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Abstract. Model-based diagnosis is the field of research concerned with
the problem of finding faults in systems by reasoning with abstract mod-
els of the systems. Typically, such models offer a description of the struc-
ture of the system in terms of a collection of interacting components.
For each of these components it is described how they are expected to
behave when functioning normally or abnormally. The model can then
be used to determine which combination of components is possibly faulty
in the face of observations derived from the actual system. There have
been various proposals in literature to incorporate uncertainty into the
diagnostic reasoning process about the structure and behaviour of sys-
tems, since much of what goes on in a system cannot be observed. This
paper proposes a method for decomposing the probability distribution
underlying probabilistic model-based diagnosis in two parts: (i) a part
that offers a description of uncertain abnormal behaviour in terms of the
Poisson-binomial probability distribution, and (ii) a part describing the
deterministic, normal behaviour of system components.

1 Introduction

Almost from the inception of the field of probabilistic graphical models, Bayesian
networks have been popular as formalisms to built model-based, diagnostic sys-
tems [1]. An alternative theory of model-based diagnosis was developed at
approximately the same time, founded on techniques from logical reasoning [2,3].
The General Diagnostic Engine, GDE for short, is a well-known implementation
of the logical theory; however, it also includes a restricted form of uncertainty
reasoning to focus the diagnostic reasoning process [4]. Previous research by
Geffner and Pearl showed that the GDE approach to model-based diagnosis can
be equally well dealt with by Bayesian networks [5,1]. Geffner and Pearl’s result
is basically a mapping from the logical representation as traditionally used within
the model-based diagnosis community to a specific Bayesian-network represen-
tation. The theory of model-based diagnosis supports multiple-fault diagnoses,
which are similar to maximum a posteriori hypotheses, MAP hypotheses for
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short, in Bayesian networks [6]. Thus, although the logical and the probabilistic
theory of model-based diagnosis have different origins, they are closely related. In
fact, in his research Darwich has extensively explored this relationship, although
ignoring uncertainty [7]. However, whereas the traditional theory of model-based
diagnosis is strong in providing models that are easily understood in relationship
to the actual, real-world systems, it is weak on dealing with uncertain informa-
tion. With Bayesian networks taken as representations of models of systems, it
is the other way around. Thus, developing ways to combine both approaches can
be advantageous.

In logical model-based diagnosis, it is clear that a diagnosis should be inter-
preted as behaviour assumptions of particular components that are compatible
with, and possibly explain, the observations; however, probabilistic diagnosis
defies giving similar straightforward interpretations. This is because the logical
reasoning, implemented by deterministic probability distributions, and uncer-
tainty reasoning (nondeterministic probability distributions) are mingled. To
tackle this problem, this paper proposes a new way to look at model-based
diagnosis, taking the Bayesian-network representation by Geffner and Pearl as
the point of departure [5,1]. It is shown that after adding probabilistic informa-
tion to a model of a system, the predictions that can be made by the model
can be naturally decomposed into a logical and a probabilistic part. The logi-
cal specifications are determined by the system components that are assumed
to behave normally, constituting part of the system behaviour. This is com-
plemented by uncertainty about behaviour for components that are assumed
to behave abnormally. It is shown that the Poisson-binomial distribution plays
a central role in governing this uncertain behaviour. The results of this paper
establish new links between traditional logic-based diagnosis, Bayesian networks
and probability theory.

2 Poisson-Binomial Distribution

First, we begin by summarising some of the relevant theory of discrete probability
distributions (cf. [8,9]).

Let s = (s1, . . . , sn) be a Boolean vector with elements sk ∈ {0, 1}, k =
1, . . . , n, where sk is a Bernoulli discrete random variable that expresses that
the outcome of trial k is either success (1) or failure (0). Let the probability of
success of trial k be indicated by pk ∈ [0, 1] and, thus, the probability of failure
is set to 1 − pk. Then, the probability of obtaining vector s as outcome is equal
to

P (s) =
n∏

k=1

psk

k (1 − pk)1−sk . (1)

This probability distribution acts as the basis for the Poisson-binomial distribu-
tion. The Poisson binomial distribution is employed to describe the outcomes of
n independent Bernoulli distributed random variables, where only the number
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of success and failure are counted. The probability that there are m, m ≤ n,
successful outcomes amongst the n trials performed is then defined as:

f(m;n) =
∑

s1+···+sn=m

n∏

k=1

psk

k (1 − pk)1−sk , (2)

where f is a probability function. Here, the summation means that we sum over
all the possible values of elements of the vector s, where the sum of the values
of the elements must be equal to m.

