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Abstract

The safety-critical nature of the application of knowledge-based systems to the field of
medicine, demands the adoption of reliable engineering principles with a solid foundation
for their construction. Logical languages with their inherent, precise notions of consis-
tency, soundness and completeness offer such a foundation, thus promoting scrutinous
engineering of medical knowledge. Moreover, logic techniques provide a powerful means
for getting insight into the structure and meaning of medical knowledge used in medical
problem solving. Unfortunately, logic is currently only used on a small scale for build-
ing practical medical knowledge-based systems. In this paper, the various approaches
proposed in the literature are reviewed, and related to different types of knowledge and
problem solving employed in the medical field. The appropriateness of logic for building
medical knowledge-based expert systems is further motivated.

Keywords & Phrases : logic programming in medicine, logic engineering, knowledge-based
systems, expert systems, medical knowledge representation.

1 Introduction

In the words of Sir Arthur Conan Doyle, Dr. Watson is portrayed as an archetypical medical
doctor, displaying deductive qualities far inferior to those of Sherlock Holmes, so that Holmes’
sarcastic comments on Watson’s theories often turn out to be justified. Given that the work of
a medical doctor has much in common with that of a detective, Doyle’s opinion of the medical
profession may be too negative. Yet, there is some truth in Doyle’s picture: doctors have never
displayed much interest in and mastery of formal techniques. Instead, they tend to emphasize
the important role played by clinical intuition in the diagnosis and treatment of disease, and
often say that formal techniques are inappropriate for capturing the subtleties of the medical
decision-making process. An important reason for this belief might be the strongly patient-
centred nature of clinical medicine, which always left little time and interest to bring medicine
on a firm footing, by framing it according to some formal theory of medical decision processes.
The beneficial effects of such a theory for the individual patient were not immediately obvious.
Of course, these medical doctors are right, but not entirely. It is increasingly recognized
that clinical intuition, however practically important it may be, constitutes a basis too weak
for modern medicine [Macartney, 1988]. Although many doctors are still reluctant to adopt
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formal techniques in medical decision making, formal techniques are slowly taking their place.
For example, there are an increasing number of groups working on formal consensus among
medical specialists concerning diagnostic and treatment management, for example in the field
of oncology. Any joint effort to express precisely which diagnostic and therapeutic actions are
most appropriate for patients with a given disease, may improve health care. Modern society
requires that doctors are capable of justifying their professional decisions and actions to the
patient, a trend which, undoubtedly, will only increase in the near future. Obviously, this
will be possible only if the doctor is provided with detailed knowledge about the diagnostic
and treatment procedures which are generally accepted, and is supported in applying them.
Methods and techniques developed within the areas of decision-support systems in general,
and medical expert systems in particular, may contribute considerably to this process.

Generally speaking, there are two frameworks that support current trends in formal
medicine, referred to in this paper as:

• decision theory, and

• symbolic reasoning technology.

Decision theory, including decision analysis, probabilistic and decision methods, has been the
framework most widely adopted in the medical field. The decision-theoretic approaches are
attractive from a medical perspective, because they focus on the handling of uncertainty, a
subject of much concern in medical decision making. Symbolic reasoning technology focuses
on the structure of medical knowledge and medical problem solving, with additional emphasis
on capturing the meaning of medical knowledge used in problem solving. These two frame-
works are not necessarily incompatible as is demonstrated by the existence of probabilistic
belief networks and influence diagrams, where uncertainty and structure is combined in a
unifying framework [Kim & Pearl, 1983; Pearl, 1988; Shachter, 1986]. Nevertheless, much
of the structure of medical knowledge cannot be captured in terms of decision theory – sim-
ply because probability theory is not sufficiently expressive for representing various kinds
of semantic relationships – where there are ways of handling uncertainty within a symbolic
reasoning framework (although this work does not have the canonical status of probability
theory) [Duda et al., 1976; Shortliffe & Buchanan, 1975; Cohen, 1985; Krause et al., 1995].

In this paper, research concerning the application of symbolic reasoning technology to
the medical field, using logic as the principal tool, is reviewed. This particular approach to
building systems is sometimes referred to as logic engineering, a name coined by the Compu-
tational Logic Group at Imperial College in London to the application of logic programming
techniques, and popularised by the Advanced Computation Laboratory at the Imperial Can-
cer Research Fund in London [Fox et al., 1990b]. The meaning of the term ‘logic engineering’
in this paper is taken to be wider; of interest here is the use of techniques from the fields of
logic programming, mathematical logic, logical knowledge representation and theorem prov-
ing for building medical applications. Although much work has been done in the application
of symbolic reasoning technology to the medical field, this paper focuses almost exclusively
on the logical formalization of medical knowledge and general medical principles, such as
diagnosis and treatment management. The use of specific techniques from the field of logic
programming to the medical field is also covered. Only limited attention is given to related
topics, such as qualitative reasoning, if the applied techniques are not logical in nature. The
application of Prolog in developing particular medical systems, without exploiting some logical
characterization of medical knowledge, falls outside the scope of the paper as well.
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Although logical techniques are now considered fundamental to both computer science
and artificial intelligence, the situation in medical informatics is quite different. As has been
discussed above, in medicine there is a large gap between theory and practice. Bridging this
gap using logical techniques is a major challenge.

The organization of the paper is as follows. In Section 2, the grounding of logic engineer-
ing into the field of theorem proving and logic programming is reviewed. In Section 3, we
focus on the knowledge-representation aspects of using logic for representing medical knowl-
edge. Section 4 is concerned with the specification of medical problem solving using logical
techniques. The paper is rounded off by summarizing what has been achieved by the field,
and a number of future research directions are suggested.

