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Abstract
Probabilistic logics, especially those based on logic
programming (LP), are gaining popularity as mod-
elling and reasoning tools, since they combine the
power of logic to represent knowledge with the
ability of probability theory to deal with uncer-
tainty. In this paper, we propose a hybrid extension
for probabilistic logic programming, which allows
for exact inference for a much wider class of con-
tinuous distributions than existing extensions. At
the same time, our extension allows one to com-
pute approximations with bounded and arbitrarily
small error. We propose a novel anytime algorithm
exploiting the logical and continuous structure of
distributions and experimentally show that our al-
gorithm is, for typical relational problems, compet-
itive with state-of-the-art sampling algorithms and
outperforms them by far if rare events with deter-
ministic structure are provided as evidence, despite
the fact that it provides much stronger guarantees.

1 Introduction
Probabilistic logics are gaining popularity as modelling and
reasoning tools, since they combine the power of logic to rep-
resent knowledge with the ability of probability theory to deal
with uncertainty. Especially, probabilistic languages based
on logic programming (LP) have become popular, as they en-
able knowledge representation by employing similar struc-
ture as the popular Bayesian Networks (BNs) [Pearl, 1988],
but lift this from a propositional to a first-order level, thus
dramatically increasing expressive power. Examples of such
languages are ICL [Poole, 2008] and ProbLog [Fierens et
al., 2015]. The need for such expressive languages emerged
from the fact that in many areas more and more data become
available, which does not only imply uncertainty, but often
provides rich structure in terms of relations between entities.
Probabilistic logic methods have been applied to a wide range
of problem domains. Examples include link and node predic-
tion in metabolic networks [Kimmig and Costa, 2012], deal-
ing with a potentially unknown number of relations between
multiple objects by a robot [Moldovan et al., 2012] and infor-
mation fusion in the safety and security domain [Michels et
al., 2013].

Probabilistic inference is an inherently computationally
hard problem. However, it is well known that by exploiting
logical structure as present in many distributions, exact infer-
ence is rendered feasible for many realistic problems [Chavira
and Darwiche, 2008]. This is achieved by viewing the prob-
lem as a weighted model counting (WMC) problem, utilising
previous work on SAT solving and model counting. These
inference methods are especially suitable for probabilistic
LP, as here models always have a rich logical structure (e.g.
[Fierens et al., 2015]). Unfortunately, the above-mentioned
structure-sensitive inference methods are usually restricted to
discrete, finite distributions. Many real-world problems, how-
ever, also require continuous variables, i.e. they are best mod-
elled using a hybrid distribution. Inference for hybrid distri-
butions is however either made possible by significantly lim-
iting the expressivity of the languages, e.g. [Gutmann et al.,
2010; Chistikov et al., 2015], or by resorting to approximate
inference methods, e.g. [Gutmann et al., 2011].

Sampling algorithms – the most widely used methods for
approximate inference – are however known to converge
slowly when dealing with (near) deterministic probabilities
and cannot handle observed rare events well. Also inference
methods based on the approximate representation of the ac-
tual continuous distribution, e.g. [Sanner and Abbasnejad,
2012; Belle et al., 2015a], suffer from observed rare events.
All such methods furthermore share the drawback that they
only provide weak guarantees about the quality of the esti-
mates. In domains such as diagnosis and crisis management,
where wrong decisions may have a huge impact, guarantees
about the quality of approximations are highly desirable. The
need to deal with rare events is also characteristic for such
domains.

In this paper, we extend probabilistic LP with continuous
distributions in a way that poses little restriction on the def-
inition and use of continuous variables. Although the infer-
ence task is not computable, we show that we can provide
an approximation with bounded error, which essentially pro-
vides more information about the quality of the result than
the approximation methods mentioned above. The algorithm
iteratively computes approximations with decreasing error,
adopting a coarse-to-fine approach, making use of informa-
tion from previous runs and also exploiting the logical struc-
ture of the problem to effectively decrease the error of an ap-
proximation. A comparison is made with sampling methods,



showing that in spite of the much stronger guarantees on the
quality of the result, our method is competitive and even su-
perior for hybrid problems that possess a rich logical structure
and concern observed rare events.

