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2) Summary

Although research on learning Bayesian networks from data started only about 10 years ago,
significant theoretical progress has been made since that time. However, the community involved
in this research has placed relatively little emphasis on gaining insight into the usefulness of this
technology in solving real-life problems. In fact, the issue of tailoring Bayesian-network learning
methods to the characteristics of problem domains has not even been addressed.

The ProBayes project’s primary aim is to investigate whether the Bayesian-network formalism
offers a suitable framework for learning prognostic models from clinical datasets. Prognostic models
play an important role in oncology, and the quality of the clinical management of cancer in
patients may profit considerably from deploying medical decision-support systems incorporating
such models. Decision support in clinical oncology is therefore taken as an experimental setting
for ProBayes.

Since it is expected to be essential to exploit background knowledge to guide data-mining and
learning in the context of real-life problems, the major goal of the requested research is to obtain
insight into the form of the required knowledge in constructing prognostic Bayesian networks from
data. Within the empirical setting of the project, the problem of learning Bayesian networks
will be studied along the spectrum from rare to common disorders, not simply by using publicly
available datasets of unclear quality, but in its real-life context with considerable input from expert
clinicians. There will be a major emphasis in the project on learning intuitive, understandable
Bayesian networks, such as those that can be given a causal reading.

Finally, the clinical usefulness of the developed Bayesian-network models will be studied in
the context of clinical management of cancer patients. Overall, the ProBayes project aims to
extend Bayesian-network technology so that it comes nearer to fulfilling its promise as a practical
technology for clinical decision support.

3) Classification

Datamining and Datawarehousing (2.2); Reasoning Systems (2.7); Heuristic Algorithms (5.5).
NOAG-i: Data and Knowledge Systems.
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5) Research School

Research School for Information and Knowledge Systems (SIKS); Oncology Graduate School Am-
sterdam (OOA).

6) Description of Proposed Research

Background: Prognostic Models in Medicine

Prognosis (pro: before; gnoscere: to know) literally means ‘to know beforehand’ or, as a noun,
foreknowledge. Medical prognosis is defined here as [1]: the prediction of the future course and
outcome of disease processes, which may either concern their natural course or their outcome after
treatment. Prognosis is interwoven with the other aspects of clinical patient management, namely
those of diagnosis, treatment and follow-up. The clinician views prognosis as a decision tool incor-
porating various amounts of diagnostic and treatment information [45]. Because of the increasing
awareness within clinical practice of evidence-based medicine, the increasing availability of pa-
tient data, and the central role that prognosis plays in the management of patients, prognostic
models are becoming more and more important. Examples of techniques used in building prog-
nostic models are simple decision rules based on categorisations, and prognostic scores computed
by using Bayes’ rule, logistic regression, or Cox’s regression if time is involved; their parameters
are sometimes assessed from data especially collected for that purpose, and in many cases purely
based on expert judgement.

Prognostic models are of great importance in oncology1, as being able to predict treatment
outcome in patients with cancer is the single most important issue in treatment selection. Having

1Oncology is the medical science of benign and malignant tumours.
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available sound, practically useful prognostic models is a matter of life and death in this field.
This thus also holds for the two clinical areas the proposed research will focus on: colorectal
cancer and gastrointestinal carcinoid tumours. Colorectal cancer is among the major causes of
death and disability within the western population. Carcinoid tumours are rare disorders, requir-
ing specialised clinical knowledge in order to be treated effectively. For both disorders, various
prognostic scoring schemes are in use to help clinicians in managing patients with these disorders.
In colorectal cancer, Dukes’ classification2 is often used; the prognostic significance of this score
has been extensively studied [15]. The Capella classification method [8] has been proposed as a
prognostic method for carcinoid tumours; it has recently been revised for gastrointestinal carci-
noid tumours [9]. These scores can be viewed as providing summaries of intermediate to long-term
clinical outcome.

A limitation of such classification rules is that they summarise complicated medical conditions
in terms of a single class or score, which does not do justice to the whole range of factors and
mechanisms involved. In fact, such schemes give little or no insight into the way the various
factors and mechanisms interact to influence the course or outcome of a disease in the individual
patient or in groups of patients. They are black-box models, which, as such, can either be followed
slavishly, or not followed at all. Neither a deep understanding of what is happening and likely to
happen in the individual patient, nor any insight into the disease and how its natural course may
be modified due to particular treatment modalities can be obtained from such rules. It is thus
not surprising that many prognostic models have achieved at most a marginal role in the practice
of medicine [47]; in oncology, however, the need for prognostic models is so large that having any
‘model’ available is considered to be better than having none at all.

