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Abstract

The medical community is presently in a state of transition from a situation dominated by
the paper medical record to a future situation where all patient data will be available on-line
by an electronic clinical information system. In data-intensive clinical environments, such as
intensive care units (ICUs), clinical patient data are already fully managed by such systems
in a number of hospitals. However, providing facilities for storing and retrieving patient data
to clinicians is not enough; clinical information systems should also offer facilities to assist
clinicians in dealing with hard clinical problems. Extending an information system’s capabil-
ities by integrating it with a decision-support system may be a solution. In this paper, we
describe the development of a probabilistic and decision-theoretic system that aims to assist
clinicians in diagnosing and treating patients with pneumonia in the intensive-care unit. Its
underlying probabilistic-network model includes temporal knowledge to diagnose pneumonia
on the basis of the likelihood of laryngotracheobronchial-tree colonisation by pathogens, and
symptoms and signs actually present in the patient. Optimal antimicrobial therapy is selected
by balancing the expected efficacy of treatment, which is related to the likelihood of
particular pathogens causing the infection, against the spectrum of antimicrobial treatment.
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The models were built on the basis of expert knowledge. The patient data that were available
were of limited value in the initial construction of the models because of problems of
incompleteness. In particular, detailed temporal information was missing. By means of a
number of different techniques, among others from the theory of linear programming, these
data have been used to check the probabilistic information elicited from infectious-disease
experts. The results of an evaluation of a number of slightly different models using
retrospective patient data are discussed as well. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The medical community is presently in a state of transition from a situation
dominated by the paper medical record to a future situation where all patient data
will be available on-line by means of clinical information systems, also called
computer-based patient record (CPR) systems [5]. In many intensive-care units
(ICUs) clinical patient data are already fully managed by a clinical information
system. Such information systems are potentially interesting sources for clinical
research, because they contain large quantities of very detailed patient data.
Moreover, these systems offer a natural environment for facilities of decision
support that assist clinicians in handling hard clinical problems. The reasons for
this are twofold:
1. Clinicians use these information systems on a daily basis for their patient

management, and thus already see information systems as important clinical
tools; this view promotes the acceptance of integrated decision-support tools.

2. Most of the data needed to drive a decision-support system are already available
on-line, which makes it possible to employ decision-support systems even under
heavy timing constraints.

In the case of the ICU, there are huge quantities of temporal data, like
blood-pressure data, available through continuous patient monitoring. Unfortu-
nately, the situation for clinical data concerning the symptoms and signs in the
patient and follow-up, is less favourable. These data must be entered by hand, and
are usually stored in almost inaccessible free-text form. Yet, these clinical data are
normally of crucial importance in the process of medical decision making. Hence,
even in hospitals where clinical information systems have replaced the previous
paper records, the question remains to what extent such systems may act as a basis
for medical decision support.

The present study was undertaken to investigate the potential of a commercial
clinical information system (C2000, sold by the Eclipsys corporation) to act as a
foundation for medical decision support at the ICU. Although this system had
already been in use at three of the four ICUs of the University Medical Centre in
Utrecht (UMCU) since 1993, no earlier investigation of this kind had been
performed. As a clinical problem domain, the diagnosis and treatment of pneumo-
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nia in mechanically-ventilated patients was chosen. It is a problem of major
clinical importance to ICUs. A 1994 study of antibiotics usage at Dutch ICUs
revealed that 49% of the antibiotics were prescribed for respiratory-tract infections.
The problem may, however, also be viewed as an instance of a much wider and
even more significant clinical problem: the clinical management of infectious
disease in hospitals.

With the advent of modern antimicrobial agents since World War II, it was
believed by many that infectious diseases would soon be medical history. However,
as new antimicrobial drugs were developed, so did the ability of microorganisms to
elude their mode of action. The last two decades, the early feelings of optimism
with regard to infectious-disease control have slowly been changing into a feeling
of concern [32]. Many scientists now believe that the control of treatment of
infectious diseases must be improved; one way to achieve this aim may be through
decision-support systems. A number of studies indicate that decision-support tools
may indeed contribute to improving infectious-disease management and control
[12,13,24,34,44].

The goals of our research project are the design, clinical implementation and
evaluation of a decision-support system that is capable of assisting ICU doctors in
dealing with patients who are mechanically ventilated and display symptoms and
signs possibly related to the development of pneumonia. In this paper, we describe
the design of a decision-theoretic model, i.e. a model based on a combination of
the theory of (causal) probabilistic networks [23,15,31], also known as Bayesian
(belief) networks [37], and decision theory [41], that is aimed at supporting
clinicians in prescribing antibiotic therapy to mechanically-ventilated patients with
pneumonia at the ICU. It is part of a decision-theoretic expert system [25,27]
called PTA (Pneumonia Therapy Advisor).

Note that this problem domain is closely related to that of the well-known
MYCIN system, an expert system developed in the late 1970s at Stanford University
that offered advice on the diagnosis and treatment of sepsis and meningitis
[9,40,46]. However, the techniques used in PTA are quite different from those that
were used in MYCIN: instead of relying on expert classification rules, we employ a
decision-theoretic approach which allows for the integration of probabilistic infor-
mation from various sources, and for improvement of the model based on gath-
ered experience as reflected in clinical databases. Given the complexity of the
problem of infectious-disease management, we believe this to be the right ap-
proach.

This paper is organised as follows. In the next section, we focus on the diagnosis
and treatment of pneumonia, and on the difficulties linked with these issues.
Section 3 pays attention to the design of a temporal model of pneumonia. Its
implementation in terms of the theory of probabilistic networks is discussed in
Section 4, whereas the decision-theoretic extensions to the model are presented in
Section 5. Finally, a preliminary evaluation of the models is presented in Section 6.
The paper concludes with an analysis of the achievements of this research, a
comparison to related research, and future plans.