2 Hybrid Probabilistic Logic Programming
We here introduce the language used, which is similar to Hy-
brid ProbLog [Gutmann et al., 2010], but allows for more
expressive constraints on continuous variables.
Example 1. We consider a diagostic problem. Suppose there
are three reasons why a component i can fail: the component
breaks with some probability, the temperature got too high,
or a sub-component fails. Additionally, there is a cooler that
cools down the temperature of all components by an amount
that is uncertain as well. This cooler can also fail, indicated
by the variable NoC. We can express this with the following
rules:

fails(i)← Break(i) = true

fails(i)← Temp−Cooling > Limit(i)

fails(i)← Temp > Limit(i), NoC = true

fails(i)← i 6= 0, fails(i− 1)

For i = 0, the component does not depend on other compo-
nents, so it can only fail because of the first two reasons. We
can use arbitrary distributions for the continuous variables,
for example:

Temp ∼ N (20.0, 5.0) Limit( ) ∼ N (30.0, 5.0)

Break( ) ∼ {0.0001: true, 0.9999: false}
Cooling ∼ Γ(30.0, 18.0)

NoC ∼ {0.01: true, 0.99: false}

The distributions for Break(i) and Limit(i) are assumed
to be the same for all components i. Assuming that a given
component fails, a natural query is what is the probability
that the first component also fails, e.g. P (fails(0)|fails(9)).

Formally, we consider a finite number of random variables
X,Y,Z, . . ., which have a support, i.e. the range of values on
which the distribution is defined. These ranges are in princi-
ple arbitrary; in this paper we consider binary and real-valued
random variables as typical representatives of discrete and
continuous variables. For the continuous variables, we as-
sume that their cumulative distributions functions (CDFs) can
be computed exactly, thereby ignoring the potential error of
typical implementations of such functions as such errors are
typically negligible and predictable. We assume all random
variables to be independent initially, and express dependen-
cies by the logical structure, as common in probabilistic LP.

We use LP rules with constraints on the random variables
as building blocks for the bodies, with the only restriction
that satisfiability of those constraints remains decidable. Con-
cretely, for real-numbered random variables we allow in-
equalities on combinations of variables. These combinations
are not necessarily linear as for instance required for Con-
ditional Linear Gaussians [Lauritzen, 1992], because con-
straints that consist of multiplications with real numbers are
decidable. Note that this is a much weaker requirement than

e.g. made for Hybrid ProbLog, which only allows a single
random variable in a constraint, such that not only the con-
straint is decidable, but the probability of the constraint is
computable as well.

As usual for probabilistic LP, the inference task we con-
sider is the computation of the probability that a grounded
predicate holds, given a conjunction of other grounded pred-
icates.

3 Iterative Hybrid Probabilistic Model
Counting

We here present a novel algorithm, the iterative hybrid prob-
abilistic model counting (IHPMC) algorithm; it is an anytime
algorithm that provides approximations with bounded error
for the language outlined above.

3.1 Hybrid Probability Trees
Queries are converted to propositional formulas as is often
done for probabilistic LP inference. Details of this transfor-
mation are not discussed in this paper as it is essentially the
same as for ProbLog [Fierens et al., 2015]. The only dif-
ference is that the propositional formulas also include con-
straints on random variables. For a fixed i 6= 0, the rules
in Example 1 can for instance be represented as: failsi ↔
Breaki = true∨Temp−Cooling > Limiti∨(Temp >
Limiti ∧NoC = true) ∨ failsi−1.