Bayesian Networks as Clinical Decision-making Tools

Bayesian-network approaches to the development of medical decision-support systems offer sub-
stantial advantages in terms of flexibility and potential of knowledge reuse, mainly due to the
declarative, i.e. task-non-specific, nature of the knowledge embodied in such systems [34]. Bayesian
networks are examples of so-called graphical statistical models, and offer an encoding of a joint
probability distribution on the variables in a problem domain in terms of local (conditional) prob-
ability distributions and a graph which represents the statistical dependences and independences
among the variables concerned [13, 27, 39]. The Bayesian-network formalism can easily be aug-
mented with decision theory, and is so attractive because it allows for explicitly representing the
uncertainties and preferences that go with much of the knowledge used in medical decision making.
A single Bayesian network can be used to deal with a large number of different what-if questions
clinicians are likely to find important, such as optimal treatment selection, prognostic assessment
for individual patients and generating profiles for specific treatment outcomes for one or more
disorders [35]. Experience, both by the research team and others, suggests that clinicians find this
computational formalism intuitive and appealing [24, 25, 35, 36].

A Bayesian network for a real-life clinical problem is usually constructed with the help of one or
more expert clinicians [19]. However, building Bayesian networks using expert clinician knowledge,
although by now known to be feasible, can be very time consuming. In the context of the current
emphasis on evidence-based medicine, it seems inevitable to base the interactions represented in
a Bayesian network as much as possible on observational clinical data. Within the Department of
Medical Oncology of NKI high quality clinical data are being collected in the context of clinical
trials and ongoing clinical research. In addition, the Comprehensive Cancer Centre Amsterdam
(IKA), with which NKI has very close links, collects cancer registry data. NKI provides therefore
a good real-life environment for research into clinical decision support and machine learning.

The combination of flexibility, understandability, and learnability renders Bayesian networks an
ideal basis for an extensive study of the requirements for practically useful computer-based prog-
nostic tools for clinicians. The selected subjects of colorectal cancer and carcinoid tumours ensure:

2This places a patient into one of the categories A, B, C and D, based on the presence or absence of invasion
of the tumour into surrounding tissue and metastasis; A is the most favourable class with an associated 5-year
survival rate of approximately 80%.



NWO/EW reg.nr. NWO-2002 4

(1) practical relevance, as predicting outcome in patients with these very disorders is considered
to be hard by clinicians; (2) that actual clinical data of patients are available so that learning
Bayesian networks from data can be sensibly explored; (3) input from clinical experts, as there is
a great need for sound prognostic models in oncology. The multidisciplinary research team has ex-
tensive experience in the research topic, as well as with collaborative research on Bayesian-network
development for related clinical problems [35, 20]. No structure learning methods, however, were
used in the context of our previous research.

Dr Lucas and Prof. van der Gaag have wide experience in building Bayesian-network based and
other decision-support systems for clinical problems in collaboration with clinicians [29, 33, 35, 36,
19]. Dr Lucas has 18 years experience in dealing with the methodological and technical questions
which arise in research in medical decision support; having been trained both as a computer
scientist and an MD, he has the necessary background to lead this project. Prof. van der Gaag
is an internationally recognised expert in the foundations of Bayesian networks, and was the first
researcher to start with Bayesian-network research in the Netherlands in the 1980s. Dr Taal and
Dr Boot are experienced research-oriented clinical oncologists, with an extensive research record
covering more than 20 years of clinical research. There are excellent international contacts with
other researchers in the area of Bayesian networks and medical decision support; in particular Dr
Ramoni and Prof. Wyatt are prepared to offer advice during the course of the project.

Learning Bayesian Networks from Data

Learning a Bayesian network from data can be separated into two tasks: (1) structure learning,
i.e. identifying the topology of the network, and (2) parameter learning, i.e. determining the
associated joint probability distribution for a given network topology [41]. As the number of
possible Bayesian-network structures for a given set of statistical variables is exponentially large,
it is necessary to use heuristic methods to construct a Bayesian network automatically from data.
A frequently used procedure for Bayesian network structure construction from data is the K2
algorithm, developed by Cooper and Herskovits [12]. Given a database D, this algorithm searches
for the Bayesian network structure G which maximises the probability Pr(G | D), using simplifying
assumptions. K2 is a greedy heuristic. It starts by assuming that a node lacks parents, after
which in every step it adds incrementally that parent whose addition increases the probability of
the resulting structure most. K2 stops adding parents to the nodes when the addition of a single
parent cannot increase the probability. The K2 algorithm is a typical search & scoring method,
i.e. heuristic search is guided by a scoring function, often called the Bayesian scoring function
[12]. Other scoring methods include the MDL (Minimal Description Length) measure [32], and
various variants of the Bayesian scoring function, such as the BDe measure [26]. The Bayesian
scoring function and the MDL measure have been shown to be asymptotically equivalent [5]. The
K2 algorithm needs a total order among nodes to start, which can be regarded as a form of prior
domain knowledge, although not necessarily of the right type.