2 Grounding of the field

Most of the logical and theorem proving techniques have emerged from research with mathe-
matical and computer science (including artificial intelligence) applications in mind [Chang &
Lee, 1973; Kowalski, 1979]. This research has revealed some, more or less severe, limitations
of using logic for solving mathematical or computer science problems [Kowalski, 1990; Wos,
1988; Wos et al., 1992]. Much research effort has been invested in the last two decades
to overcome some of these limitations, which has yielded deep insight into the subject, (cf.
[Lloyd, 1987; Stickel, 1986]), and several new and interesting logical languages and systems
have emerged. Many of these languages are based on the language Prolog [Sterling & Shapiro,
1986]. Examples of such languages are Gödel – a language which provides, among others,
special language facilities for better control over reasoning [Hill & Lloyd, 1994] – and Lo-
gin and Life – which are Prolog-like languages with built-in inheritance relationships among
terms [Aı̈t-Kaci & Nasser, 1986; Aı̈t-Kaci & Podelski, 1993]. New programming paradigms
have also been introduced in the realm of logic programming, such as logic object-oriented
programming in the language L & O, [McCabe, 1992], – which allows programs to be orga-
nized into classes, and to reason over expressed relationships among those classes –, constraint
logic programming in languages such as CLP(R), [Jaffar & Lassez, 1987], and Chip, [Dincbas
et al., 1988], – which allow the declarative expression of equality among the real and ratio-
nal numbers, respectively –, and inductive logic programming which concerns learning new
relationships from logical data and background knowledge [Muggleton, 1992]. Furthermore,
general purpose theorem provers, such as Otter, [McCune, 1990; Wos et al., 1992], and PTTP,
[Stickel, 1988], provide rich environments for experimenting with reasoning strategies.

Although many application fields are likely to benefit from the achievements of this re-
search, it is important to realize that many of these, including the limitations, will not auto-
matically carry over to all fields. Medicine, for example, is characterized by a huge body of
factual knowledge concerning specific instances, laid down in thick medical textbooks and sci-
entific journals. This contrasts, for example, with mathematics and computer science, where
it is customary to strive for generality. Where with mathematics many of the most elementary
expressions cannot be specified in first-order logic, and require at least second-order logic, in
medicine much of the knowledge is almost propositional in nature. Hence, considering the use
of logic for representing medical knowledge requires rethinking the limitations encountered
in typical (mathematical) theorem-proving and logic programming applications. As shall be-
come clear, the language of first-order predicate logic offers sufficient expressiveness for the
representation of medical knowledge, although there is room for additional machinery, such
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as meta-level reasoning, [Van Harmelen, 1991; Maes & Nardi, 1988; Weyhrauch, 1980], and
non-standard logic, [ Lukaszewicz, 1990; Smets et al., 1988; Turner, 1984].

From a medical point of view, there are several advantages linked with the logic engineering
approach:

• Logic has a well-defined syntax and semantics, resulting in clearly defined meanings
of the represented medical knowledge in terms of the relationships among pieces of
knowledge.

• Soundness and completeness results for logical deduction are well-established. Hence,
beforehand it is known that any derived medical conclusion can be trusted as following
from the represented medical knowledge, and that none of the relevant conclusions will
be missed.

• Well-founded methods for verification are available. For example, conflicting medical
data and knowledge can be identified.

Medical applications are often safety-critical. Consequently, the well-developed formal under-
pinning of logic engineering may contribute to the safe application of medical expert systems
in health care [Fox, 1993]. Of course, no guarentee of the medically sound content of such
systems can be derived from this. Methods for the validation of the resulting systems remain
indispensable [O’Keefe, 1987; Wyatt & Spiegelhalter, 1990].

Logic is not the only class of formalisms having the nice properties mentioned above. They
are shared, for example, by the algebraic specification languages [Ehrig & Marh, 1985; Ehrig
& Marh, 1990; Spivey, 1989]. Algebraic techniques have only been applied on a small scale
in designing medical systems (cf. [Todd, 1994; Hammond & Davenport, 1995]).

3 Logic representation of medical knowledge

In this section, the declarative aspects of medical knowledge are considered from a logical
point of view; we shall comment on the application of particular logical specifications of
medical knowledge, when appropriate. One word on notation: in this paper we use a mixture
of standard logic and logic programming notation, because the research reviewed is drawn
from both fields.

3.1 Semantic data representation

A good starting point for thinking about the logical representation of medical knowledge are
the data required in solving medical problems, part of which are patient findings. In practical
implementations, medical data are often represented in a record-like fashion, without giving
proper attention to the medical meaning of individual elements [Lucas, 1993]. The logical
basis of data has been studied extensively in the field of database systems. We shall briefly
review some of the consequences of database theory for the representation of medical data.

Consider, for example, the following term representation of an instance of the entity
patient:

patient (name ⇒ patient1 ,

sex ⇒ male ,

age ⇒ 66
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complaint ⇒ [oppressive pain ,nausea ])

containing data of a patient with cardiac disease, where elements such as sex represent at-
tributes, and elements such as male, represent values of attributes. In predicate logic, at-
tributes such as age are single-valued, i.e. they may take at most one value at a time. A
single-valued attribute a is interpreted as a function a : E → V from the set of distinguished
entities E to the set of values V of the attribute; the representation of the information about
age in the term above is therefore

age(patient1 ) = 66

where the equality predicate enforces the single-valuedness [Lucas & Van der Gaag, 1991].
Attributes such as complaint are multi-valued, i.e. they may take more than one value at
a time. A multi-valued attribute A is interpreted in predicate logic as a binary relation
A ⊆ E × V . Hence, a multi-valued attribute is represented in predicate logic as a predicate
symbol. For example,

Complaint (patient1 , oppressive pain) ∧
Complaint (patient1 ,nausea)

is the predicate logic representation of information concerning the complaints of patient 1
given above.

Note that the predicate logic representation of the data reveals the precise meaning of
the elements, as well as the various roles they play in the example above. For example, age
maps a specific patient to a single number, representing the patient’s age; the role of the
value nausea is that of a complaint of the patient. Patient data can be grouped further by
including a reference to the test or procedure from which the data are derived. For example,

Complaint (patient1 ,medical interview , oppressive pain)

indicates that the finding has been obtained from the medical interview of the patient.
Another important logical aspect of medical data is the handling of unknown data. Due

to the overwhelming number of facts in medicine, it is not possible to explicitly represent all
those facts, even when they concern a single patient. In particular, the logical interpretation
of the medical data involves the tests or procedures by which the data have been obtained.
One possible, and often adopted, logical interpretation of medical data is as follows [Lucas,
1993]:

• if a test has a single possible outcome, but has not been carried out, or the test result is
unknown, then the corresponding attribute value is assumed to be unknown; otherwise,
only one value is represented as indicated above.