To perform inference on such formulas we introduce the
concept of Hybrid Probability Trees (HPTs). They are simi-
lar to the principles used in solvers for binary weighted model
counting. Whereas in previous work the concept is applied
to discrete, finite ranges, we extend the concept to continu-
ous random variables. The basic idea is to split the variable’s
range into two parts at each edge and condition the formula
on the split made. To support continuous variables, we allow
further splits of the same variable at deeper levels. Then, for
each choice taken at a certain child, the probability is assigned
that the random variable takes a value in the chosen parti-
tion, conditioned on the range chosen for the random variable
earlier on the path. Such probabilities can be computed for
continuous random variables by their CDFs, because we as-
sume independence of the random variables. The splitting is
repeated until the formula simplifies to ⊥ or >, which we for
now assume to happen in a finite number of steps. By attach-
ing a corresponding probability to each branch, this can be
used to compute the probability of the event represented by
the formula.

Definition 1 (Hybrid Probability Trees (HPT)). An HPT is
a binary tree with at each node n a propositional formula
ϕn and for all random variables X a range denoted by
range(n,X). If r is the root node, it holds that range(r,X)
equals the support of X. Now let n be some node with chil-
dren {c1, c2}. To each edge n → ci, i ∈ {1, 2}, a particular
range τni is associated to a fixed random variable Y such
that τn1 ∪ τn2 = range(n,Y) and τn1 ∩ τn2 = ∅. It holds
that range(ci,Y) = τni and range(ci,Z) = range(n,Z) if
Y 6= Z, with i ∈ {1, 2}. Furthermore, the formula ϕi as-
sociated to ci equals ϕn simplified by the restrictions on the



(NoC = true ∧T > 20.0) ∨T > 30.0

NoC = true ∧T > 20.0

⊥

NoC ∈ {false}
0.99

T > 20.0

⊥

T ∈ (−∞, 20]
0.5116

>

T ∈ (20, 30]
0.4884

NoC ∈ {true}
0.01

T ∈ (−∞, 30]
0.9772

>

T ∈ (30,∞)
0.0228

Figure 1: Example HPT

range on Y at ci, i.e. by observing that some primitive con-
straints can be replaced by > or ⊥. Furthermore, to each
edge n → ci, with i ∈ {1, 2}, a probability pni is assigned,
such that pni = P (Y ∈ τni | Y ∈ range(n,Y)). Finally, if
l is a leaf node, then it holds that ϕl = > or ϕl = ⊥.

Given a particular HPT, it is straightforward to compute
the probability of the event represented by the formula at the
root node. First, the probability of a leaf is by definition 0 or
1. Furthermore, due to the properties of the tree it is easy to
show that for each non-leaf node n the probability ofϕn given
the ranges of random variables can be computed by pn =
pn1 · p1 + pn2 · p2, where p1 and p2 are the probabilities
associated to n’s children.
Example 2. Consider a simplified diagnosis problem:

fail ← T > 20.0, NoC = true fail ← T > 30.0

Here NoC represents that the cooling fails, implying a lower
allowed temperature for the component. The temperature is
modelled by T ∼ N (20.0, 5.0). The event that the com-
ponent fails is then represented by the formula (NoC =
true ∧T > 20.0) ∨T > 30.0.

A possible HPT is given in Figure 1. At each node we sim-
plify the formula as much as possible given the choices made.
Note that the probability assigned to the edge with choice
T ∈ (−∞, 20] is not P

(
T ∈ (−∞, 20]

)
= 0.5, as the range

of T is already restricted on the path before. Therefore, it is
P
(
T ∈ (−∞, 20] | T ∈ (−∞, 30]

)
≈ 0.5116. From this

tree, the probability of component failure can be computed by
0.9772 · 0.01 · 0.4884 + 0.0228 ≈ 0.0276.

