least X time points before J. Here we  did not need
he parameter Y, in practice different types of metric constraints

ight be useful that do require two parameters, like ‘I between 2
nd 4 time points before J’:

m(I, J, X, Y) ← X ≤ J− − I+ ≤ Y.

ith this parametrisation we can construct a quantified set of tem-
oral relations on a level of detail that is appropriate for the domain.

To specify a distribution over relations, notice that the metric
ersions of the qualitative relations define a subset of the inter-
als, i.e. in terms of relations as sets bm⊆ b, hence the probability
ssigned to before can be distributed over the metric relations
nder the condition that they are disjoint. For example, if in the
riginal distribution the probability of before was p and we want to
ntroduce the relation ‘at least two time points before’, b>2, with
robability 1

2 p, it suffices to define b>2 and add the rule

b>2J : 0.5 ← IbJ.

. Validation of the qualitative probabilistic framework

In this section, we return to the two typical biomedical cases
escribed in Section 2 and we use them here to validate the
ramework. We investigate whether the framework has sufficient
xpressive power to capture the biomedical knowledge concern-

ng those cases. As the same framework is used to handle different
ases, this shows that the framework is generic and has potential
or dealing with a wide variety of other biomedical problems as
ell.
Fig. 4. Submodel of the TNBN from [7].

6.1. Temporal nodes Bayesian networks

We first study a particular class of temporal models called tem-
poral nodes Bayesian networks (TNBN) [31], which represent event
intervals as values of variables in a Bayesian network. This allows
reasoning about events in those situations where one is not inter-
ested in dynamic changes over time but in single occurrences that
are temporally uncertain. This class of models describes a worth-
while subset of the situations that we want to be able to represent.

In a recent paper [7] a TNBN was  used to model interac-
tions between antiretroviral drugs and mutations of the Human
Immunodeficiency Virus, HIV, that result in drug resistance. The
temporally uncertain aspect is here the occurrence of the muta-
tions given other mutations and an antiretroviral drug or a cocktail
of those drugs (which present an evolutionary pressure for par-
ticular mutations to succeed). The presence of drugs is modelled
atemporally, while each mutation has a probability of occurrence
in each of a set of consecutive intervals.

To represent this in our logic we first need to represent the atem-
poral information, which consists of a set of ground clauses of the
type:

anti viral(X) : P.

indicating that a particular drug X occurs with probability P,
although when studying a particular situation it will typically be
known which drugs are present, allowing us to instantiate these
clauses to either true of false. Each mutation is influenced by other
mutations and drugs resulting in rules of the type:

mutation(X, ∅) : P0; mutation(X, i1) : P1; mutation(X, i2) : P2;

. . .;  mutation(X, in) : Pn ← mutation(Y, j), . . .,  anti viral(Z), . . .

where i1, i2, . . .,  in, j are ground intervals, ∅ indicates the event
did not occur and

∑n
k=0Pk = 1 holds as usual. In terms of Allen’s

relations we have the constraint

i1 mi2 m·  · ·min,

for all temporal variables. However, because each variable is
allowed to take on different interval values, interactions between
mutations result in other temporal relations. In TNBNs these rela-
tions are modelled implicitly in the probability distributions. That
is, if mutation(X, I) ← mutation(Y, J), the n · (m + 1) parameters for ik,
jl with k ∈ {0, . . .,  n}, l ∈ {0, . . .,  m}  encode the Cartesian product of
possible combinations of I and J.
Concretely, we model the two  most common mutations, L63P
and I93L, and two drugs, IDV and TPV, that influence them. This is
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 submodel of one of the networks described in [7], reproduced in
ig. 4. This results in the following rules:

anti viral(IDV).

anti viral(TPV).

mutation(L63P, ∅) : P0; mutation(L63P, [24, 136]) : P1;

mutation(L63P, [137, 217]) : P2; mutation(L63P, [218, 302]) : P3;

mutation(L63P, [303, 454]) : P4 ← anti viral(IDV).

mutation(I93L, ∅) : P00; mutation(I93L, [16, 110]) : P01;

mutation(I93L, [111, 203]) : P02; mutation(I93L, [204, 309]) : P03

← anti viral(TPV),  mutation(L63P, ∅).

here for brevity we have omitted the rules for the other parent
onfigurations of I93L which are analogous to the one shown. It is
asy to see that the probability of for example mutation(I93L, ∅) can
e computed as:

(mutation(I93L, ∅))

=
∑

I

P(mutation(L63P, I))P(mutation(I93L, ∅) | mutation(L63P, I))

=
4∑

i=0

PiPi0.

his is the expected result of the CP-logic semantics and of TNBNs,
nd indeed our rule representation is equivalent to the TNBN.