P.J.F. Lucas et al. / Artificial Intelligence in Medicine 19 (2000) 251–279254

2. The origin and management of pneumonia at the ICU

Patients admitted to an ICU are often severely ill and usually must submit to a
variety of invasive medical procedures; as a consequence, these patients are
generally more vulnerable to infectious diseases than healthy people. One of the
most frequently occurring infectious diseases within ICUs is pneumonia, with
reported rates between 15 and 20% of all patients admitted. In contrast, the
reported rates of pneumonia developed in the hospital in general, known as
hospital-acquired pneumonia (HAP) or nosocomial pneumonia, are 0.5–1.0% of all
patients admitted [6], which are thus significantly lower than the rates for ICUs.
Nevertheless, the associated mortality rates of HAP are high: approximately 30%
[21].

In healthy people, the parts of the respiratory tract distal to the oropharynx are
normally sterile due to the activity of a number of defense mechanisms. Two
important defense mechanisms are [11]:
1. mucociliary clearance : the beating motion of cilia of the laryngotra-

cheobronchial epithelium moves a film of mucus, which incorporates particles
and bacteria that have been inspired, towards the oropharynx thus clearing the
epithelium from potential sources of infection;

2. al6eolar clearance : bacteria and particles are taken up by alveolar macrophages,
which are white blood cells with phagocytic capability, and subsequently
digested by means of intracellular enzymes.

Reduced activity of the defense mechanisms results from a number of factors.
For example, mechanical ventilation blocks the mucociliary clearance due to the
associated tracheal intubation. Since many patients admitted to an ICU need
respiratory support by a mechanical ventilator, suppression of this defense mecha-
nism occurs quite often. The capacity of the defense mechanisms may also be
surpassed due to reduced consciousness. Many patients in the ICU have a reduction
in consciousness. This leads to suppression of the cough reflex, which in turn
promotes the aspiration of stomach content with associated pathogens. These
factors increase even further the likelihood of pulmonary infection in ICU patients.
The integrity of the immune system is another important factor in preventing the
occurrence of pneumonia; in patients in which it is suppressed, either congenitally,
e.g. an in-born diminished production of immunoglobulin, or acquired, e.g. due to
a disease like AIDS, pneumonia is one of the most common causes of death.
Among mechanically-ventilated patients, the reported rates of pneumonia are very
high: 18–60%, with an average of about 20% [6]. Pneumonia in mechanically-venti-
lated patients is called 6entilator-associated pneumonia (VAP). The reported mortal-
ity rates of VAP are also very high: 50–90% [6].

The treatment of VAP in patients is seen as a significant problem by ICU
doctors. Firstly, many of these patients are severely ill. Secondly, the presence of
multi-resistant bacteria in clinical wards, in particular the ICU, makes prescription
of antibiotics with a spectrum as narrow as possible essential; the prescription of
broad-spectrum antibiotics promotes the development of antimicrobial resistance,
and should therefore be avoided when possible.
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Choosing an appropriate therapy for pneumonia not only involves the issue of
susceptibility of pathogens to antibiotic agents, and antimicrobial spectrum, but
also of possible side effects of prescribed drugs. In the case of antibiotic therapy
possible side effects are: renal failure, diminished hearing, epileptic seizures and
allergic reactions varying from skin rash to anaphylactic shock.

What adds very much to the difficulty of the problem is that in many cases it is
not even clear whether a patient has ventilator-associated pneumonia or not; the
accurate diagnosis of ventilator-associated pneumonia is currently seen as an
important clinical challenge. The diagnosis is difficult because of lack of a simple,
cheap yet accurate diagnostic test; the disease is therefore diagnosed by taking a
number of different clinical features into account [36]. Moreover, patients must
usually be treated before the results of sputum cultures become available, which
takes at least 48 h. Sputum cultures yield highly valuable information about the
identity and antibiotic susceptibility of pathogens. Hence, the initial therapy, called
empirical therapy, must be started without having absolute certainty that the patient
is affected by ventilator-associated pneumonia and without actually knowing the
identity of the causative pathogens.

All factors mentioned above may interact in various manners, in some cases even
as a function of time. Clearly, the decisions about appropriate antibiotic therapy
must be made on the basis of a lot of uncertain medical knowledge. Offering
appropriate decision support to the clinician may therefore be beneficial to the
patient; the complexity of the problem is so large that it is very unlikely that
clinicians will be capable of delivering optimal treatment to all patients.

3. Temporal modelling of the process of pneumonia

The medical knowledge of pneumonia discussed above was used as a starting
point for the design of a number of informal temporal models of ventilator-associ-
ated pneumonia. The design was carried out in close collaboration with three
infectious-disease experts, as well as with experts from the ICU, from the University
Medical Centre in Utrecht. We used directed graphs as the main modelling tool in
the design process.

As discussed above, the capacity of the defense mechanisms of a patient to
pathogens may be diminished, but may also be exceeded. In either case, the
laryngotracheobronchial tree and lung parenchyma may become invaded by patho-
gens, which under normal conditions would be eliminated swiftly. This process is
known as colonisation. Knowing at any particular point in time that a patient is
being mechanically ventilated or has aspirated stomach content, influences our
knowledge of whether or not the patient will become colonised by specific bacteria
[7]. Hence, there exists a causal relationship between ‘mechanical ventilation’ and
‘aspiration’, on the one hand, and ‘colonisation’, on the other hand. In Fig. 1 this
causal knowledge has been represented by means of a directed graph with identi-
cally named vertices and associated solid arcs, representing causal relationships.
Colonisation in turn may give rise to pneumonia. This is expressed in the graph
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model by a solid arc running from ‘colonisation’ to ‘pneumonia’. Finally, tracheal
intubation not only affects the colonisation process, but also directly influences the
likelihood that a patient will develop pneumonia. As may be expected, the
likelihood that colonisation will give rise to pneumonia is also influenced by the
immunological status of the patient. These two independent causal influences have
been represented by two solid arcs running from ‘mechanical ventilation’ and
‘immunological status’, respectively, to ‘pneumonia’.