• if a test may have more than one simultaneous outcome, and the test has not been
carried out, or all test results are unknown, then the attribute value is assumed to
be unknown; otherwise, all test results obtained are represented, augmented with the
remaining possible results as negative literals.

For the patient above, if oppressive pain and nausea are the only complaints entered, and
fever is another, unmentioned possibility, it is assumed that

¬Complaint (patient1 , fever)
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holds. If nothing is known about the patient’s complaints, no unit clauses concerning ‘Com-
plaint’ are represented. A weak form of the closed world assumption (CWA) is therefore taken
to hold in many medical applications, i.e. in contrast with the original CWA, [Reiter, 1978],
absent information is not automatically assumed to be negative. Little is known about the
precise conditions under which this special CWA is acceptable from a medical point of view.
It may be necessary to distinguish explicitly between negative information obtained from the
weak CWA, and negative information explicitly entered by the doctor, with respect to the
conclusions drawn using negative information.

3.2 Medical representation models

Medical problem solving involves a plethora of types of medical knowledge, as was already
evident in the early days of medical expert systems [Pople, 1982]. In this section, the logical
formalization of some of these types of knowledge, and the current state of the art in research,
is briefly reviewed. In Table 1, an overview of logic engineering research is listed.

Logic model Application References

causal simulation [Bratko et al., 1989; Lucas, 1993]
diagnosis [Console et al., 1989]

[Torasso & Console, 1989]
[Fox et al., 1990a; Fox et al., 1990b]

anatomic design [Hammond et al., 1993]
diagnosis [Lucas, 1993]

taxonomic diagnosis [Huang et al., 1993]
heuristic diagnosis [Fox et al., 1990b]

[Lucas, 1993]
[Moser & Adlassnig, 1992]

functional diagnosis [Bratko et al., 1989; Coiera, 1990]
monitoring [De Geus et al., 1991]
treatment [De Geus et al., 1991]

safety treatment [Hammond et al, 1994; Hammond & Sergot, 1995]

Table 1: Application of logic representation models in medicine.

In applying logic to the construction of medical knowledge-based systems it is becoming
increasingly common to make a distinction between several layers of knowledge. Apart from
being concerned with the representation of basic objects and relationships among objects in
medicine, medical representation models also deal with the representation of medical decision
structures. Both facets can be represented in logic, although, to achieve a perspicuous spec-
ification, often at different layers. In this paper, it is sufficient to distinguish only two such
layers; the first layer, called the object-layer, is concerned with medical data and relationships
among the data, and the second layer, called the meta-layer, comprises a specification of rea-
soning methods to perform particular medical tasks, such as diagnosis or making treatment
decisions, using information from the object-layer [Fox et al., 1990a]. The meta-layer may
also incorporate descriptions of properties of the object-layer relations.
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3.2.1 Causal medical models

Causality is an important structural concept in medicine because the pathogenesis of disease
as well as the effects of treatment are described in medical textbooks and journals in terms of
cause-effect relationships. Causality was the basic modelling concept in several early medical
expert systems such as CASNET/GLAUCOMA [Kulikowski & Weiss, 1982] and ABEL [Patil
et al., 1982]; it has also been investigated by H.E. Pople [Pople, 1973; Pople, 1977] prior to
the development of the INTERNIST-I system [Miller et al., 1982] and was again incorporated
in the CADUCEUS system [Pople, 1982]. With the advent of heuristic expert systems,
[Buchanan & Shortliffe, 1984], interest in causality diminished somewhat, although it might
be argued that causality remained an important concept in qualitative reasoning, where the
behaviour of a system is described in terms of structure and function of components. However,
no explicit representation of the notion of causality can be found in most qualitative reasoning
methods, such as QSIM [Kuipers, 1986; Coiera, 1992]. By and large, there is now renewed
interest in the use of the notion of causality in designing and building medical expert systems.

One of the problems with modelling cause-effect relations for medical problem solving
is that medical knowledge is usually incomplete and uncertain. The incompleteness results
from the inadequate elucidation of the causal chains contributing to (patho)physiological
mechanisms. The uncertainty may be viewed as a consequence of this incompleteness, in the
sense that if the contributing factors, including their interaction in producing an effect, are
incompletely known, all one can say is that the particular effects have been observed repeatly
under certain conditions, and may be attributed to certain causes. A consequence of this
limitation is that the application of logic for modelling cause-effect relationships approximates
medical reality only roughly. However, the notion of causality remains applicable, even when
the knowledge of cause-effect relationships is incomplete [Coiera, 1992; Console et al., 1989].
Incompleteness of knowledge renders causal relationship only less detailed. This contrasts
with qualitative reasoning models, which are somewhat more demanding with respect to
knowledge concerning the (possibly abnormal) structure and function of parts of the human
body. In Section 3.2.5, this subject is discussed in more detail.

Whether or not a logical model of causal knowledge is sufficiently accurate depends, of
course, also on the use that is made of it. The application of causal knowledge for diagnostic
problem solving is a very active area of research; it will be dealt with in Section 4.3. Here
we shall mainly deal with the declarative aspects of causal knowledge, and only discuss how
causal knowledge is employed as far as this promotes understanding.