It is easy to check that when all probabilities pk are equal, i.e. p1 = · · · =
pn = p, where p denotes this identical probability, then the probability function
f(m;n) becomes that of the well-known binomial distribution:

g(m;n) =
(
n

m

)
pm(1 − p)n−m. (3)

Finally, suppose that we model interactions between the outcomes of the trials
by means of a Boolean function b. This means that we have an oracle that is able
to observe the outcomes, and then gives a verdict whether the overall outcome
is successful. The expectation or mean of this Boolean function is then equal to:

EP (b(S)) =
∑

s

b(s)P (s). (4)

with P defined according to Equation (1). This expectation also acts as the
basis for the theory of causal independence, where a causal process is modelled
in terms of interacting independent processes (cf. [10]). Note that for b(s) =
bm(s) ≡ s1 + · · · + sn = m (i.e., the Boolean function that checks whether the
number of successful trials is equal to m), we have that EP (bm(S)) = f(m;n).
Thus, Equation (4) can be looked on as a generic way to combine the outcome
of independent trials.

In the theory of model-based diagnosis, it is common to represent models of
systems by means of logical specifications, which are equivalent to Boolean func-
tions. Below, it will become clear that if we interpret the success probabilities
pk as the probability of observing the expected output of a system’s compo-
nent under the assumption that the component is faulty, then the theory of
Poisson-binomial distributions can be used to describe part of the probabilis-
tic model-based diagnostic process. However, first the necessary background to
model-based diagnosis research is reviewed.

3 Uncertainty in Model-Based Diagnosis

3.1 Model-Based Diagnosis

In the theory of model-based diagnosis [2], the structure and behaviour of a
system is represented by a logical diagnostic system SL = (SD,COMPS), where
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– SD denotes the system description, which is a finite set of logical formulae,
specifying structure and behaviour;

– COMPS is a finite set of constants, corresponding to the components of the
system; these components can be faulty.

The system description consists of behaviour descriptions and connections.
A behavioural description is a formula specifying normal and abnormal (faulty)
functionalities of the components. A connection is a formula of the form ic = oc′ ,
where ic and oc′ denote the input and output of components c and c′, respectively.
This way an equivalence relation on the inputs and outputs is defined, denoted
by IO\≡. The class representatives from this set are denoted by [r].

A logical diagnostic problem is defined as a pair PL = (SL,OBS), where SL is a
logical diagnostic system and OBS is a finite set of logical formulae, representing
observations.

Adopting the definition from [3], a diagnosis in the theory of consistency-based
diagnosis is defined as follows. Let Δ be the assignment of either a normal or an
abnormal behavioural assumption to each component. Then, Δ is a consistency-
based diagnosis of the logical diagnostic problem PL iff the observations are
consistent with both the system description and the diagnosis:

SD ∪Δ ∪ OBS � ⊥. (5)

Here, � stands for the negation of the logical entailment relation, and ⊥ repre-
sents a contradiction.

Example 1. Consider the logical circuit depicted in Figure 1, which represents a
full adder, i.e. a circuit that can be used for the addition of two bits with carry-in
and carry-out bits. It is an example frequently used to illustrate concepts from
model-based diagnosis. This circuit consists of two AND gates (A1 and A2), one
OR gate (R1) and two exclusive-or (XOR) gates (X1 and X2). These are the
components that can be either faulty (abnormal) or normal.

X1

A1
A2

X2

R1

1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

Fig. 1. Full adder with inputs {i1, ı̄2, i3}, and observed ({oX2,¬oR1}) and predicted
outputs ({¬oX2, oR1})
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3.2 Probabilistic Model-Based Diagnosis

In this section, we will map logical diagnostic problems onto probabilistic rep-
resentations, called Bayesian diagnostic problems, using the Bayesian-network
representation proposed by Flesch et al. [11], which was inspired by previous
work by Geffner and Pearl [5,1]. As will become clear below, a Bayesian diag-
nostic problem is defined as (i) a Bayesian diagnostic system representing the
components, including their behaviour and interaction, based on information
from the logical diagnostic system of concern, and (ii) a set of observations.