A learning method which takes an entirely different approach is dependency analysis [2, 6, 7, 10].
This method uses independence tests as part of a learning procedure. The collection of conditional
independence statements represented in a Bayesian network imply other conditional independence
statements using the independence axioms [39]; these can be utilised in learning. The independence
axioms also imply that some Bayesian networks with different topologies may in fact be statistically
equivalent. It has been shown that this feature can be favourably exploited by exploring the search
space inhabited by equivalent class representatives rather than by the individual network models
themselves [11, 28]. The scoring and dependency-analysis approaches have also been combined in
the hope of obtaining a method that is more powerful than its constituents. For example, the CB
algorithm (named after the two phases of the algorithm) does not require a total order among
nodes as a start; it uses conditional independence tests for that purpose, and uses K2 in its second
phase [43]. The BENEDICT learning method integrates the two approaches even further [2].

There is also experimental evidence that learning results can be improved by exploiting hidden
structure within the conditional probability distributions, by taking advantage of the fact that
they may incorporate context-specific independences [18]. This means that probabilities can be



NWO/EW reg.nr. NWO-2002 5

the same for different values of one or more variables, given a fixed value of one or more other
variables, formally: Pr(X | Y, c, Z) = Pr(X | Y, c) for any value of X, Y and Z, and c a fixed
value of context variable C. This implies that the probability distribution can be represented more
compactly, and the learning procedure may then yield more accurate models.

In learning Bayesian networks from data, care must be exercised that the resulting models
are not overly complex, as it has been shown that if Bayesian networks are used for classification
purposes, those with simple topologies, such as naive Bayesian networks and tree-augmented
Bayesian networks (TANs), may perform as well or even better than more sophisticated ones
[14, 17, 37]. Although it is not our goal to merely construct models for patient classification
purposes, finding the right balance between simple and complex networks is definitely difficult.

Even though the research results summarised above appears to be promising, very few re-
searchers have actually tried to learn Bayesian networks for real-life problems. In many of the
papers, experimental results are based on using datasets generated by Monte-Carlo simulation from
a single hand-crafted Bayesian network, called ALARM. This network was, in fact, used in the
first paper on learning Bayesian networks by Cooper and Herskovits [12]. This makes comparing
results as reported in various papers straightforward, but results achieved with real-life datasets
may still be substantially different from the results achieved with such generated datasets. In the
ProBayes project the problem of learning Bayesian networks will be studied not simply by using
generated datasets or publicly available datasets of unclear quality, but in its real-life context with
considerable input from expert clinicians.

Before one uses a suggested prognostic model it is important to have an indication that the
model would work well on a different population than the one which was used to develop the
model. There are many studies reporting on model validation, certainly the lack thereof (e.g.
[38, 47]). One may distinguish between laboratory evaluation and clinical evaluation [3, 48]. A
laboratory evaluation usually focuses on the performance of the model. Relevant questions in
laboratory evaluation are whether the model passes the appropriate statistical tests, usually on a
new data set, and whether it is the best model given the available factors. In a clinical evaluation
one is interested in the question whether the model is satisfactory for its clinical purpose. It is
possible to have a statistically but yet not clinically valid model and vice versa.

Aims and Objectives

The project’s primary aim is to investigate whether the Bayesian network formalism offers a suit-
able framework for learning prognostic models from clinical datasets, and for building computer-
based medical decision-support systems (DSSs). Since it is usually necessary to use medical back-
ground knowledge in data-mining and machine learning applications to guide the learning process,
an additional aim is to obtain insight into the appropriate form and mixture of data and medical
expertise in constructing understandable prognostic Bayesian networks from data. Finally, we
intend to investigate whether computer-based prognostic tools based on Bayesian networks are
seen by clinicians as useful in patient management.