With our representation we can also quite simply introduce
xtensions with little additional work, as the framework takes care
f the probabilistic reasoning. For example it may  be interesting to
ake the temporal representation more qualitative, instead of the

oncrete intervals used now. To do so we can model the interaction
etween mutations by means of a temporal relation, and especially
efore is a natural candidate. For instance, the influence of L63P on
93L can be modelled as two rules, for the case that L63P does not
ccur (not shown) and for the case that L63P occurs before I93L:

mutation(I93L, ∅) : P10; mutation(I93L, J) : P11;

← anti viral(TPV),  mutation(L63P, I), r(I, J, b).

Another possible extension would be to also take into account
ime for the antiviral drugs. It appears plausible that the influence
f a drug is concentrated in the interval in which it is present, with
ossibly limited influence some time longer due to the fact that it
hanged the population of viruses. We  can capture this idea in the
ules:

anti viral(IDV, I).

mutation(L63P, ∅) : P0; mutation(L63P, J) : P1;

← anti viral(IDV, I), r(I, J, eq).

mutation(L63P, ∅) : P ′0; mutation(L63P, J) : P ′1;

← anti viral(IDV, I), r(I, J, mx).

here the relation mx is a metric version of the meets relation,
efined as ImxJ ← I+ = J− ∧ J+− J− ≤ x, allowing us to limit the time
f influence of the drug after it is no longer administered.

The ease with which we can incorporate ideas for extensions

n the language shows the versatility of our framework. The logic
ffers a readable language to represent relations both atempo-
al and temporal which together with the probabilistic semantics
esults in a compelling framework to represent many clinical
ligence in Medicine 59 (2013) 143– 155

situations. We  now return to the problem of modelling the disease
process of COPD.

6.2. Describing the evolution of COPD

Our framework is particularly well-suited to the clinical task of
monitoring patients with chronic obstructive pulmonary disease.
As the previous examples have shown both the time and uncer-
tainty aspects play a role in COPD management. In this section we
develop a model of COPD disease progression in more detail.

We  start with a clinical description of influence between the rel-
evant variables and their qualitative temporal relations. Relevant
events to construct a process description of COPD progression are
the outcome variable exacerbation its usual cause infection and the
observable symptoms, signs and lab data. In the context of moni-
toring patients at home, access to signs or lab data is limited and
we focus on symptoms, specifically dyspnea (difficulty in breath-
ing), sputum colour and volume, cough and reduced activity. The
patients from whom the data have been acquired typically have
around two  exacerbations per year, and consequently exacerbation
symptoms will be largely absent most of the time. The situations we
are interested in are the episodes in which an exacerbation occurs.
When an exacerbation develops, different symptoms will increase
over time until either through medication or through natural recov-
ery the symptoms return to normal levels.

After having identified the variables our logic representation
makes it is easy to model explicitly the structural relations in the
domain. That is, we construct rules of the type:

symptom(P, S) ← infection(P, Y), symptom(S), patient(P).

symptom(dyspnea).

symptom(cough).

symptom(sputum).

symptom(activity).

This indicates that a patient P with an infection Y (which would
allows us to specify different kinds of infections, e.g. bacterial or
viral; or even more detailed by identifying specific bacteria that
often cause airway infections like H. Influenzae,  or S. Pneumoniae,
but here we  limit ourselves to just modelling the presence of an
infection), has symptoms from the set {dyspnea, cough,  sputum,
activity}. In addition we should take into account interdependen-
cies of the symptoms, for example, that an increase in dyspnea can
cause a decrease of activity (the fact that some symptoms indi-
cate an increase and others a decrease can easily be represented
explicitly in the logic but is omitted for simplicity):

symptom(P, activity) ← symptom(P, dyspnea), patient(P).

The resulting rules are quite readable, and both obtaining and veri-
fying the domain knowledge with help from an expert is a realistic
option.

Given the structural properties the next step is modelling the
temporal characteristics. It is unrealistic to have precise timing
information as this depends on many patient specific and envi-
ronmental factors. Allen’s algebra is a useful compromise between
unattainable precise temporal knowledge and disregarding the
temporal dimension of the problem completely. Concretely, we
can describe the temporal structure of the process by assign-
ing relations between infection events, exacerbation events and
symptoms, for example in a substantial number of cases the first
symptom to increase is dyspnea, which often stays present until

the exacerbation ends. So the most likely temporal relation would
be:

infection{do}dyspnea{f o}exacerbation.
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imilarly we can use domain knowledge to define relations for
he other symptoms with respect to infection and exacerbation
vents. Analogous to the structural relations, we can also take into
ccount the temporal relations between symptoms. It should be
oted however that if the desired information is hard to obtain,
his just means that we have no explicit constraint on the temporal
elation between events, which means that all basic relations are
ossible.