Graphical Representation. First the graphical structure used to represent
the structural information from a logical diagnostic system is defined. It has the
form of an acyclic directed graph G = (V,E), where V is the set of vertices and
E ⊆ (V × V ) is the set of arcs.

Definition 1 (diagnostic mapping). Let SL = (SD,COMPS) be a logical
diagnostic system. The diagnostic mapping md maps SL onto an acyclic directed
graph G = md(SL), as follows (see Figure 2):

– The vertices V of graph G are created according to the following rules:
• Each component c ∈ COMPS yields a vertex Ac used to represent its

normal and abnormal behaviour;
• Each class representative of an input or output [r] ∈ IO\≡ yields an

associated vertex [r].
The set of all abnormality vertices Ac is denoted by Δ, i.e. Δ = {Ac | c ∈
COMPS}. The vertices of graph G are, thus, obtained as follows:

V = Δ ∪ IO\≡,

where IO\≡ = I ∪ O, with disjoint sets of input vertices I and output
vertices O.

– The arcs E of G are constructed as follows:
• There is an arc from each each input of a component c to each output of

the component;
• There is an arc for each component c from Ac ∈ V to the corresponding

output of the component.

An example of using the diagnostic mapping is given below.

Example 2. Figure 3 shows the graphical representation of the full-adder circuit
from Figure 1. The set V of vertices is:

V = Δ ∪O ∪ I
= {AX1, AX2, AA1, AA2, AR1} ∪ {OX1, OX2, OA1, OA2, OR1}

∪ {I1, I2, I3}.
The arcs from E connect (i) outputs of two components such as OX1 → OX2,
(ii) an abnormality vertex with an output vertex such as AA2 → OA2 and (iii)
an input vertex with an output vertex such as I3 → OX2.
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K

D

i1K i2K

oK = i1D i2D

oD

I1
K I2

K AK

OK I2
D AD

OD

=⇒

Fig. 2. The diagnostic mapping

Bayesian Diagnostic Problems. Recall that Bayesian networks that act as
the basis for diagnostic Bayesian networks consist of two parts: a joint probability
distribution and a graphical representation of the relations among the random
variables defined by the joint probability distribution. Based on the definition
of Bayesian networks, particular parts of a logical diagnostic system will be
related to the graphical structure of a diagnostic Bayesian network, whereas
other parts will have a bearing on the content of the probability table of the
Bayesian network.

Having introduced the mapping of a logical diagnostic system to its associated
graph structure, we next introduce the full concept of a Bayesian diagnostic
system.

Definition 2 (Bayesian diagnostic system). Let SL = (SD,COMPS) be a
logical diagnostic system, and G = md(SL) be obtained by applying the diagnostic
mapping. Let P be a joint probability distribution of the vertices of G, interpreted
as random variables. Then, SB = (G,P ) is the associated Bayesian diagnostic
system.

Recall that by the definition of a Bayesian network, the joint probability distri-
bution P of a Bayesian diagnostic system can be factorised as follows:

P (I,O,Δ) =
∏

c

P (Oc | π(Oc))P (I)P (Δ), (6)

where Oc is an output variable associated to component c ∈ COMPS, and π(Oc)
are the random variables corresponding to the parents of Oc. The parents will
normally consist of inputs Ic and an abnormality variable Ac.

To simplify notation, in the following, (sets of) random variables of a Bayesian
diagnostic problem have the same names as the corresponding vertices. By ac is
indicated that abnormality variable Ac takes the value ‘true’, whereas by āc it is
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I1 I2

I3 OX1

OX2

OA1

OA2

OR1

AX1

AX2

AA1

AA2

AR1

Fig. 3. A Bayesian diagnostic system corresponding to the circuit in Figure 1

indicated that Ac takes the value ‘false’. A similar notation will be used for the
other random variables. Finally, a specific abnormality assumption concerning
all abnormality variables is denoted by δC , which is defined as follows:

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS − C},
with C ⊆ COMPS. There are some sensible constraints on the joint probability
distribution P of a Bayesian diagnosis system that can be derived from the
specification of the logical diagnostic system. These will be discussed later.