There are two common ways in which the causal relation is formalized in logic. Firstly,
causality can be formalized by means of a binary predicate symbol Causes(x, y), denoting
that the cause x has y as an effect. Axiomatization of the meaning of the causal relation
always includes transitivity

∀x∀y∀z((Causes(x, z) ∧ Causes(z, y))→ Causes(x, y))

Sometimes, axiomatization includes antisymmetry:

∀x∀y(Causes(x, y)→ ¬Causes(y, x))

Yet, in other formalizations, the predicate may be reflexive

∀xCauses(x, x)
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and, hence, not antisymmetric. From a medical point of view, few causal relations are reflexive
– e.g. diseases or findings are not caused by themselves – so that in a medical setting reflexivity
is not acceptable in general. This approach to the modelling of the causal relation has been
followed, for example, in the Oxford System of Medicine (OSM), [Fox et al., 1990b], a large
medical expert system for general practitioners, and the more recent DILEMMA system,
[Huang et al., 1993], where part of the specifications concerns the causal relation. In contrast
with the OSM, in the DILEMMA system, causal knowledge is represented using the meta-
predicate Domain:

Domain(x, causes , y)

meaning ‘x causes y’, where particular instances for the variables x and y, represent object-
constants and causes represents an object-predicate, essentially with a meaning identical to
that of the predicate symbol Causes. The Domain predicate obtains meaning at the meta-
layer. Properties of relations, such as transitivity for the causal relation, and the semantic
relationship among relations are represented in the system at the meta-layer (cf. Section 4.1).
For example, the meta-relation

Meta-relation(causes , inverse, caused by)

expresses that the ‘caused by’ relation is the inverse of the ‘causes’ relation. Although the
same information could also be expressed at the object-layer by

∀x∀y(Causes(x, y)↔ Caused by(y, x))

the meta-information that this relation is an instance of the inverse relation would be lost.
In the second formalization, causality is modelled using logical implication, i.e. the impli-

cation

cause → effect

represents a cause-effect relationship [Console et al., 1989]. Due to the special meaning
attached to logical implication, reflexivity and transitivity are satisfied. However, this logical
formulation of the causal relationship also poses some problems, not encountered in the first
formalization of causality, being a consequence of the special meaning of logical implication.

Consider, for example, the following logical representation of a medical cause-effect rela-
tionship

Disorder (infection)→ Complaint (fever)

In this case, we do not want the effect that by adding

¬Complaint (fever)

the logical consequence

¬Disorder (infection)

is obtained. Deriving that a patient does not have an infection from the fact that there are
no fever complaints, seems too strong from a medical point of view. On close inspection it
turns out that the formalization of this notion of causality corresponds to the if part of the
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logical formulation of the notion of correlation [Konolige, 1992]. Positive correlation between
two entities C and E, can be formulated by the bi-implication:

C ↔ E

Here,

{C ↔ E,¬E} ` ¬C

rightfully does hold in general; if C is positively correlated to E, then ¬E is positively
correlated to ¬C. However, the primary use of the formalization of causality using logical
implication is in reasoning methods (to be discussed in Section 4.3) where logical deduction
is applied in a forward-driven fashion, i.e. from the antecedent to the consequent of an im-
plication. Then, the problem does not occur, but note that this solution is obtained at the
(deliberate) cost of incompleteness. When adopting a logic programming approach, the the-
ory, as well as the formulas representing data, may be restricted to positive (definite) clauses.
Then, the problem does not occur either, simply because negative data are not allowed, or
only applied with respect to part of the logical theory. However, as the example above in-
dicates, it is necessary to have the ability to represent negative data in medicine; hence, the
restriction to definite clauses may be too strong.

The formalization of causality using implication has the advantage that several exten-
sions can be accommodated in logic in a straightforward way, where for the first approach
to modelling causality significant additional axiomatization would be required. Thus, the
expressiveness of the causal relation is increased, making it more suitable for representing the
subtleties of medical knowledge. For example, the notion of conditional causality, meaning
that the satisfaction of a cause-effect relationship is dependent on the truth of some condition,
can be formulated in logic as follows [Console & Torasso, 1990a]:

cause ∧ condition → effect

Conditional causality is useful in medicine in relating two (physiological) states to each other,
where one state passes into another state when some condition is satisfied. One possible
condition is duration in time. For example,

(state(heart ) = ischaemia ∧
duration(state(heart)) > 30)
→ state(heart-muscle) = necrosis

i.e., if the blood supply of the heart is diminished (ischaemia) and the duration of that state
of low supply surpasses 30 minutes, the heart muscle cells will die (necrosis). In the logical
framework of L. Console and P. Torasso ([Console & Torasso, 1990a]), a condition is logically
distinguished from a cause by the fact that a condition must have been deduced to be satisfied,
where causes can only be hypothesized, or derived from other hypothesized causes.

Representing medical knowledge using one of the formalizations of causality above may
yield a large number of formulas. Therefore, it may be difficult to maintain the overview
of the knowledge base. Using a more abstract representation of the causal knowledge may
help in preserving the overall picture of the contents of a logical knowledge base. In their
CHECK system, Console and Torasso employ the following abstract notation for expressing
conditional causality between two states S and S ′

∀x(S(x) ∧ C → S ′(f(x)))
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pressure(blood ) conc(blood , renin)

x compl (x)

increased

decreased

decreased

increased

Figure 1: Abstract representation of causal knowledge.

where the function term f(x) is the abstract representation of the functional dependence of
the state S ′ on the state S, specified separately by means of the function definition f [Torasso
& Console, 1989]. For example, consider the following abstract causal relation:

∀x(pressure(blood ) = x→ conc(blood , renin) = compl (x))

(renin is a substance released from the kidneys if the blood pressure drops), where the con-
dition C is assumed to be universally true, and can therefore be left out. If

pressure(blood ) = decreased

is the state given, then

conc(blood , renin) = increased

is concluded, where increased = compl (decreased ). This concise notation makes it possible to
represent causal knowledge as a graph, where each vertex stands for a set of ground atoms,
and the causal relation is given in the form of a table of function values associated with
the arcs of the graph, as is done for the implication above in Figure 1. This representation
has much in common with a belief-network representation (where arcs have a probabilistic
interpretation), [Pearl, 1988], and qualitative function constraints in qualitative reasoning,
as proposed by B.J. Kuipers (cf. Section 3.2.5), where, in contrast with the causal relation
discussed above, the notion of time has been incorporated [Kuipers, 1986]. In [Console &
Torasso, 1991b], Console and Torasso propose to extend their causal model by adding the
explicit representation of temporal relations.