It is well-known that the identity of the pathogens with which a patient’s
laryngotracheobronchial tree gets colonised depends on the environment to which
a patient is exposed. The pathogens most likely present in a hospital environment
are different from those most frequently encountered outside the hospital. For
example, Streptococcus pneumoniae is the bacterium most likely causing pneumonia
outside the hospital, whereas Pseudomonas aeruginosa is a likely nosocomial cause
of pneumonia. When a patient is already colonised by particular microorganisms
when entering the hospital, the pattern of colonisation may change over time.
Hence, colonisation is a dynamic process that evolves over time: only after a certain
amount of time, particular microorganisms may be detected in cultures of laryngo-
tracheobronchial secretions.

The temporal nature of colonisation has been indicated in Fig. 1 by means of
dashed arcs, which have the meaning of temporal causal relationships. Although
the process is really a continuous one, here it is assumed that the process is discrete,
since data about laryngotracheobronchial-tree colonisation will only be available at
discrete time points from examined sputum cultures. The vertices in the graph may
now be viewed as state 6ariables. Moving to a similar state at the next point in time
is said to be moving to the next stage. Note that it is assumed that our knowledge
of every state, with the exception of ‘aspiration’, at time point ti+1 is influenced by
knowledge of similar states at time points tj,…,ti, i.e. by i− j+1 previous stages.

Fig. 1. Colonisation as a dynamic process.
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Fig. 2. Symptoms and signs of pneumonia.

For example, when we know that a patient has been mechanically ventilated for the
last 2 days ( j= i−1), the likelihood that the patient will remain mechanically
ventilated is different from when we had assumed that the patient was, for example,
mechanically ventilated over the last 3 days ( j= i−2). When j= i, it is assumed
that only the previous stage should be taken into account when predicting the next
stage. The actual value of j, however, is not easy to establish, and it seems
reasonable to assume that the immediate previous stage is the one most important
in predicting the next stage. Henceforth, it is assumed that j= i. Furthermore, it is
assumed that knowing that a patient has aspirated stomach content at a particular
stage does not influence the likelihood that aspiration occurs in the next stage. This
is only correct when there is no systematic cause underlying aspiration.

Associated with pneumonia are particular symptoms and signs that can be
employed to diagnose the presence of pneumonia in a patient. The nine most
significant symptoms and signs are indicated in Fig. 2 as effects of a common cause
‘pneumonia’. Some of these are suppressed or influenced otherwise when a patient
is mechanically ventilated. This explains why some effect vertices have a second
incoming arc from the vertex ‘mechanical ventilation’. Furthermore, the body
temperature, taken as an indication of presence or absence of fever in a patient, is
influenced by taking antipyretic (anti-fever) drugs. The variable pO2/FIO2 repre-
sents the ratio between arterial oxygen pressure and the fractional inspired oxygen
level. The variable ‘sputum PMNS’ represents the number of polymorphonuclear
leucocytes found in a sputum sample examined under the microscope.

To predict whether or not a particular antimicrobial therapy may improve a
patient’s condition, it is necessary to know the susceptibility of the suspected
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pathogens to particular antibiotics. The basic temporal model has therefore been
extended as indicated in Fig. 3. Determining antibiotic coverage of the pathogens
possibly causing pneumonia is the main goal of the system, which explains the
inclusion of a vertex ‘coverage’. The vertex ‘side effects’ indicates that some
antibiotics may give rise to side effects at a particular point in time; these are also
predictive for later stages. Note that it is assumed that both ‘susceptibility’ and
‘coverage’ do not influence future susceptibility and coverage: susceptibility and
coverage are fully determined by the nature of the microorganisms with which a
patient is colonised.

Fig. 3. Complete temporal model.
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4. A probabilistic model of pneumonia

The temporal model discussed above offers a meticulous representation of the
structure of the processes underlying the development and treatment of pneumonia.
However, we have not yet dealt with the many uncertainties involved in these
processes, which, as was mentioned above, is one of the main issues of the problem.
It will be the subject of the present section.

4.1. The probabilistic-network formalism

A natural representation of the uncertainties involved in treating patients with
pneumonia is offered by the probabilistic-network formalism [31,37]. This formal-
ism allows for the representation of causal relationships, either explicitly indicated
as being temporal in nature or not. Such relationships were used in the design of the
dynamic model discussed above.

Formally, a probabilistic network is an acyclic directed graph G= (V(G),A(G)),
with a set of vertices V(G)={V1,…,Vn}, where each vertex Vi � V(G) represents a
discrete stochastic variable, and a set of arcs A(G)¤V(G)×V(G) reflecting all
known stochastic dependencies in the domain concerned. Arcs are often informally
seen as to mirror causal or correlational influences among variables. Absence of
arcs between vertices reflects known (conditional) independencies among stochastic
variables. Stochastic variables will be denoted by upper-case letter, e.g. X ; values of
variables will be denoted by lower-case letters, e.g. x. In the case of binary
variables, the value X=yes is sometimes simply denoted by x ; the value X=no is
also denoted by ¬x. By �X8(X) is indicated a summation over the values of the
variable X of the function 8. Values or states of specific variables, such as COL
(colonisation), are also indicated using this notation.

On the set of variables {V1,…,Vn} is defined a joint probability distribution Pr
that can be factorised according to the topology of the graph as follows:

Pr(V1,…,Vn)= 5
n

i=1

Pr(Vi �p(Vi))

where p(Vi) represents the set of variables associated with the parent vertices of Vi.
This means that the joint probability distribution Pr(V1,…,Vn) can be defined in
terms of ‘local’ probability tables Pr(Vi �p(Vi)) by assuming the variable Vi to be
conditionally independent of all predecessors of the associated vertex Vi given the
parents p(Vi).