As with logical diagnostic problems, we need to add observations to Bayesian
diagnostic systems in order to be able to solve diagnostic problems. In logical
diagnostic systems, observations are the inputs and outputs of a system. It is
generally not the case that the entire set of inputs and outputs of a system
is observed. The set of input and output variables that have been observed,
are referred to by Iω and Oω , respectively. The unobserved input and output
variables will be referred to as Iu and Ou, respectively. We will use the notation
iω to denote the values of the observed inputs, and oω for the observed output
values. The set of observations is then denoted as ω = iω ∪ oω .

Now, we are ready to define the notion of Bayesian diagnostic problem, which
is a Bayesian diagnostic system augmented by a set of observations.

Definition 3 (Bayesian diagnostic problem). A Bayesian diagnostic prob-
lem, denoted by PB, is defined as the pair PB = (SB , ω), where SB is a Bayesian
diagnostic system and ω the set of observations of this system.

Determining the diagnoses of a Bayesian diagnostic problem amounts to com-
puting P (δC | ω), and then finding the δC which maximises P (δC | ω), i.e.

δ∗C = argmax
δC

P (δC | ω).
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This problem is NP-hard; however, many special methods to make probabilis-
tic inference feasible are known [6]. The probability P (δC | ω) can be com-
puted by Bayes’ rule, using the probabilities from the specification of a Bayesian
diagnostic system:

P (δC | ω) =
P (ω | δC)P (δC)

P (ω)
. (7)

As a consequence of the independences that hold for a Bayesian diagnostic sys-
tem, it is possible to simplify the computation of the conditional probability
distribution P (ω | δC). According to the definition of a Bayesian diagnostic
system it holds that

P (i | δC) = P (i),

for each i ⊆ (iω ∪ iu), as the input variables and abnormality variables are
independent. In addition, it is assumed that the input variables are independent.

Using these results, basic probability theory and the definition of a Bayesian
diagnostic problem yields the following derivation:

P (ω | δC) = P (iω, oω | δC)

=
∑

iu

P (iu)P (iω, oω | iu, δC)

= P (iω)
∑

iu

P (iu)
∑

ou

∏

c

P (Oc | π(Oc)), (8)

since it holds by the axioms of probability theory that

P (iω, oω | iu, δC) =
∑

ou

P (iω)
∏

c

P (Oc | π(Oc)) .

To emphasise that the set of parents π(Oc) includes an abnormality variable
that is assumed to be true, i.e. the component is assumed to behave abnormally,
the following notation is used P (Oc | π(Oc) : ac); similar, for the situation where
the component c is assumed to behave normally the notation P (Oc | π(Oc) : āc)
is employed. Finally, the following assumptions are made and will be used in the
remainder of this paper:

– P (Oc | π(Oc) : ac) = P (Oc | ac), i.e. the probabilistic behaviour of a compo-
nent that is faulty is independent of its inputs;

– P (Oc | π(Oc) : āc) ∈ {0, 1}, i.e. normal components behave deterministically.

The probability P (oc | ac) will be abbreviated in the following section as pc; thus
P (ōc | ac) = 1−pc These are realistic assumptions, as it is unlikely that detailed
functional behaviour will be known for a component that is faulty, whereas when
the component is not faulty, it is certain it will behave as intended. Note that
the latter assumption is identical to that used in traditional, logical model-based
diagnosis.
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4 Decomposition of Probability Distribution

To establish that probabilistic model-based diagnosis can be partly interpreted
in terms of a Poisson-binomial distribution, it is necessary to decompose Equa-
tion (8) into various parts. The first part will represent the probabilities that
components c produce the right, oc, or wrong, ōc, output, which correspond to
the success and failure probabilities, respectively, of a Poisson-binomial distribu-
tion. The second part represents a normally functioning system fragment, which
will be represented by a Boolean function. There is also a third part, which con-
cerns the observed and unobserved inputs. We start by distinguishing between
various types of components, inputs and outputs, in order to make the necessary
distinction:

– The sets of components assumed to function normally and abnormally will
be denoted by C ā and Ca, respectively, with C ā, Ca ⊆ COMPS;

– The sets C ā and Ca are partitioned into sets of components, for observed and
unobserved outputs, indicated by the sets C ā

ω , C ā
u, Ca

ω and Ca
u, respectively.