In general it will often not be easy to specify structural and
emporal characteristics exactly, requiring the inclusion of uncer-
ain information. The advantage of starting with logic (without
robabilities) is that the main structure of the process can be deter-
ined more easily. The choice for a probabilistic logic like CP-logic

llows us to subsequently refine the representation within the
ame framework to include uncertainty. If clinical data is available,
t can be applied in this stage to estimate probabilities.

The temporal relations may  also be underspecified which can
e modelled with a distribution over the basic temporal relations.
or example derived from relative frequencies in the data and

 knowledge-based prior distribution. We  then might obtain for
xample the following distribution for the relation between an
xacerbation and dyspnea – which in CP-logic notation consists
f a set of statements like r(I, J, X) : P, where X is a temporal relation
nd P a probability – shown here more compactly:

b 0 m 0 o 0 s 0.01 d 0.05 f 0.35 eq 0.18

b 0 m 0 o 0.2 s 0.05 d 0.1 f 0.05
(6.1)

he relation before and meets have been assigned probability zero,
ecause we are only interested in symptoms that actually co-occur
ith an exacerbation. And overlaps has zero probability since it
akes little sense to consider exacerbations that start before their

ymptoms.
Putting it all together we end up with a representation that

ncludes structural, temporal and uncertainty information. To give
n example of the reasoning in our COPD model we  restrict our-
elves to the symptoms dyspnea and cough,  their cause infection
nd the effect exacerbation. We  assume the temporal relation equals
or the relation between the symptoms and infection. Then using
he predicates we introduced in Section 4.2 and somewhat more
ompact notation for readability (omitting the specification of the
atient P, writing symptoms as predicates and some set-notation

n 6.5), the rules to model this process are the following:

yspnea(I) : 0.8 ← infection(J), r(I, J, eq). (6.2)

ough(I) : 0.6 ← infection(J), r(I, J, d). (6.3)

xacerbation(I) : 0.95

← dyspnea(J), allen(I, J, [o, f ]), cough(K), r(I, K, X). (6.4)

xacerbation(I) : 0.7

← dyspnea(J), allen(I, J, [C \ {f }]), cough(K), r(I, K, X). (6.5)

nfection(I) : 0.05 ← infection(J), r(I, J, b). (6.6)

nfection(i1) : 0.05. (6.7)

Both exacerbations and individual symptoms are recurring
vents but the start event of a series of occurrences is the only

vent for which we need to model the repetition. This is expressed
y rule 6.6. To predict the probability of an exacerbation in a partic-
lar interval, we need probabilities for the dependencies between
xacerbations and symptoms given a temporal relation. Instead of
Fig. 5. Graphical representation of the example time-course and probabilities. The
proportion of the circle that is shaded indicates the probability.

exhaustively enumerating all relations, we identify the dominant
pattern: exacerbation is overlapped-by or finishes dyspnea. The only
probabilities that have to be specified are those for the dominant
temporal pattern (rule 6.4) and for the case summarising the other
situations (rule 6.5). Instantiations of the relation predicates for
specific intervals are omitted for conciseness.

With this representation we can now query probabilities of
interest given evidence (observations). For example, let us assume
the relations between infection and the symptoms, r(dyspnea,
infection, eq)  and r(cough, infection, d) hold. The distribution for
r(exacerbation, cough, X) can be derived from r(dyspnea, infection,
eq),  r(infection, cough, d) and allen(dyspnea, exacerbation, [C ∪ {o}])
leading to the relation allen(exacerbation, cough, [C ∪ O]), with the
distribution:

o 0.009 s 0.006 d 0.006 f 0.006 eq 0.006

o 0.189 s 0.189 d 0.572 f 0.009
(6.8)

resulting from the procedure described in 5.3.2 and using the uni-
form distribution to split up probabilities when the composition
resulted in multiple basic relations. To compute P(exacerbation) the
relation is marginalised, but it nonetheless provides the insight
that the probability that an exacerbation contains an episode of
coughing is high.

Computing P(exacerbation) from the rules and distributions
above, we  obtain P(exacerbation) = .001, which is dominated by the
small prior probability of an infection. Then, if we have evidence
(from the patient) that dyspnea and cough are present, we obtain
P(exacerbation) = 0.84. See also Fig. 5.

6.2.1. Dynamic Bayesian network
To show the different aspects of the language we can compare

the situation above to a model based on a dynamic Bayesian net-
work. As we have seen we  can convert a model based on Allen’s
algebra to a DBN using the procedure in Section 5.3.1.