The probabilistic-network formalism also offers facilities for entering and pro-
cessing evidence E, using probabilistic-inference algorithms [20,23,37]. A probabilis-
tic-inference algorithm updates a given probability distribution Pr yielding a new
probability distribution Pr* that takes the given evidence into account. The
following equality holds between these two probability distributions:

Pr*(Vi)=Pr(Vi �E) (1)
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Fig. 4. Global structure of the probabilistic VAP model.

i.e. the marginal probability distribution of any variable Vi in the updated probabil-
ity distribution Pr* reflects the original probability distribution Pr for the variable
Vi when conditioned on the given evidence E.

4.2. The VAP model

Above we have sketched the development of pneumonia in a patient as a
dynamic process. The adopted view was that colonisation and related infectious-dis-
ease processes go through various stages, with every subsequent stage fully deter-
mined by the previous stage. When the vertices in the dynamic model are assumed
to stand for stochastic variables, this assumption is known as the no-memory
property or Marko6 assumption [16,38]. It holds for example that:

Pr(COLti+1
�COLt 0

,…,COLti
)=Pr(COLti+1

�COLti
)

where ‘COL’ stands for colonisation with some type of microorganism. When we
adopt this assumption and take the structure of the temporal model shown in Fig.
3, a Markov process results [8,16,38].

A major disadvantage of a dynamic model like the one depicted in Fig. 3,
however, is that it is very demanding not only with regard to the amount of data
needed to specify the probability distribution underlying the stochastic process, but
also computationally [8]. It is therefore usually necessary to use additional assump-
tions to further simplify the model. The model that resulted from this effort is
shown in Fig. 4. Boxes in this model indicate collections of similar stochastic
variables, with the therapy variable as a special double-box case; ellipses indicate
single stochastic variables. Dashed arcs denote temporal probabilistic relationships;
solid arcs represent stochastic dependency without special temporal meaning.

As before, central to the model is the temporal process of colonisation of the
laryngotracheobronchial tree by pathogens. The temporal nature of the process is
expressed by the interaction between duration of stay at the ICU (hospitalisation)
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and the duration of mechanical ventilation: both duration of stay at the ICU and
duration of mechanical ventilation are correlated to colonisation by pathogens.
This part of the model hides the temporal nature of the development of the
processes of colonisation and pneumonia in conditioning variables, whereas time
was previously handled more explicitly in the model shown in Fig. 3.

The relationship between ‘aspiration’ and ‘colonisation’ remains the same, as is
true for the symptoms, signs or laboratory abnormalities that can be observed,
which are once more summarised in a corresponding vertex in the graph. Finally,
the susceptibility of pathogens to particular antimicrobial treatment is determined
by the choice of medical treatment and the pathogens actually present, causing
infection.

As mentioned above, the box-shaped vertices shown in the graph in Fig. 4
actually comprise a number of separate, but similar vertices. For example, colonisa-
tion by pathogens was modelled as a biological process, in which it was assumed
that colonisation by different pathogens occurs independently. This is shown in Fig.
5. Note that this representation allows for a pulmonary infection to occur in a
patient due to multiple organisms. Colonisation by seven of the most frequently
occurring pathogens, such as Pseudomonas aeruginosa and Haemophilus influenzae,
is represented in the current model. The number of pathogens included in the model
has decreased in time from eleven in an earlier model, to seven in the present

Fig. 5. Detailed structure of part of the probabilistic VAP model. Only three of the seven microorgan-
isms included in the model are shown. Dotted arcs point to the actual topology of the probabilistic
network. Abbreviations: PA: Pseudomonas aeruginosa ; HI: Haemophilus influenzae ; SP: Streptococcus
pneumoniae.
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Fig. 6. Casual independence model.

model, after a decision was made to focus on empirical treatment only. Similarly,
the vertex ‘susceptibility’ represents the separate effect of antimicrobial treatment
on each of these seven pathogens.

To model the probabilistic interaction of the various pathogens on the symptoms
and signs of pneumonia, the notion of causal independence [17] was used. Consider
the probabilistic network shown in Fig. 6. Assuming that the probability distribu-
tion Pr(E �I1,…,In) that is specified for the variable E expresses some deterministic
function f : I1× ···×In�E, the probability of the effect E=e given the causes
C1,…,Cn can be computed straight from the axioms of probability theory, as
follows. According to Fig. 6, the causes Cj are assumed to be mutually independent
and the variable E is conditionally independent of any Cj given I1,…,In. It follows
that:

Pr(e �C1,…,Cn)= %
I 1,…,In

Pr(e �I1,…,In) 5
n

k=1

Pr(Ik �Ck) (2)

Now, the probability distribution on the variable ‘pneumonia’ models the disjunc-
tive effect of different pathogens, assuming that pneumonia may even be caused by
one type of microorganism. This principle is modelled by a probability distribution
Pr(E �I1,…,In) that is defined as a logical OR:

Pr(e �I1,…,In)=
!1 if Ij= ij for some j, 15 j5n

0 otherwise

As a consequence, we have

Pr(pneumonia)=1− 5
n

i=1

Pr(¬col-organismi)

This probabilistic model is known as the noisy-OR gate [17,26,37]; it is used quite
frequently in medicine. A similar type of causal independence was used to model
the conjunctive effect of antibiotics on the susceptibility of pathogens. Here, the
probability distribution defined on the variable COVERAGE was taken to repre-
sent a logical AND; formula (2) now yields the following result:

Pr(coverage)= 5
n

i=1

Pr(susceptibility-organismi)
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which is known as the noisy-AND gate [17,26]. In Fig. 7, a small part of the model
as implemented using an improved version of the Ideal probabilistic expert-system
shell [43], is shown, only involving the vertices ‘hospitalisation’, ‘mechanical ventila-
tion’, ‘colonisation’ (e.g. COL– P.AERUGINOSA, i.e. colonisation by Pseudomonas
aeruginosa), and ‘pneumonia’ (e.g. P.AERUGINOSA– Pneumonia ), ‘susceptibility’
of pathogens to antimicrobial drugs, and ‘medication’, and restricted to four of the
seven included pathogens. Vertices with capital I are instantiation 6ertices, i.e.
variables without parents that must always be supplied with a value. When a value
for the corresponding variable is supplied, additional stochastic independence
information is yielded. In this way, the speed of probabilistic inference could be
dramatically improved.