Thus, C ā = C ā
ω ∪C ā

u and Ca = Ca
ω ∪Ca

u . In addition, we will sometimes make a
distinction between components c for which oc has been observed, and compo-
nents c for which ōc has been observed. These sets will be denoted by Co

ω and C ō
ω ,

respectively. It holds that Co
ω and C ō

ω constitute a partition of Cω . The notations
can also be combined, e.g., as Ca,o

ω and Ca,ō
ω . Furthermore, we will sometimes

use a similar notation for sets of output variables, e.g., Oā
u = {Oc | c ∈ C ā

u}
and Oā

ω = {Oc | c ∈ C ā
ω}, and input variables, e.g., I ā

u =
⋃

c∈Cā
u
Ic indicates

unobserved inputs of components that are assumed to behave normally and
I ā
ω =

⋃
c∈Cā

ω
Ic are observed inputs of components that are assumed to behave

normally, with Ic the set of input variables of component c ∈ COMPS and
I ā = I ā

ω ∪ I ā
u .

The following lemma shows that it is possible to decompose part of the joint
probability distribution of Equation (6) using the component sets defined above.

Lemma 1. The following statements hold:

– The joint probability distribution of the outputs of the set of assumed nor-
mally functioning components C ā, can be decomposed into two products as
follows:

∏

c∈Cā

P (Oc | π(Oc) : āc)

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)
∏

c∈Cā
ω

P (Oc | π(Oc) : āc).

– Similarly, the joint probability distribution of the outputs of the set of
assumed abnormally functioning components Ca, can be decomposed into
two products as follows:

∏

c∈Ca

P (Oc | π(Oc) : ac) =
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).
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Proof: The decompositions follows from the definitions of the sets Ca, Ca
ω, Ca

u ,
C ā

u and C ā
ω, and the independence assumptions underlying the distribution P . �

Now, based on Lemma 1, we can also decompose the product of the entire set
of components, as follows:

∏

c

P (Oc | π(Oc))

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)
∏

c∈Cā
ω

P (Oc | π(Oc) : āc)

×
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).

Next, we show that the outputs of the set of observed abnormal components Ca
ω

only depend on probabilities pc = P (oc | ac), c ∈ Ca
ω .

Lemma 2. The joint probability of observed outputs of the abnormally assumed
components can be written as:

∏

c∈Ca
ω

P (Oc | π(Oc) : ac)=
∏

c∈Ca,o
ω

pc

∏

c∈Ca,ō
ω

(1 − pc).

Proof: This follows straight from the definitions of Ca
ω, Ca,o

ω and Ca,ō
ω . �

Recall that the probability of an output of a normally functioning component
was assumed to be either 0 or 1, i.e. P (Oc | π(Oc) : āc) ∈ {0, 1}. Clearly, these
probabilities yield, when multiplied, Boolean functions. One of these Boolean
functions, denoted by ϕ, is defined as follows: ϕ(oā

u, o
a
u, i

ā) =
∏

c∈Cā
u
P (Oc |

π(Oc) : āc), where the set of parents π(Oc) may, but need not, contain variables
from the sets of variables Oa

u and I ā. However, π(Oc) does not contain variables
from the set Ia, as these only condition variables that are assumed to behave
abnormally and are then ignored, as mentioned at the end of the previous section.
Similarly, we define Boolean functions ψ(ou, o

ā
ω , i

ā) =
∏

c∈Cā
ω
P (Oc | π(Oc) : āc).

Lemma 3. For each value oa
u and iā, there exists exactly one value oā

u of the
set of variables Oā

u = {Oc | c ∈ C ā
u} for which it holds that ϕ(oa

u, o
ā
u, i

ā) = 1;
similarly, for each value ou and iā there exists one value oā

ω of the set of variables
Oā

ω = {Oc | c ∈ C ā
ω} for which it holds that ψ(ou, o

ā
ω , i

ā) = 1.