In order to see whether our methods are general enough to be used in related clinical areas
with different characteristics, we have chosen two domains for experimentation: colorectal cancer
and gastrointestinal carcinoid tumours. In the colorectal cancer area, the focus lies on learning
prognostic Bayesian network models using much data with only a limited number of variables
describing each patient; in the gastrointestinal carcinoid area the emphasis will be on coping with
the situation that data of a hundred to a few hundred patients is available, but with many variables
describing each patient. This corresponds to the distinction between registry datasets and clinical
datasets that is quite typical for medicine as a whole.

Our specific objectives are:
• the development of new structure (and if time allows also parameter) background-knowledge

enhanced learning methods and a workbench for learning Bayesian networks from data;
• the analysis of datasets with data of colorectal cancer and carcinoid tumours using the

workbench;
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• the development of causal models in collaboration with medical specialists in colorectal
cancer and carcinoid tumours;

• the investigation of the role and place of medical background knowledge in guiding the
construction of optimal network structures;

• obtaining insight into the clinical value of Bayesian-network based prognostic models in the
context of decision support, for which actual decision-support systems will be developed.

Research Methods

There are various aspects that will be addressed in the proposed research.

A. Role of background knowledge in learning prognostic Bayesian networks
The existing algorithms for learning Bayesian networks from data offer a good starting point
for the research; a number of software tools implementing these algorithms are available in the
research community [10, 40]. Some sophisticated algorithms, such as simulated annealing and
tabu search have also been studied in the past, but only using artificial data [5]. In particular
tabu search, a tunable, partially informed search method, is considered to be suitable as a start
for ProBayes. A limitation of current algorithms is that it is often unclear whether a particular
topology makes medical sense. Of course, once a Bayesian network has been learnt, it can be
evaluated, for example, by determining its performance rates, but it is still possible that the
best network has not been discovered, or that there are networks which are probabilistically
equivalent, but much easier to understand when given a causal reading. One of the hypotheses
investigated in the project is whether starting Bayesian-network structure learning with fragments
of causal background knowledge, based on strong clinical evidence, will improve both the quality
and understandability of the networks. This research will combine ideas about informed search
with the utilisation of background knowledge. The research will also undertake identifying other
types of background knowledge that can be used in the context of structure learning, and if time
allows, also parameter learning.

In close collaboration with the clinical oncologists causal models describing the relevant factors
of the course and outcome of both disorders will be developed. This will not be easy, as we intend
to model the information considered clinically important, including results from imaging and
laboratory investigations. Experience in building Bayesian networks built up in the last decade
has convincingly shown that causal knowledge can offer very useful guidance in developing Bayesian
networks. A workbench will be developed which incorporates various search algorithms, including
those of the more informed type, such as tabu search, and domain-specific methods for search
guidance. This workbench will be employed in the process described above.

B. Evaluation of prognostic Bayesian network models
Evaluation of the prognostic models developed will be done by comparing them both quantitatively
and qualitatively with existing prognostic models. A quantitative comparison is possible for simple
classification rules, like Dukes’ classification of colorectal cancer, as such rules are used in survival
analysis. So, the true-positive and true-negative rates (TPR/TNR) of such rules when used
predictively can be compared to those for a Bayesian network. Optimal classification rates for
a Bayesian network can be determined using Receiver Operating Characteristics (ROC) analysis
using a training set [44]. Evaluation can then be carried out using a test set, and a number of
measures are available, in addition to the TPR and TNR, to get insight into the quality of the a
posteriori distributions computed, such as the Brier score [22]. Decision-analytic assessment of the
prognostic models will also be carried out [44]. A quantitative comparison is also possible between
the expert-based and learnt Bayesian networks for colorectal cancer and carcinoid tumours. The
extent to which the learnt networks are understandable and permit a causal reading involves
qualitative analysis.

In additional to the standard evaluation measures discussed above, it is necessary to develop
measures especially suitable for Bayesian networks in order to evaluate different aspects of the
network models. The measure which comes closest to the intentions of this part of the research is
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the Kullback-Leibler cross-entropy measure, which allows comparing two probability distributions
[31, 46]. However, this measure also ignores important features of a Bayesian network. Hence,
we will also undertake the development of evaluation measures which are able to reflect specific
domain characteristics of network models.