Antibiotic treatment consists of the selection of one or two different antibiotics
— possibly also none — modelled by two identical therapy vertices; each therapy
vertex includes 24 different antibiotic agents (including none), yielding 242=576
possible combinations, of which:

�23
2
�

=253

(excluding ‘none’) are different, yielding a total of 253+24=277 (now including
‘none’ and single drugs) different therapies.

4.3. Probability assessment

Although the three ICUs that acted as setting of the research all use the same
shared computer-based patient record system, and stopped using paper patient
records 6 years ago, it appeared very hard to select relevant patient cases from the
collected databases. The main reason was that ventilator-associated pneumonia is
always a concomitant disease. Therefore, clinicians do not find it worthwhile to
report the presence of VAP in a patient. We found that only in a very small
proportion of cases, much smaller than expected from the reported rates in the
literature, patients had been affected by ventilator-associated pneumonia. The
infectious-disease specialists also expected much higher rates. As a result of this, all
probabilistic information in the model had to be assessed using expert estimates,
and, when possible, compared and adjusted to information found in the clinical
literature.

There were also a number of databases available from the microbiology labora-
tory with data about sputum cultures of ICU patients. Because not all variables
included in the model were present in these databases, the data could not be used
to assess the probability distribution of colonisation by pathogens. We have,
however, tried to use the database to check the expert estimates for the ‘colonisa-
tion by pathogen’ variables, without any doubt the most crucial variables in the
model. Below, we discuss the methodology we have developed to check probabilis-
tic information, using feature-incomplete data. In particular, we shall focus atten-
tion on the necessary assumptions to utilise such databases.
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Fig. 7. Part of the probabilistic VAP model.
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Fig. 8 shows the percentage of patients for each day at one of the ICUs that had
been staying at that particular day less than 5 days. To obtain this curve, it was
necessary to make the assumption that all beds at the ICU are always being
occupied, because sputum cultures are not taken for all patients, and often the
number of patients present in the ICU at one particular day seemed unrealistically
low. For the ‘missing’ patients, it was assumed that they were staying less than 5
days, which seems a reasonable assumption.

The reason for utilisation of the database was to check the probability
distribution:

Pr(COL-ORGANISMi �HOSP,MV)

For the purpose of illustration, we restrict our attention to colonisation by
Pseudomonas aeruginosa (COL-PA, with ‘COL-PA=yes’ abbreviated to ‘col-pa’),
hospitalisation (HOSP) either less than 5 days for patients with (lt5days-copd) or
without (lt5days-icu) chronic obstructive pulmonary disease (COPD, like chronic
bronchitis), and mechanical ventilation (MV) between 24 and 48 h. From the
axioms of probability theory, it follows that:

Fig. 8. Percentage of patients in one of the ICUs being admitted to the ICU less than 5 days ago from
1 January 1997 to 1 June 1998, based on a sputum-culture database. It was assumed that all beds are
always being occupied. The curve was obtained by cubic spline interpolation. Note that the percentage
of patients that have been staying longer than 5 days is obtained by taking the x-axis image of the
graph.
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Pr(col-pa�HOSP= lt5days)=

Pr(col-pa�HOSP= lt5days-icu � HOSP= lt5days-copd)=

[Pr(col-pa�HOSP= lt5days-icu)Pr(HOSP= lt5days-icu)+

Pr(col-pa�HOSP= lt5days-copd)Pr(HOSP= lt5days-copd)]/

Pr(HOSP= lt5days)

Note that

Pr(HOSP= lt5days)=Pr(HOSP= lt5days-copd)+Pr(HOSP= lt5days-icu)

because the values of the variable HOSP at the right-hand side are mutually
exclusive, and ‘It5days’ is the union of the other two values.

From the database with data from one of the ICUs it was calculated that:

Pr(col-pa�HOSP= lt5days)=0.1142
Pr(HOSP= lt5days)=0.7207

Furthermore, we assumed that the number of patients with COPD at the ICU is a
fifth of patients without COPD and who were staying less than 5 days at the ICU,
which seemed a reasonable estimate:

Pr(HOSP= lt5days-copd)=0.2 · Pr(HOSP= lt5days-icu)

Using linear programming, the following equality was obtained:

Pr(col-pa�HOSP= lt5days-icu)=
−0.2 · Pr(col-pa�HOSP= lt5days-copd)+0.13704

with Pr(col-pa�HOSP= lt5days-copd) � (0.1142, 0.6852).
Next, it was assumed that Pr(col-pa�HOSP= lt5days-icu, MV=24-48) was a

linear function of time t in terms of Pr(col-pa�HOSP= lt5days-icu):

Pr(col-pa�HOSP= lt5days-icu, MV=t)=

Pr(col-pa�HOSP=lt5days-icu)+(1−Pr(col-pa�HOSP=lt5days-icu))·
t

tmax

with t � {0, 24, 48, 96} and t=0-24, 24-48, 48-96, 96-144, \144, and t the lower
bound of t ; for example, when t=24–48, then t=24. For tmax we took values
]480 h. Now, when the expert estimate Pr(col-pa�HOSP= lt5days-icu, MV=24-
48)=0.05 was added to the equations and inequalities above, the resulting system
appeared to be consistent.

We conclude that many assumptions have to be made when checking probability
estimates against a database that lacks information about conditioning variables.
However, the method discussed above forces one to look more carefully at these
probability estimates, also in comparison to other probability estimates, thus
facilitating probability refinement.
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5. Decision making

Until now, we have focussed on the probabilistic model underlying PTA. In this
section, a number of extensions to render the model suitable for selecting optimal
antibiotic therapy will be paid attention to.