3.2 Partially Evaluated Hybrid Probability Trees
The concept of HPT is restricted to problems for which exact
inference is possible. For continuous events, which cannot
be represented by hyperrectangles, we can never simplify all
leaves to ⊥ or >. This problem is tackled by using partially
evaluated HPTs (PHPTs). For PHPTs we drop the require-
ment that all leaves must contain ⊥ or > and allow arbitrary
formulas. One can therefore further extend a PHPT either
ad infinitum or until one finds an HPT. In the next section
we show how PHPTs can be used to compute approximations
with known maximal error.
Example 3. Suppose the limit of the temperature the com-
ponent can bear is uncertain as well, modelled by L ∼

T > L

T > L

T > L

L ∈ (−∞, 20]
0.9772

⊥

L ∈ (20,∞)
0.0228

T ∈ (−∞, 20]
0.5

T > L

>

L ∈ (−∞, 20]
0.9772

T > L

T > L

T ∈ (20, 23.372]
0.5

T > L

T ∈ (23.372,∞)
0.5

L ∈ (20,∞)
0.0228

T ∈ (20,∞)
0.5

Figure 2: Example PHPT

N (30.0, 5.0). A PHPT for the event that the temperature is
above the limit is depicted in Figure 2. It is impossible to
find a finite HPT for this problem, as the event does not have
the shape of a hyperrectangle. Note that the formula T > L
cannot be simplified directly, in case the range of only one of
the variables is split. This is in contrast to binary versions of
model counting algorithms, for which the choices of variable
values are completely reflected in the simplified formula.

3.3 Approximating Probabilities by Partially
Evaluated Hybrid Probability Trees

Bounds on Event Probabilities
Each leaf of a PHPT with a formula which is not ⊥ or > cor-
responds to an area of the sample space which is only partially
part of the event associated to the query. While this does not
provide an exact probability of this event, it does provide a
bound on this probability by assuming that the probability of
such areas is 0.0 or 1.0 respectively. In this way, PHPTs can
be used to compute probability bounds, denoted by P and P .
Example 4. The PHPT in Figure 2 contains only one leaf
with >, whereas all other leaves contribute at most par-
tially to the event’s probability. The lower bound of the
event’s probability is therefore P (T > L) = 0.5 · 0.9772 =
0.4886. Analogously, as there is only one path which cer-
tainly does not contribute to the probability, the probability’s
upper bound is P (T > L) = 1− 0.5 · 0.0228 = 0.9886.
Proposition 1. For any event e and PHPT for e: P (e) ≤
P (e) ≤ P (e).

All proofs are given in [Michels, 2016, Chapter 6, Ap-
pendix A]. Furthermore, we can always achieve arbitrary pre-
cision, by evaluating the PHPT sufficiently deep.
Proposition 2. For every event e and maximal error ε, there
is a PHPT, such that: P (e)− P (e) ≤ ε ∧ P (e)− P (e) ≤ ε.
Bounds on Conditional Event Probabilities
Conditional probabilities are defined as P (e | o) = P (e ∧
o)/P (o). As this definition requires the non-conditional
probabilities of two events, we cannot compute bounds on
this probability using a single PHPT, but have to use a second
one. We can furthermore compute tighter bounds by making
use of the fact that the bounds of e ∧ o and e are not inde-
pendent: an area cannot at the same time be outside of e, but
within e ∧ o. This can be exploited by expressing the bounds



Input: Events e and o, maximal error ε
Result: Approximation of P (e | o) with max. error ε

1 hpt p = PHPT with single root node e ∧ o
2 hpt n = PHPT with single root node ¬e ∧ o
3 p = 0.0; p = 1.0

4 while (p− p)/2 > ε do
5 eval hpt = choose hpt(hpt p, hpt n)
6 eval node = choose node(eval hpt)
7 branch rv = choose rv(eval node)
8 (rv l , rv r) = choose part(branch rv , eval node)
9 add children to eval node according to (rv l , rv r)

10 p = lower(hpt p)/(lower(hpt p) + upper(hpt n))

11 p = upper(hpt p)/(upper(hpt p) + lower(hpt n))
12 end
13 return (p+ p)/2

Algorithm 1: IHPMC Algorithm

of conditional probabilities in terms of bounds on two non-
conditional probabilities [Michels et al., 2015]:

Proposition 3.