As we have remarked above, the modelling of medical knowledge using the logical for-
malization of causality may be difficult. With the aim of obtaining a more flexible notion of
causality, Console and Torasso distinguish between weakly (‘may cause’) and strongly (‘must
cause’) causal relations (actually, these relations are called ‘possible’ and ‘necessary’, respec-
tively, in their paper) [Console & Torasso, 1990a]. The formalization discussed above concerns
only the strongly causal relation; the following formula

cause ∧ α→ effect

expresses the weakly (or possibly) causal relation; the literal α is called an assumption literal.
As distinct from the condition C in conditional causality, an assumption literal cannot be
derived; it can only be assumed. Even if the cause holds, the effect will not be derived when
the assumption literal is assumed to be false. This is precisely the effect required. The various
forms of causal relations using implication were investigated within the medical field using
the system CHECK, and applied, among others, to the diagnosis of disorders of the liver.

As can be seen in Table 1, formalized causal knowledge is usually applied for diagnosis.
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3.2.2 Anatomical models

Although knowledge of the anatomical structures in the human body is important for problem
solving in some medical specialties, anatomical reasoning models have not been applied very
frequently. The potential complicated nature of such models may explain this lack of research.
Neurology is a medical specialty in which knowledge of anatomical relations is of crucial
importance in the process of diagnosis [Jaspers, 1990; Reggia, 1978; Tuhrim, 1991]. The
first medical expert system that used anatomical knowledge as part of a problem-solving
model, but which was not based on logic, is LOCALIZE [First et al., 1982]. Work on the
logical representation of anatomical knowledge is relatively scarce, although the domain seems
eminently suitable for applying logical techniques.

In [Lucas, 1993], the axiomatization and application of basic anatomical relations for
the diagnosis of lesions of the facial nerve is described. Here, knowledge about the way
in which parts of the nerve segments are connected to each other sufficed for diagnostic
application of that knowledge. Such simple anatomical relations can be axiomatized in a
straightforward manner by means of a binary Connected predicate, defined to be transitive
and irreflexive; Connected (x, y) means that a nerve runs from level x up to level y. The
(extensional) anatomical knowledge was provided for by identifying levels with anatomical
structures through which the nerve runs. For example,

Connected (stapedius nerve,geniculate ganglion)

describes a segment of the facial nerve from the point where the stapedius nerve splits off
to the point where the geniculate ganglion develops. Anatomical structures and signs were
related to each other by the axiom:

∀x∀y(Lesion(x) ∧ Connected (y, x)→ Lesion(y))

meaning that a lesion at level x includes all the signs of a lesion at the lower level y. This
is a characteristic feature of neurological problems. Next it is straightforward to specify the
relationship between a lesion at a certain level and the specific anatomical structures that
will be affected by this lesion. For example, a lesion of the facial nerve at the stapedius
nerve will affect the stapedius muscle, causing the patient to perceive all sound as too loud
(hyperacusis):

Lesion(stapedius nerve)↔ Affected(stapedius muscle)
Affected(stapedius muscle)↔ Complaint(hyperacusis)

[Hammond et al., 1993] describes the application of anatomical reasoning in the design of
removable partial dental prostheses, called removable partial dentures, within the RaPiD sys-
tem. The design process is carried out under the guidance of general design rules which the de-
signer is not allowed to break. The design rules are represented as logical integrity constraints,
which are syntactically indistinguishable from non-Horn clauses of the form [Kowalski, 1979]:

A1, . . . , Am ← B1, . . . , Bn

(Ai and Bj are atomic formulas) which is equivalent to

← B1 ∧ · · · ∧Bn ∧ ¬∃A1 ∧ · · · ∧ ¬∃Am

where ∃Ai denotes the existential closure of the variables occurring in an atom Ai. Let
KB denote the knowledge base comprising the prosthesis design knowledge, I the collection
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of integrity constraints and U the input of the user. In the RaPiD system, the integrity
constraints are simply represented as (generalized) Prolog clauses, yielding:

:- B1, . . . , Bn, not A1, . . . , not Am.

i.e. logical negation is taken as negation by finite failure. For example, the following integrity
constraint

IC12 :←tooth(Tooth , present),
in arch(Tooth ,Arch),
centre position(Tooth ,Point),
not on arch(Point ,Arch).

expresses that a tooth can only drift along the arch of the jaw. The set of clauses KB ∪ I

is consistent. When using the RaPiD system the design made by the dentist, U , is checked
agains the logical integrity constraint I by determining whether or not KB∪ I ∪U is inconsis-
tent, which can be simply done by the Prolog interpreter. For example, integrity constraint
IC12 is applied automatically in the design process to ensure that the artificial tooth that
is manipulated by the designer does remain on the arch of the jaw. This work may, in fact,
be viewed as an special instance of consistency-based diagnosis [Reiter, 1987; de Kleer et al.,
1992]. In consistency-based diagnosis, data are compared to the logical specification of a sys-
tem; inconsistency is interpreted as an indication that something is wrong with the system.
In contrast with consistency-based diagnosis, here the conclusion is that something is wrong
with the data.

It is instructive to compare the logic work discussed above with the algebraic specification
of anatomical knowledge. [Todd, 1994] describes a formal model of a program that assists
in the localization of nerve lesions in the upper limb. The anatomical model underlying the
program was developed using the specification language Z, [Spivey, 1989], a language based on
set theory. In comparison with the logical specification of anatomical knowledge, as proposed
in [Lucas, 1993], the applied algebraic techniques in the work of Todd render it rather easy
to express how the anatomical model can be applied as part of a reasoning method, such as
diagnosis. The specification of reasoning behaviour using logic is less straightforward, because
it requires the development of a logical meta-theory (cf. Section 4). However, the logical
specification of the meaning of objects in terms of relationships among objects, often yields
semantically appealing results, which may be taken as an advantage of logic over algebraic
techniques. Furthermore, meta-theory design is an inherent aspect of knowledge-based system
design using logical specification language, such as (ML)2 [Van Harmelen & Balder, 1992].