Proof: As both the functions ϕ and ψ are defined as products of conditional prob-
ability distributions P (Oc | π(Oc) : āc), for which we have that P (oc | π(Oc) :
āc) ∈ {0, 1}, there is, due to the axioms of probability theory, for any value of the
variables corresponding to the parents of the variables Oc at most one value for
each Oc for which the joint probability

∏
c P (Oc | π(Oc) : āc) = 1. �

The following lemma, which is used later, is a consequence of the definition of
these Boolean functions.
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Lemma 4. Let the Boolean functions ϕ and ψ be as defined above, then:
∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =

∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc),

with Boolean function b and pc = P (oc | ac).

Proof: First, the Boolean function b is defined for a given set of observed outputs
oω: b(ou, i

ā) = ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā), then,
∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =
∑

ou

b(ou, i
ā)

∏

c∈Ca

P (Oc | ac).

Furthermore, due to Lemma 3, it suffices to only consider the restriction of the
function b to the variables Oa

u and I ā, as for given values oa
u and iā, b(oa

u, o
ā
u, i

ā) =
0 for all but one value of Oā

u. This function is denoted by b(oa
u, i

ā). The product
term results from application of a slight generalisation of Lemma 2. �

We are now ready to establish that P (ω | δC) can be written as the sum of
weighted products of the form

∏
c pc

∏
c′(1 − pc′), i.e. Equation (1).

Theorem 1. Let PB = (SB, ω) be a Bayesian diagnostic problem. Then, P (ω |
δC) can be expressed as follows:

P (ω | δC) = P (iω)
∑

iā
u

P (iāu)
∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc),

where b(oa
u, i

ā) ∈ {0, 1} and pc = P (oc | ac).

Proof: The result follows from the above lemmas and the fact that we sum
over (part of) the input variables I. Note that only the variables I ā are used as
conditioning variables, which follows from the assumption that P (Oc | π(Oc) :
ac) = P (Oc | ac). As only the input variables iāu are assumed to be dependent
of output variables, we obtain:

∑
iu,oa

u
P (iu) · · · =

∑
iā
u,oa

u
P (iāu) · · ·. The Boolean

function b(oa
u, i

ā) is as above. �

An alternative version of the theorem can be obtained in terms of expectations
using Equation (4) for the Poisson-binomial distribution:

P (iω)
∑

iā
u

P (iāu)
∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc)

= P (iω)
∏

c∈Ca
ω

P (Oc | ac)
∑

iā
u

P (iāu)EP (biā(Oa
u)),

i.e. the sum of the mean of the Boolean functions biā , which are functions of
the unobserved inputs iāu, in terms of the probability function P (Equation (4)),
weighed by the prior probability of unobserved inputs iāu. Combining this with
Equation (7) yields P (δC | ω). Thus, to probabilistically rank diagnoses δC it is



The Probabilistic Interpretation of Model-Based Diagnosis 215

necessary to compute: (i) EP (biā(Oa
u)), the Poisson-binomial distribution mean

of the behaviour of the normally assumed, unknown components, (ii) P (iāu), (iii)∏
c∈Ca

ω
P (Oc | ac), the observed abnormal components, and (iv) the prior P (δc).

Note that P (iω) can be cancelled by P (ω) in Equation (7) and both probabilities
are irrelevant for ranking.

5 Conclusions

We have shown that probabilistic model-based diagnosis, which is an extension
of traditional GDE-like model-based diagnosis, can be decomposed into compu-
tation of various probabilities, in which a central role is played by the Poisson-
binomial distribution. When all probabilities pc = P (oc | ac) are assumed to be
equal, a common simplifying assumption in model-based diagnosis, the analysis
reduces to the use of the standard binomial distribution.

So far, most other research on integrating probabilistic reasoning with logic-
based model-based diagnosis took probabilistic reasoning as adding some sort of
uncertain, abductive reasoning to logical reasoning. No attempts were made in re-
lated research to look inside what happens in the diagnostic process, as was done
in this paper. We expect that it becomes thus possible to investigate further vari-
ations in probabilistic model-based diagnosis, for example, by adopting assump-
tions different from those in this paper with regard to fault behaviour in systems.
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