5.1. Representation and problem-sol6ing

The aim of our decision-theoretic expert system PTA is to aid clinicians in
dealing with patients with suspected VAP. Insight into the potential efficacy of
treatment of such patients can be obtained by entering symptoms and signs of a
patient, duration of hospitalisation and mechanical ventilation, previously experi-
enced side effects of antibiotics, and relevant laboratory data into the probabilistic
network. Only data concerning vertices that are denoted as instantiation vertices
need to be supplied; entering more patient data, however, may provide additional
evidence for the presence or absence of pneumonia, but the model is still applicable
when most other findings are unknown. Using one of the probabilistic-inference
algorithms (cf. [10,20,23,37]), the probability distribution defined on the COVER-
AGE variable will be updated, yielding a marginal probability summarising the
coverage of all possible pathogens Pr* reflecting the entered evidence (E6idence), i.e.

Pr*(COVERAGE)=Pr(COVERAGE�E6idence)

Automatic selection of optimal treatment for a patient requires extending the
probabilistic network to a decision-theoretic model. A decision-theoretic model not
only includes uncertain probabilistic knowledge, but also the preferences among
combinations of decisions and states, expressed by means of a utility function,
which guide the choice among the various decisions. Often, influence diagrams are
used for the representation of both probabilistic knowledge, decisions and utility
information; an advantage of this formalism is that its probabilistic part can still be
viewed as a probabilistic network [39].

We have designed a number of different utility models to enable determining
optimal therapy for a patient. A straightforward example of a utility model is a
utility function u : COVERAGE�R, which takes its maximum value when COV-
ERAGE=yes and its minimum value when COVERAGE=no. Optimal coverage
can be computed by varying the therapy choice, and selecting the therapies with
maximum expected utility. However, since the number of possible drug combina-
tions was 576, computation of optimal therapy was practically not feasible. As a
practical solution to this problem, we have restricted the 277 different therapies to
the 33 different therapies considered adequate for most patients; this therapy choice
was then represented as a single vertex.

As discussed in the Introduction, prescribing antibiotics is essentially a trade-off
between maximising coverage and minimising broadness of spectrum. When exper-
imenting with the model and a database of retrospective patient data (See Section
6.1), it became apparent that the spectrum of the antibiotics suggested by the
system was often too broad. This was consistent with our expectations. Two new
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Fig. 9. Transformation of influence diagram to probabilistic network.

utility functions of the form uI : COVERAGE×SPECTRUM�R, i=1,2, were
therefore subsequently designed. For utility function u1 (utility model I) antibiotics
or combinations of antibiotics were classified into five different groups from very
narrow to very broad according to their spectrum. Utility function u2 (utility model
II) was similar to u1, except that the antibiotics were classified into eight different
groups. In both cases, the design of the utility model was done with the help of the
direct scaling method [42]. Utility models are often dependent on personal prefer-
ences, and this holds especially when designing multi-attribute utility models; no
correct utility model exists beforehand. Only evaluation will tell whether or not one
model is better than another, as will be discussed below.

As mentioned above, the probabilistic network underlying the decision-theoretic
model was structured in such a way, as to cover all pathogens in proportion to their
likelihood of occurrence in a patient. The noisy-AND probabilistic model was the
main vehicle for this approach. After much experimentation, however, it was
suspected that the noisy-AND model had a tendency of broadening the spectrum of
the antibiotics advised for prescription. As an alternative, a problem-solving
method was devised in which only pathogens with a posterior marginal probability
larger than 30% were taken into account; the remaining pathogens were ignored by
setting their marginal probability to 0. The threshold of 30% was chosen by the
infectious-disease expert after thorough examination of the results of the model for
a number of patients. The hypothesis was that by combining utility model I or II
with probabilistic threshold problem-solving, the spectrum of the antibiotics ad-
vised for prescription would narrow down. The results of an evaluation study in
which this hypothesis is tested, are described in Section 6.2.

5.2. Decision-theoretic computation

By means of special decision-theoretic algorithms, such as the algorithms by
Shachter [39] and Cooper [10], it is possible to determine the sequence of decisions
yielding a maximum expected utility. In the present case, however, it appeared
straightforward to use instead a probabilistic-inference algorithm as a basis for the
decision-theoretic computations. Consider the influence diagram shown in Fig. 9(a),
which offers an abstract representation of the decision-theoretic VAP model, i.e. the
influence diagram obtained by taking the ‘medication’ vertex as a decision 6ertex,
represented as a box, and by adding a 6alue 6ertex, representing a utility function,
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which is denoted as a diamond. In the figure, D is a decision variable and U denotes
the value vertex with associated utility function. The influence diagram also
includes two chance vertices, represented as circles, standing for the stochastic
variables E and B. These variables may, in fact, also be taken to stand for
probabilistic submodels.

Let u : D×B� [l,r ], with l, r � R, lBr, be a surjective utility function defined for
the value vertex U. The expected utility of decision D=d, eu(d), is then equal to:

eu(d)=%
B

u(d,B) · Pr(B �e,d) (3)

where e is evidence entering for the variable E into the network. A decision with
maximum expected utility, dmax, yields a maximum value for eu(d):

dmax=arg max
d�D

eu(d)

Now the same result can be obtained by using a probabilistic network correspond-
ing to the influence diagram, as shown in Fig. 9(b), where the probability distribu-
tion Pr(u �B,D) is defined as follows:

Pr(u �B,D)=u(D,B)/(r− l)

The complementary probability Pr(¬u �B,D)=1−Pr(u �B,D) is actually ignored in
the decision-making process.

The posterior probability distribution Pr(u �e,d) can now be obtained as follows
(it is equal to the marginal probability Pr*(u) obtained from a probabilistic-infer-
ence algorithm):

Pr(u �e,d)=%
B

Pr(u,B �e,d) (4)

=%
B

Pr(u �B,d) · Pr(B �e,d) (5)

because U is conditionally independent of E given B. As can be concluded from
Eqs. (3) and (5), it holds that:

dmax=arg max
d�D

Pr(u �e,d)

because eu(d)= (r− l) · Pr(u �e,d), and we can thus use a probabilistic-inference
algorithm with the probabilistic network obtained from this straight-forward
transformation to compute optimal decisions. We have done so accordingly.