3.2.3 Taxonomic knowledge

Having as a concept its origin in biology, taxonomic knowledge playes an important role
in medical problem solving. This kind of knowledge is used in the description of diseases
and disease categories, and also applied to describe human anatomy. The application of the
hierarchical relationships among diseases in logical formulations of diagnostic problem solving
will be discussed below. The logical meaning of taxonomic (also referred to as hierarchical)
knowledge has been extensively studied, and has (at least for uncomplicated cases) been
settled for some time [Hayes, 1979; Lucas & Van der Gaag, 1991]. One of the problems of using
the standard logical representation of taxonomic knowledge, as introduced in [Hayes, 1979],
is that in medicine every general description of a medical concept knows several exceptions.
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The representation of exceptions in a logical framework requires non-standard logics, such as
default logic [Besnard, 1989]. Solutions to this problem have been developed for the related
subjects of semantic nets ([Touretzky, 1986]) and frames ([Lucas & Van der Gaag, 1991]).
The precise extent of the problem in medicine has not been explored as yet.

It is worth noting that the logical representation of taxonomic knowledge yields implica-
tions of the form:

∀x(C1(x)→ C2(x))

expressing that C1 is a specialisation of C2 (or C2 is a generalisation of C1). Such formulas
overload the meaning of logical implication as a causal relation discussed in Section 3.2.1.
Hence, although representing causality by means of logical implication is attractive, there
are undesirable effects resulting from this representation, in addition to those mentioned in
Section 3.2.1.

3.2.4 Heuristic knowledge

Heuristic medical knowledge concerns the imprecisely known relationships between patient
and laboratory findings and general or specific diagnostic or treatment-decision categories,
based on practical experience [Buchanan & Shortliffe, 1984; Clancey, 1985]. The typical
heuristic, rule-based expert system, although usually described in terms of a production sys-
tem, may in fact also be viewed as a logical theory with some extralogical features. Translation
of a rule-based system to a logical theory may be useful to get insight into the precise, logical
meaning of the medical concepts represented in the original knowledge base. Some research
has been carried out, using logical techniques, concerning the analysis of existing medical
expert systems. An important consequence of undertaking a logical analysis of an existing,
heuristic medical knowledge base is that it forces the developers of a medical system, includ-
ing the medical professionals involved, to think carefully about the medical knowledge that is
represented. In [Bezem, 1988; Lucas & Van der Gaag, 1991; Lucas, 1993] it is discussed how
a knowledge base of a rule-based system can be translated into first-order logic. [Moser &
Adlassnig, 1992] discuss the translation to first-order logic of a medical expert system based
on binary associations between diseases and findings.

The logical analysis of a medical knowledge base can also be advantageous in that the result
of the logical reformulation can be checked with respect to its consistency. This approach
may help in discovering inaccuracies in the knowledge base, and thus support the process of
building a reliable medical expert system. Such consistency tests were carried out for the
logical reformulation of the HEPAR system, a rule-based expert system for the diagnosis of
disorders of the liver and biliary tract [Lucas & Janssens, 1991], and the CADIAG-1/BIN
system, a medical expert system in the broad domain of internal medicine [Adlassnig et al.,
1985].

In heuristic, medical expert systems, a knowledge base represents knowledge that holds
for a class of patients. This observation gives rise to the logical formulation of heuristic
rules using a universally quantified variable over the domain of patients, expressing that a
rule applies to an entire class of patients. An example of such a heuristic rule concerning
the disorder of the liver called Wilson’s disease, taken from the logical reformulation of the
HEPAR system, is the following:

∀x(Duration(x, complaint lab, chronic) ∧
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(disorder (x) = hepatocellular ) ∧
(age(x) < 25) ∧
(caeruloplasmin (x, labresult , biochemistry) > 20) ∧
(urinary copper (x, labresult, biochemistry) > 1)
→ Diagnosis(x,Wilson’s disease))

Translation of the HEPAR system into predicate logic yields a collection of logical implica-
tions, which, after automatic conversion to clausal form, could be fed into a resolution-based
theorem prover to check for the consistency of the knowledge base after input of data of a
particular patient. This way a number of inconsistencies in the original knowledge base could
be discovered [Bezem, 1988].

The work of Moser and Adlassnig in the logic translation of CADIAG-1/BIN reveals
another, elegant, use of the application of logic in medical expert systems [Moser & Adlassnig,
1992]. In the CADIAG-1/BIN system, medical knowledge is described in terms of a fixed
collection of binary relations. For example, the binary relation oc (obligatory occurrence and
confirmation) expresses that a particular finding f is necessary and sufficient for accepting
the occurrence of a disease d in the patient. In medicine, such findings are usually referred
to as pathognomonic. This is denoted as

f oc d

placing the relation symbol ‘oc’ in infix position. For example,

‘Kayser-Fleischer rings’ oc ‘primary biliary cirrhosis’

Kayser-Fleischer rings are brown rings at the periphery of the cornea, caused by deposits
of copper. These are typical for the liver disease primary biliary cirrhosis (PBC); observing
Kayser-Fleischer rings is necessary and sufficient for diagnosing PBC.

The translation of Moser and Adlassnig involved an in-depth analysis of the meaning of
the binary relations in CADIAG-1/BIN. For example, the logical meaning of the ‘oc’ relation
was defined as:

∀x∀y(x v y ∧ y v x)

where the binary predicate symbol v stands for non-empty set inclusion, i.e. c1 v c2 fails
to hold if c1 stands for the empty set. Hence, in the expression f oc d stands f for the
set of patients with finding f , and d for the set of patients with disease d. For example,
the meaning with respect to the patients with primary biliary cirrhosis is: all patients with
Kayser-Fleischer rings are patients suffering from PBC, and vice versa; there is at least one
such patient.