P (e | o) = P (e ∧ o)/
(
P (e ∧ o) + P (¬e ∧ o)

)
P (e | o) = P (e ∧ o)/

(
P (e ∧ o) + P (¬e ∧ o)

)
Also for conditional probabilities we can therefore achieve

arbitrary precisions.

Proposition 4. For all events e and o and every maximal er-
ror ε, there are PHPTs, such that: P (e | o) − P (e | o) ≤
ε ∧ P (e | o)− P (e | o) ≤ ε.

3.4 Anytime Inference by Iterative Hybrid
Probability Tree Evaluation

The anytime approximation IHPMC algorithm based on PH-
PTs is given in Algorithm 1. We start with two PHPTs with
initial root nodes e ∧ o and ¬e ∧ o, which we use to com-
pute in each iteration an approximation according to Propo-
sition 3. In case no evidence is present, we can use a single
PHPT with formula e. In the general case, at each iteration
we first choose one of the two PHPTs and then, in this PHPT,
we choose a non-evaluated node to evaluate further. From the
formula of this node we choose a random variable that will
be used for splitting and finally we choose a partitioning for
this random variable.

Note that in the algorithm we could also compute com-
ponents of the formula independently if they do not share
variables, as is usually done in WMC solvers. For brevity
this is left out here. While the basic algorithm is straightfor-
ward, there are four non-deterministic choices at each itera-
tion which largely determines the effectiveness of the algo-
rithm. In the following, we describe general heuristics which
seem to be very effective for most problems.

As the first choice, we pick the PHPT which has the highest
difference between lower and upper bound, i.e. , the largest
error. Second, we choose the non-evaluated node which rep-
resents the sub-space with the highest probability mass, as
these nodes have the most potential for reducing the error. A
more sophisticated heuristic, that tries to predict how much

effort is required to reduce the error of the node’s formula,
offered no improvement in experiments. The reason is that
an accurate prediction takes as much time as just trying to re-
duce the error and continuing with another branch if the error
for the firstly chosen one cannot be reduced quickly.

In contrast to the choice of the node, the heuristic for
choosing a random variable must be a good predictor for how
much this simplifies the formula, as this choice influences all
descendants of the node in the tree. We use a heuristics prefer-
ring variables occurring more frequently, as also common for
binary model counting [Sang et al., 2005, Section 3.2]. For
continuous variables we however have to adapt the heuristic
to make sure that continuous variables are not selected re-
peatedly without an opportunity to eliminate a primitive con-
straint, and thereby simplifying the formula. For instance,
in Example 3, simplification of the constraint can only be
achieved if both variables are selected in an alternating order.

For the binary variables there is obviously only a single
partitioning possible ({true} and {false}). The partitioning
of a continuous random variable amounts to picking a point,
on which the range is split further. Initially, we find points
that can lead to a simplified sub-formula. For instance, in
Figure 2 the choice L ∈ (20,∞) in the left branch can be used
to simplify the formula to ⊥, given the choice for T above in
the tree. In case there are multiple of those points, we count
how many sub-formulas can be simplified by choosing this
point. There are also cases in which there is no such point, as
at the top or the rightmost evaluated node in Figure 2. In this
case we use a heuristic trying to maximise the probability of
the path eliminating the constraint.

Proposition 5. IHPMC (Algorithm 1) terminates, i.e. it al-
ways finds an approximation with the desired error bound in
finite time, given the heuristics as described above.