6. Evaluation

The present structure of the probabilistic network has a strong logical founda-
tion, and we therefore believe it to be basically correct. There may be particular
arcs missing due to gaps in the medical knowledge concerning pneumonia. How-
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ever, correlations due to missing medical knowledge are likely to be weak, and
hence have little effect on the probability distribution.

In addition to the structure of a probabilistic network, the accuracy of the
represented probabilistic and utility information is an issue that requires attention
[35,45]. This has been investigated in a number of different ways, as will be
discussed below.

6.1. Preliminary study

In a preliminary study, the behaviour of the probabilistic model was examined by
considering changes in probabilistic patterns as a function of time, and by reviewing
the results for a number of individual patients.

First, some of the vertices in the model were instantiated (i.e. a specific value was
chosen), and the resulting posterior probability distribution was compared with
frequency of occurrence information available from the ICU; see Fig. 10. It appears
that the patterns of frequency of colonisation and pneumonia for particular
pathogens changes with duration of stay at the hospital. For example, the relative
frequency of colonisation and pneumonia by Haemophilus influenzae (HI in the
figure), which is high when entering the hospital, decreases just a bit during the first
96 h of mechanical ventilation (upper three graphs), to become even lower when the
patient has stayed more than 5 days in hospital. This frequency decreases further
for patients who are mechanically ventilated during the next 96 h (lower graph). In
contrast, the relative frequency of colonisation and pneumonia from Pseudomonas
aeruginosa (PA in the figure) rises after a stay of more than 5 days in the ICU,
which is increased even further due to mechanical ventilation. These observations
did agree with expert opinion.

Furthermore, we have examined the results produced by the model for a number
of real patients. We discuss here the results for two of these patients in order to
convey how the model might be employed clinically, and to point out some of the
limitations of the basic utility model that was purely meant to optimise coverage.

Patient A was already mechanically ventilated in the ICU for 2 days, and had
been so since admission to the ICU. The patient produced purulent sputum, and
auscultation of the lungs revealed the presence of rales. However, there were no
radiological signs of pneumonia, no leucocytosis and the body temperature was not
increased either; the patient did not take antipyretic drugs. Hence, there was much
more evidence against than for the presence of VAP, but the signs that were present
could also be interpreted as anticipating full-blown pneumonia. The predictions
made and the therapy suggested by the model are shown in Table 1. Note that
colonisation by the most likely pathogen, Haemophilus influenzae, was later con-
firmed by the laboratory from sputum cultures.

Patient B had already been mechanically ventilated for 4 days, which was also
started immediately after being admitted to the ICU. There were clear symptoms
and sign indicating that pneumonia was present, like purulent sputum, leucocytosis,
and radiological signs possibly related to pneumonia, although body temperature
was again normal. The predictions and advice produced by the model for patient B
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Fig. 10. Obtained predictions after entering information concerning duration of hospitalisation and mechanical ventilation. Names of pathogens have been
abbreviated. For each pathogen, the probability of colonisation and pneumonia are depicted, in that order.
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are also shown in Table 1. Again colonisation by the most likely pathogen,
Haemophilus influenzae, was confirmed by sputum cultures, but colonisation by
Streptococcus pneumoniae, the pathogen predicted as the second possibility, was
not. However, colonisation by Staphylococcus aureus was confirmed.

For these two patients, the system selected the therapy that best covered the
suspected pathogens, which was identical in both cases. Although this treatment
was able to cover the suspected pathogens with more than 90% chance, the
infectious-disease experts viewed the antimicrobial spectrum of the therapy as being
far too broad. In fact, this appeared to be a systematic problem encountered in the
results for the other patients examined as well. A number of new utility models, in
which antimicrobial spectrum was taken into account, were designed, and the tests
were repeated. Although these new models did change the ranking of the antibi-
otics, the results were again not entirely satisfactory.

The results of this preliminary evaluation made clear that the need of the model
to cover all possible pathogens tends to result in the prescription of antibiotics with
a spectrum that is often too broad, even when this is counterbalanced by a utility
model in which the prescription of broad-spectrum antibiotics is discouraged. As is
depicted in Fig. 11, there are many unlikely pathogens with which a patient might
be colonised; the probabilistic model takes all these into account, although in a
weighted fashion. In the next section, we shall discuss the results obtained by not
only taking the antimicrobial spectrum, but also a probability threshold into
account, in an attempt to improve on the results discussed here.

Another problem that was observed was that taking only the susceptibility of
pathogens as determined by the microbiology laboratory into account, may give
rise to suboptimal advice. Appropriate antimicrobial therapy recommendations
should not only be based on in vitro data, but also on data of the efficacy of the
agents at the site of infection in the patient (in vivo data). Unfortunately, whereas
the in vitro susceptibility patterns are based on reliable laboratory data, in vivo

Table 1
Predictions and advice produced by the VAP model for patient A and Ba

Predictions/advice Pr (%)Patient BPr (%)Patient A

70Colonisation H. influenzae49H. influenzae
(predicted)

S. pneumoniae S. pneumoniae 4024
6 S. aureusS. aureus 19
5 P. aeruginosa 14P. aeruginosa

H. influenzaeH. influenzaeSputum cultures
S. aureus

Yes99NoPneumonia 100

Piperacillin +amikacinPiperacillin +amikacinTreatment

a The treatment advice is based on a utility model in which only overall coverage of suspected
pathogens was taken into account.
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Fig. 11. Predicted colonisation profile for patient A.

susceptibility pattern information is heuristic in nature, and hard to establish
reliably.