The other binary relations were analysed in a similar fashion, yielding similar, though
more complicated, logical expressions as for the ‘oc’ relation. A generic, logical specification
of the meaning of these binary relations yielded a short specification of a consistency checker
in Prolog, which was subsequently applied for the analysis of the knowledge base. Some
very subtle medical inconsistencies were detected by this remarkably simple method [Moser
& Adlassnig, 1992].
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3.2.5 Physiological knowledge

(Patho)physiological models can be applied in anaesthesiology in monitoring and controling
the physiological state of patients undergoing surgery. These kinds of model have a long stand-
ing tradition in medicine, having their roots in control theory of biological systems [Grodins,
1963].

(Patho)physiological models usually consist of algebraic equations, where some of the
variables in the equations can be measured in the patient, and others cannot, but instead must
be computed from the equations and the known variables. Because the values of the variables,
such as the blood pressure in a patient, evolve over time, i.e. the variable is a function of time,
the notion of time is often an essential ingredient of such models. Qualitative reasoning is the
field traditionally concerned with the study of formal techniques for the specification of, and
reasoning with, such models, where it is assumed that the (numerical) values of the variables
are only roughly known [Coiera, 1992]. For example, in the QSIM approach proposed by
B.J. Kuipers, the time-dependent variation in the value of a variable is approximated by the
notion of qualitative state [Kuipers, 1986; Kuipers, 1994]. In a qualitative state, a discrete
qualitative value (called a landmark value) is assigned to a variable for a particular time-point,
including the direction towards which the variables has changed, such as ‘increased’, ‘steady’
and ‘decreased’. The modelling of state change in time is a central feature of qualitative
reasoning. Because the QSIM theory is based on the qualitative interpretation of differential
equations, the theory is essentially algebraic and not logical in nature. Most other work
in qualitative reasoning in medicine based on differential equations is beyond the scope of
the present paper. In [Coiera, 1990], the application of QSIM for the generation of disease
histories as part of the diagnostic process of acid-base disturbances, is described. In this
work, QSIM has been incorporated in a logic programming framework. For a review of the
subject of qualitative reasoning, including other approaches than QSIM, the reader is referred
to [Coiera, 1992].

A QSIM-like model consists of a qualitative description of a system of differential equa-
tions. Hence, little detail with respect to the values of the variables is required. Nevertheless,
in medicine even a qualitative description of functional behaviour in terms of QSIM can be too
demanding. Even if such information is available, the technique may not be at the right level
of abstraction for representing a problem domain. Furthermore, the generality of the quali-
tative algebra on which QSIM is based, may lead to inefficient or spurious problem-solving
behaviour. These were the main reasons for adopting an approach different from QSIM in
the design of the KARDIO system, an expert system for the diagnosis of disturbances of
the rhythm of the heart, known as cardiac arrhythmias [Bratko et al., 1989]. KARDIO is
the best-known example of a successful logic engineering approach to qualitative reasoning in
medicine, based on a functional domain model.

Basically, KARDIO’s knowledge base consists of a logical formalization of a qualitative
simulation model of the (normal and abnormal) electrical activity of the heart. The simulation
model can be triggered by the assumption of the presence of a particular (combination of)
cardiac arrhythmias in the patient. This sets up a chain of events, finally leading to a
collection of findings which represents an electrocardiogram (ECG), corresponding to the
cardiac arrhythmias assumed to be present. The various activation steps are represented by
means of rules, such as, for example

heart(atrial focus:permanent(Rhythm, Rate))

⇒
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A1(t)

A2(s1)

A2(s2)

C(t, s1)

C(t, s2)

Figure 2: Non-deterministic state transition.

permanent(atrial focus:form(Origin, Rhythm, Rate)) when

atrial focus(Origin, Rhythm, Rate)

which expresses that if there is an assumed permanent centre of (abnormal) autonomous
activity in the atrium (an atrial focus), which reveals a particular rhythm (e.g. regular or ir-
regular) and rate, then the atrial focus with particular origin is accepted to be permanent, if
a medical description of such an atrial focus declares it to be a valid possibility. (As in Prolog,
strings starting with an upper-case letter denote variables.) Note that the adopted represen-
tation is record-like, because ‘heart’ represents an object and ‘atrial focus’ represents an
attribute (cf. Section 3.1). The expression

atrial focus(Origin, Rhythm, Rate)

following the when keyword, states a restriction that must be fulfilled before the conclusion,

permanent(atrial focus:form(Origin, Rhythm, Rate))

can be assumed. In general, rules have the following logical meaning

∀x∃y(A1(x)→ (A2(y) ∧ C(x, y))) (1)

where Ai(t), i = 1, 2 represent states of the heart that can be assumed, and C(x, y) represents
a restriction that relates two (possibly more in general) states to each other. The logical
implication expresses that if some state A1(t) is assumed, and, for example, C(t, s1) and
C(t, s2) hold, the disjunction

A2(s1) ∨A2(s2)

can be derived. This expresses two alternative states that can be activated by the state
A1(t), where at least one of the two, A2(s1) or A2(s2), must actually occur (this is like a
non-deterministic state transition, see Figure 2). The atomic formula C(x, y) in formula
(1) restricts the disjunction with respect to the arguments of the predicate A2. If C(x, y)
had been left out, the more general conclusion ∃yA2(y) would have been reached in the
present case [Bratko et al., 1989]. If no restrictions C(t, s) are satisfied, then adopting the
CWA, ∀y¬C(t, y) is assumed, and an inconsistency will arise. By removing A1(t) from the
assumptions, it is possible to restore consistency. The derivation of a disjunction with respect
to A2 using formula (1) above will then be blocked.

Based on the collection of rules, denoted by KB, the satisfied restrictions C and state
assumptions A, that stand for cardiac arrhythmias that are assumed, KARDIO is capable of
predicting alternative ECG descriptions (expressed as a disjunction of individual descriptions),

KB ∪ C ∪ A ` ECG
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module cardiac_output_model(number : SV, HR, CO, KL, PLA).

table intermittent(CO).

table continuous(HR, PLA).

table unknown(SV).

table constant(KL).

clause constraints(CO, SV, HR, KL, PA) when

CO = SV * HR and

SV = KL * ln(PLA).

close.