4 Experiments

4.1 Set-up

The algorithm was implemented in the functional program-
ming language Haskell1. A comparison was made with the
sampler implementations of BLOG 0.82 [Milch et al., 2005]
and Distributional clauses3 [Gutmann et al., 2011] (DC);
both are optimised for problems with logical structure. We
compare to the Likelihood weighted (BLOG LW) and the
naive rejection sampler (BLOG RJ) of BLOG; the MCMC
sampler fails completely on the problem. To allow for a com-
parison, we ignore the bounded error guarantee of IHPMC
and just consider the error of approximations. We measure
the squared error and for the sampling approaches the mean
squared error over 50 runs versus inference time. All exper-
iments were run on a Laptop with a Intel Core i3 2.4 GHz
processor and 4GB of RAM. We use the following diagnostic

1http://www.steffen-michels.de/ihpmc
2https://bayesianlogic.github.io
3https://github.com/davidenitti/DC



problem:
fails(i)← Break(i) = true

fails(i)← Temp > Limit(i)

fails(i)← i 6= 0, fails(i− 1)

The number of components (n) and probability of Break(i)
(p) are varied in the experiments. For the continuous variables
we use the following distributions: Temp ∼ N (20.0, 5.0)
and Limit(i) ∼ N (µ, 5.0), where µ is a parameter that we
also vary during the experiments. Note that since we use a
single variable Temp for all components, dependencies are
created such that probabilities cannot be computed exactly in
a straightforward way.

4.2 Results
Non-Conditional Probabilities With Varying Parameters
The results depicted in Figure 3a are based on a run with
parameters, where the continuous cause has a much higher
probability than for a realistic diagnostic problem, but is used
to illustrate behaviour of the algorithm. In the first millisec-
onds the error of IHPMC is very unstable. Note that the
actual error depicted in the figure is not the guaranteed er-
ror bound, which is usually much larger. Actually, it takes
about 2.6 seconds before the error is guaranteed to be below
0.01. Decreasing the error bound can temporarily result in
an increased error, which explains that the error does not de-
crease monotonically. In contrast the errors of the sampling
algorithms decrease more or less monotonically, as the errors
were averaged over several runs.

IHPMC can profit from the case in which the discrete cause
has more impact, as shown by the experiment in Figure 3b.
The error bound drops below 0.01 already after about 6 mil-
liseconds. The sampling algorithms can also profit from the
discrete structure, but are clearly outperformed by IHPMC.
Similarly, IHPMC can profit if the event is more rare, which
is more realistic for a diagnostic problem (Figure 3c). Here is
takes about 28 milliseconds to get an error bound of 0.01. In
this case, IHPMC cannot make use that much of the discrete
structure, but in the first iterations a single path with a high
probability is found that implies Break0 = false∧Temp ≤
Limit0 ∧ · · · ∧Breakn−1 = false ∧Temp ≤ Limitn−1.
This disproves failsn−1, which means the upper probability
bound jumps to a small value.

Scalability
To show scalability of IHPMC we performed an experiment
with a larger set of components (n = 100), where it takes
about 2.3 seconds to get a guaranteed error below 0.01. As
the results in Figure 3d show, in the beginning two of the
sampling implementations outperform IHPMC, as sampling
algorithms by their nature do not suffer from a high number
of dimensions. However, recall that IHPMC is outperformed
by algorithms providing much less information, as no guaran-
tees about the error are provided by the sampling algorithms.
After about 1.5 second however the results of IHPMC be-
come competitive.

Computing Probabilities Conditioned on Rare-Event
Finally, in Figure 3e, we show that IHPMC is superior if prob-
abilities conditioned on rare events are computed, which is

quite natural for a diagnostic setting. The performance of
IHPMC is also affected by conditioning on the rare event;
it takes about 250 milliseconds to guarantee an error below
0.01, while for the probability of the evidence only, this takes
about 15 milliseconds. The performance of the samplers
however decreases significantly more. Error measures only
tell half of the story as IHPMC provides a different kind of
result as sampling approaches. This is illustrated in Figure 3f,
where the bounds computed by IHPMC have been visualised
together with point approximations produced by a sampler.
Each point represents a single run of the sampler, which can
or cannot be within the bounds computed by IHPMC. How-
ever, as a user of a sampling method, one only obtains a single
point with, if at all, only a very weak guarantee about its error.