6.2. Study of two utility models, combined with a probability threshold

Data of 38 patients, suspected of having had VAP, and who had been admitted
to the ICU in the years 1997 and 1998, were selected from the clinical information
system at the ICU. Four different methods, all using the same probabilistic
network, were used to determine the optimal antibiotic treatment in this study:
1. treatment selection using no probability threshold with utility model I (taking

into account coverage and five spectrum groups);
2. treatment selection using a 30% probability threshold, combined with utility

model I;
3. treatment selection using no probability threshold, combined with utility model

II (taking into account coverage and eight spectrum groups);
4. treatment selection using a 30% probability threshold, combined with utility

model II.
The infectious-disease specialist who was involved in the design of the model was

requested to assess the best three treatment options generated by the system in
terms of:
� acceptability (1st–3rd choice, acceptable, unacceptable);
� antimicrobial spectrum.

The results are shown in the Tables 2–5. The following general conclusions can
be drawn from these results. The use of a probability threshold had in general a
positive effect on the spectrum of the antibiotics chosen by the system: there was a
shift of antibiotics into the direction of a more narrow spectrum, although
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Table 2
Assessment of spectrum results for utility model I, without and with probability thresholda

Five spectrum groups

1st–3rd 1st choice

Spectrum n % n %

No threshold
17 45� 3236

4733 29 18\
831 27 3=

0 09: 10
0 04B 3

100 100Total 114 38

30% threshold
10 09� 0

1 322\ 25
8453 46 32=

1 3: 1820
106 5 4B

38 100Total 100114

a Where: � much too broad; \ too broad; = good; : similar; B too narrow.

Table 3
Assessment of spectrum results for utility model II, without and with probability thresholda

Eight spectrum groups

1st–3rd 1st choice

n %%Spectrum n

No threshold
� 12 10 0 0

3 8\ 89
4544 39 17=
1333 29 5:

13 3414B 16
38 100Total 100114

30% threshold
3 03� 0
2 32\ 1

34 8966= 75
12 010: 0

19 8B 322
100114 100 38Total

a Where: � much too broad; \ too broad; = good; : similar; B too narrow.
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Table 4
Assessment of ranking for utility model I, without and with probability threshold

Eight spectrum groups

1st choice1st–3rd
Expert nn %%

No threshold
3 8101st 11

1618 0 02nd
22 1 33rd

34 8969Accepted 79
Unaccepted 04 03

38 100100114Total

30% threshold
1st 13 4 1015

22 58212nd 24
3rd 13 33

8 2159Accepted 67
45 3 8Unaccepted

Total 100 38 100114

Table 5
Assessment of ranking for utility model II, without and with probability threshold

Eight spectrum groups

1st choice1st–3rd

Expert nn %%

No threshold
8 211st 11 10
6 16172nd 20

11 0 03rd
5866 11 29Accepted

13 3414Unaccepted 16
Total 38114 100100

30% threshold
1st 19 4 1122
2nd 26 29 7630

1 323rd 2
3439 2 5Accepted

2 519Unaccepted 21
100114 38 100Total

sometimes the spectrum became too narrow (see Table 2 and Table 3). A similar
effect of the use of a probability threshold could be observed for the ranking of the
antibiotics, although the effect was less obvious (See Table 4 and Table 5).
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Distinguishing more spectrum groups in defining a utility function had an effect
quite similar to the probability threshold: the spectrum of the antibiotics selected
became more narrow, and there was a shift towards first-choice treatment. How-
ever, at the same time the spectrum of selected antibiotics became more often too
narrow, and more selected antibiotics were classified as being unacceptable. The
combination of utility model I with a probability threshold of 30% seems to offer
a good compromise. However, since these results are based on the judgments of one
expert, further research has to be performed to investigate whether these judgments
are consistent with those of other infectious-disease specialists.

7. Discussion

We have described above the development of a decision-theoretic expert system
that is able to assist clinicians in the clinical management of ventilator-associated
pneumonia. A number of other decision-support systems have been developed in
the past, also using the framework of probabilistic networks (e.g. [2,22,33]),
sometimes in combination with decision theory (e.g. [18,19,28]). The probabilistic-
network formalism is one of few formalisms for knowledge representation in which
qualitative and quantitative medical knowledge can be easily integrated. It is also a
formalism that matches decision theory. Hence, the formalism is eminently suitable
for building decision-support systems in domains where uncertainty is of major
concern, and where expert knowledge is available to compensate for lack of data.
These were exactly the reasons why we adopted the probabilistic-network formal-
ism as a foundation for our research.

There are a number of other researchers who have also studied the problem of
computer-based decision support of the clinical management of infectious disease.
MYCIN was one of the first systems dealing with this issue, although the system was
actually restricted to the clinical areas of sepsis and meningitis [9,40]. In a
preliminary evaluation of the system, it was shown that the system performed at
least as well as infectious-disease specialists [46]. Rule-based classification systems
have been shown to perform well on many occasions (e.g. [1,14,30,29]), but a
disadvantage of the rule-based classification approach is that qualitative, causal
knowledge, which is readily available in medicine, cannot be employed for their
construction. Furthermore, quantitative, probabilistic information cannot be easily
integrated with the qualitative knowledge that is available in rules. These two
limitations do not exist for probabilistic networks.

The methods that were adopted by Andreassen et al. [3,4], Leibovici et al. [24],
Evans et al. [13], and Warner at al. [44] are related to our work, in the sense that
their models were at least partially based on probability theory. The models
described by Andreassen at al. [3,4] are closely related to ours, although they use
logistic regression equations to predict the likelihood of the presence of particular
pathogens, and the infectious-disease domains are different. Our approach is novel
in the sense that it is the first model that uses an explicit representation of the
process of bacterial colonisation as a kernel for decision making, which seems in
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particular appropriate when dealing with hospital-acquired infections. As far as we
know, it is also the first system that focusses on the clinical management of the
important problem of ventilator-associated pneumonia.

In the near future, the model will be refined by taking the in vivo effects of
antimicrobial agents into account, as well as the financial costs and side-effects of
antibiotics, to obtain a system that balances different costs and benefits of antibi-
otic drugs to reach optimal treatment. We intend to embed the resulting system in
the clinical information system of the ICU. As Evans et al. have shown, the
potential benefits of such a decisions-support system, both for the patient and
society, can be significant [13].
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