C. Clinical significance of prognostic Bayesian network models
As previously developed prognostic models, and certainly computer-based models, have not been
particularly successful in medicine [38, 47], establishing the clinical value and usefulness of the
Bayesian-network approach is crucial. We will carry out a study of the clinical value of the
colorectal cancer and gastrointestinal carcinoid tumour models. A collection of data of patients
with stroke and colorectal cancer will be selected randomly. Medical doctors with varying amounts
of expertise in the fields of colorectal cancer and carcinoid tumours are requested to draw up the
disease management for these patients, and predict likely outcome, using a decision-support system
incorporating the models for half of the patients and unaided for the other half. To save time,
the basis for the decision-support systems will be the commercially available Hugin Bayesian-
network shell, which will be augmented with an appropriate user-interface. The results will be
analysed statistically. In both fields, the systems will be evaluated in terms of amount of assistance
offered, user-friendliness, and whether clinicians would be prepared to use the systems as part of
their every-day patient management. We have good contacts with Prof. Jeremy Wyatt (AMC,
Amsterdam), an internationally recognised expert in the area of evaluation of DSSs, who will be
consulted with respect to evaluation issue [16, 48].

Embedding of Research

The proposed research is in line with research being carried out by Dr Lucas and Prof. van der
Gaag in the areas of Bayesian networks, (medical) decision support and model-based reasoning.
Prof. van der Gaag holds an NWO Pioneer Grant in the area of Bayesian networks, and the
computing-science oriented junior researcher will definitely profit from the collaboration between
Nijmegen and Utrecht that will be established in this project. In addition, contact will be sought
with the Department of Medical Physics and Biophysics at the University of Nijmegen, which also
has expertise in Bayesian-network research.

The junior researcher at NKI will work in a environment known for its close links between
research and clinical practice. NKI maintains a very strong research culture. Previous research by
Dr Taal and Dr Boot has focussed on finding useful outcome predictors in cancer, and both have
experience with Bayesian-network technology, obtained from their involvement in other Bayesian-
network projects with Dr Lucas and Prof. van der Gaag. Hence, the junior researcher will be
working in an environment with a background in the sort of research requested.

7) Work Programme

I. Start-up (months 0–3)
1) collecting and studying relevant literature
2) review of available software packages
3) review of the datasets for colorectal cancer and carcinoid tumours available at NKI and IKA

II. Design of qualitative models (months 3–9)
1) study of literature on Bayesian networks, machine learning (KUN); similarly for medical

decision making, colorectal cancer, gastrointestinal carcinoid tumours (NKI)
2) design of causal models of colorectal cancer and carcinoid tumours with clinical oncologists

III. Learning from background knowledge and evaluation methods (months 9–21)
1) study of the literature on using background knowledge in machine learning (mostly inductive-

logic programming literature)
2) development of methods which exploit similar principles in the context of learning Bayesian

networks from data
3) development of methods for the evaluation of Bayesian networks
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Table 1: Distribution of work; ++: major task; + minor task; –: none.
Task Computer Scientist Health Scientist
Design of learning algorithms ++ —
Development of Workbench ++ —
Acquisition of background — ++
knowledge
Utilisation of background ++ +
knowledge in learning
Comparison with other prognostic methods — ++
Performance evaluation ++ ++
Clinical evaluation + ++

IV. Workbench development and initial model discovery (month 21–27)
1) development of methods for learning Bayesian networks from data, employing background

knowledge
2) development of a workbench and initial model discovery
3) initial DSS development using Hugin

V. Refinement (months 27–36)
1) improving the original methods for background-knowledge guided learning
2) refinement of the workbench and DSS based on previous experience

VI. Evaluation (months 36–42)
1) establishment of parameters for evaluation
2) cross comparison of learnt Bayesian-network models, expert-based models, and models from

the literature
3) study of understandability of Bayesian network models and clinical usefulness of the DSS

VII. Dissemination of results (months 42–48)
1) writing of two PhD theses
2) writing of scientific journal and conference papers
3) the software that is developed during the project will be made publicly available

Table 1 indicates how the work load will be distributed among the computer scientist and the
health scientist requested for this project.

8a) Expected Use of Instrumentation

Standard workstations will be used in the project.

8b) Required Observing Facilities

NA
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10) Requested Budget

Two junior researchers (OIOs) are requested: one will be appointed in Nijmegen and one in
Amsterdam (NKI).

OIOs Amount
Salary 2 × 129,897 Euro 259794 Euro
Benchfee 2 × 4,538 Euro 9176 Euro
Software (Hugin) 3 × 3,000 Euro 9000 Euro

———————— +
277970 Euro

We intend to buy 3 site licenses of the Hugin Bayesian-network package (http://www.hugin.com)
in order to speed-up the research project, and to circumvent putting unnecessary software de-
velopment load upon the junior computer scientist. This software will be used for expert-guided
model development and DSS development, but not for the machine learning research, for which a
separate workbench will be developed.