First we notice that possible infections are the repeating events
(with relation before)  that define the time slices of the DBN. Inspect-
ing the rules above we see that the symptoms are contemporary
with the infection event, resulting in connections within the time
slice. Both observations are a direct consequence of Proposition
2. However, we also have that the relation between dyspnea and
exacerbation is overlaps with probability 0.2. In Proposition 3 we
gave a characterisation of situations for which we can construct a
DBN. In the current situation it means that the exacerbation and its
symptoms would have to be modelled as interacting in the same
time slice. This seems a reasonable solution, resulting in the DBN
structure shown in Fig. 6. Note that a consequence of this choice
is that we lose the possibility to make a distinction between the
start of the symptoms (dyspnea, cough) and the exacerbation. This
shows that although a DBN can be constructed for this situation,
the representation with Allen’s algebra is more expressive.

With respect to the probabilistic parameters we can reuse the

parameters from the logic representation. We  did not display
the rules that govern the probability of symptoms without an
infection, which are needed to complete a conditional probabil-
ity table, but they have a similar pattern as the rules shown. The
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Fig. 6. Structure of the COPD-monitoring DBN. Dashed arcs represent inter time-
slice connections. I = infection, C = cough, D = dyspnea, E = exacerbation.
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ig. 7. Structure of the COPD-monitoring DBN with variables for the temporal rela-
ions. Dashed arcs represent inter time-slice connections. I = infection, C = cough,

 = dyspnea, E = exacerbation.

ncertainty on the relations is however less easy to represent: since
e aggregate all concurrent relations, an obvious solution would

e to marginalise out the relations. Taking as an example the prob-
bility of exacerbation given that dyspnea and cough are true, this
esults in the parameter estimate (omitting the conditioning on D,

 on the right for readability):

(E | D, C) =
∑

RED,REC

P(E, RED, REC )

=
∑

RED,REC

P(E, RED | REC )P(REC )

=
∑

RED={o,f }
P(E, RED) +

∑
RED={C\f }

P(E, RED)

=
∑

RED={o,f }
P(E | RED)P(RED) +

∑
RED={C\f }

P(E | RED)P(RED)

= 0.95 · 0.55 + 0.7 · 0.45

he parameter estimates for the other cases are similar.
Alternatively we can explicitly model the relations within the

ime slice by introducing extra variables that take the relations as
alues. To maintain the temporal semantics of the DBN we  again
nly consider relations in C within a time slice. The network from
ig. 6 can then be extended to the one in Fig. 7. Since we assumed
arlier that the distribution over temporal relations is independent
f the values of the (event) variables involved, the relation variables
o not have parents in the graph. The parameters of the relation
ariables are equal to the distribution in (6.1). For exacerbation, in
his particular example REC has no influence and we can encode the
oint distribution of dyspnea, cough and RED easily in the CPT. We
btain P(E | D = 1, C = 1, RED = r) = p where p = 0.95 when r ∈ {o, f } and

 = 0.7 when r ∈ {C \ f }. This follows directly from the rules we gave
arlier.

Summarising, we can see that comparing the two  represen-
ations the DBN has a straightforward interpretation in terms of
vents that happen at the same time and those that do not. Allen’s
lgebra allows a richer temporal structure without enforcing too

uch temporal detail. The logic representation can be used when

nly ordering information is available and allows us to model both
tructural and temporal information. Furthermore, since it is easy to
efine new relations for a particular domain situation, much more

[

ligence in Medicine 59 (2013) 143– 155

complex relations can also be specified easily. In order to gain the
same level of detail in a DBN representation one has to introduce
additional variables, losing some of the convenience of the compact
representation of DBNs.

The best choice of temporal model is a balancing act where it
depends on the importance and availability of temporal informa-
tion whether a DBN or a logic representation has more value. In
the case of COPD monitoring, a DBN is useful as a simple classifier
that takes some temporal information into account. However, to
gain a better understanding of the nature of the disease process
it is worthwhile to use a richer representation that models differ-
ent kinds of temporal relations between symptoms and between a
symptom and an exacerbation. Using qualitative relations we  can
model the additional temporal structure, without requiring unre-
alistic temporal detail.

7. Conclusion

In this paper we  reformulated and extended Allen’s algebra in
a probabilistic logic, leading to a framework called Qualitative Time
CP-logic. Medical processes are often well suited to be represented
in a qualitative time framework, and the representation explored
in this paper appears to capture knowledge that fits clinical reason-
ing well. Specifically, the framework allows us to construct models
stepwise, starting with structural properties represented by logic,
adding qualitative temporal information and finally representing
uncertainty with probabilities. Compared to directly constructing
a dynamic Bayesian network, we gain the expressiveness of proba-
bilistic logics in general and a more intuitive time representation. If
desired, the model can still be converted to a DBN, but this requires
some assumptions on how to simplify the temporal information
represented with Allen’s algebra. Our COPD model indicates that
we can specify clinically relevant processes in an intuitive fashion
within our framework, while the generic nature of the framework
implies that we  can also deal with many other biomedical situa-
tions.
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