5 Related Work
Probabilistic LP has been extended with continuous distribu-
tions, in a way that still allows for exact inference, by either
restricting the events expressible [Gutmann et al., 2010] or
the distributions employable [Islam et al., 2012]. There are
also representations of continuous distributions that are pow-
erful enough to approximate arbitrary distributions, but still
allow for exact inference, e.g. piecewise polynomials [San-
ner and Abbasnejad, 2012]. A recent algorithm for inference
on such representation, which exploits the logical structure
of distributions was presented in [Belle et al., 2015a]. Such
approximations can in principle resemble intended distribu-
tions very closely, but there is no guarantee about the approx-
imation error of event probabilities, as a small probability of
evidence can significantly increase the error made when com-
puting conditional probabilities.

Distributional clauses [Gutmann et al., 2011] is a proba-
bilistic logic programming language, that supports arbitrary
continuous distributions and events, as also supported by
various other probabilistic programming languages, such as
BLOG [Milch et al., 2005]. Inference for such languages is
only possible by sampling approaches, usually Markov chain
Monte Carlo (MCMC) methods, which can be very effec-
tive if they are hand-tailored for specific problems. Generic
MCMC frameworks are however suboptimal and can provide
poor results when rare events are observed. A significant
difference with our work is that even under perfect circum-
stances, when detailed knowledge about the approximated
distributions is available, guarantees for approximations ob-
tained by MCMC algorithms can only be given in terms of
for instance the Monte Carlo standard error, which gives a
probabilistic, but no hard guarantee.

Recent hashing-based sampling methods, which exploit
logical structure of distributions, have been extended for hy-
brid distributions as well [Belle et al., 2015b; Chistikov et
al., 2015]. Such methods provide a probabilistic guaran-
tee on the quality of approximations, but are restricted to
exactly computable representations of continuous distribu-
tions (piecewise-polynomials [Belle et al., 2015b] and uni-
form distributions [Chistikov et al., 2015]). Moreover, this
remains a probabilistic guarantee on non-conditional prob-
abilities, while IHPMC provides a hard guarantee for com-
puted conditional probabilities.
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Figure 3: Experiment Results

Several approximation methods have been proposed that
provide hard guarantees for discrete distributions [Poole,
1993]. Recently, very effective methods based on state-
of-the-art knowledge compilation techniques have been pro-
posed [Renkens et al., 2014; 2015; Vlasselaer et al., 2015]. In
contrast to IHPMC, these algorithms are restricted to discrete
problems and do not handle evidence, which are significant
limitations in practice. In [Michels et al., 2015], we provided
a theoretical basis for approximate inference with continuous
distributions, but did not provide an efficient and practical al-
gorithm for actually computing good approximations.

6 Conclusions
In this paper, we propose a hybrid extension for probabilis-
tic logic programming, which allows for a much wider class
of continuous distributions than existing extensions allowing
for exact inference. At the same time, our extension allows
one to compute approximations with bounded and arbitrar-
ily small error. We propose a novel anytime algorithm for

computing such approximations, thereby exploring the logi-
cal and continuous structure of the problem by utilising in-
formation from previous iterations. We experimentally show
that our algorithm is competitive with state-of-the-art sam-
pling algorithms, for typical relational problems, which are
characterised by a moderate number of dimensions and a sig-
nificant amount of structure, in spite of the fact that it provides
much stronger guarantees. Our method outperforms sampling
methods by far if rare events with deterministic structure are
provided as evidence. Moreover, even when our algorithm
converges slowly for a certain problem, this is clearly visible
to the user, thereby preventing wrong conclusions. MCMC
methods do not offer similar safeguards.
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