Figure 3: Logic specification of constraints.

where KB∪C∪A is assumed to be consistent. This may be viewed as a qualitative simulation
process. In Section 4.3, we shall briefly deal with the diagnostic interpretation of the rules in
KARDIO.

Where the approaches above use a qualitative model of a medical domain, there are cer-
tain situations where sufficient numerical patient data are available. The equipment used
in anaesthesiology collects a large amount of numerical information during surgery, that is
vital for monitoring the patient’s condition. These numerical data can also be used to drive
the algebraic equations of a (patho)physiological model. Modern constraint logic program-
ming languages make it possible to represent and manipulate such algebraic equations in a
declarative way [Van Hentenryck, 1991; Jaffar & Maher, 1994]. RL, [Van Denneheuvel et
al., 1990], is a constraint logic programming and database language that has been applied
for this purpose. In [De Geus et al., 1991], the application of constraint logic programming
to a physiological model of human circulation and gas exchange, represented and applied by
means of RL, is described. We shall briefly discuss this work.

Consider the, highly simplified, logic specification of the function of the heart as a pump,
in the syntax of the RL language (this specification follows [De Geus et al., 1991]) shown in
Figure 3. Here, CO stands for the cardiac output (blood volume expelled by the heart per unit
of time), SV for the stroke volume (blood volume expelled by the heart by a single contraction
of the heart chambers), HR for the heart rate, PLA for the pressure in the left atrium, and
KL is a parameter called the ‘left heart parameter’. These variables are distributed over four
database tables, or relations. The ‘intermittent’ table stands for the variables measured
only a limited number of times during surgery, whereas the ‘continuous’ variables HR and
PLA are measured continuously in the patient. The variable SV is not measurable, but can
be computed. Finally, there are also variables that can be considered constants with respect
to the patient, for example KL. A constraint clause, called constraint, represents equality
constraints among the variables; the clause can be used to compute values for unknown
variables, based on values of known variables. It is also possible to reduce (simplify) the
model equations, based on known values for variables. The specification above can be used
for:

• interpretation of measurements, i.e. computation of the unknown variables based on
measured values of known variables;
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• prediction of effects, i.e. based on particular additional assumptions about the variables,
values for certain variables can be predicted.

In the following query, values for known variables are used for computing the values for the
requested variables CO and SV, which are arguments to a call to the constraint solver syminfer,
indicating that these are the variables to be determined:

syminfer(CO,SV) when constraint(CO, SV, HR, KL, PA) and

HR = 70 and

PLA = 16 and

KL = 28.

solutions = {CO = 5432, SV = 77.6}

The constraint solver syminfer yields a symbolic solution, i.e. the requested variables are
symbolically expressed as a function of the known variables. In this case, the set of equations
is completely reduced to a set of variables with constant values.

In practical situations, the known variables are subject to measurement errors; this may
give rise to logical inconsistency of the domain model when those variables are entered. Such
errors can be simply accommodated for in a constraint model by introducing error variables,
e.g.

PLAerror = 16 - PLA.

replaces the constraint ‘PLA = 16’ above. In this way, inconsistency can be resolved; values for
the error variables will be computed automatically. Note that a limitation of this approach is
that only a snapshot of the physiological state of a patient is interpreted; no explicit temporal
labeling of the information has been incorporated in the model.

Although there is currently no approach for representing and reasoning about time gen-
erally agreed upon, some researchers have attempted to actually exploit the notion of time in
a medical application. Specific applications of temporal reasoning in medicine are discussed
in Section 4.2 with respect to treatment management.

4 Medical problem solving

In the previous section, we have reviewed the declarative representation of medical knowledge
in logic, and some remarks were made concerning the application of the logical representations.
Such representations can be used for a variety of medical tasks, such as diagnosis, treatment
selection and management, prognostic assessment, patient monitoring, etc. In early medical
expert systems, the application of domain knowledge was carried out by a, more or less, gen-
eral purpose inference engine. For some of the aforementioned representations and domains,
domain-independent reasoning methods are appropriate. However, in many medical problem
solving situations, medical knowledge is applied in a quite specific way. The specification of
such problem solving methods requires a precise, unambiguous formalism. A disadvantage of
algorithmic specification techniques is that it is impossible to describe the reasoning in terms
of the logical specification only. Instead, the reasoning is described in terms of operations on
data elements which are the result of a translation of the logical representation into algorith-
mic terms. Logical techniques are better suited for this purpose, because reasoning can be
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described in a declarative way, i.e. in terms of relations among logic formulas [Genesereth &
Nilsson, 1987]. The logic specification of medical problem solving methods is an important
subject of research, and is complementary to the declarative specification of object knowledge,
discussed in the previous section.

4.1 Decision knowledge and task models

The (formal) specification of the specific way in which a medical task, such as diagnosis, is
carried out is often referred to as a task model. A task model can be viewed as part of the
meta-layer of a knowledge base. Work on the declarative specification of task models using
logic has been carried out by J. Fox et al. in the context of the Oxford System of Medicine
(OSM) [Clark et al.,1990; Fox et al., 1990b], and the DILEMMA system [Huang et al., 1993].

As has been mentioned in Section 3.2.1, the DILEMMA object-knowledge is represented
using the meta-relation

Domain(O,R,O′)

where O,O′ represent concepts (objects) in the domain, and R is the name of a binary relation
in which the objects participate. Specific patient data are represented by means of the relation
Patient record, containing all information at a particular time point for one patient. The tasks
that can be used to solve medical problems, as well as a declaration of the specific manner in
which this task is used, called the role of the task, are also represented at the object-layer. A
task is applied to a relation represented at the object-layer. For example

Task (refining , diagnosis ,may be caused by)

indicates that in the process of refining a candidate diagnosis, use is made of the ‘may be
caused by’ object-relation. The predicate symbol Domain is, like Task, a meta-predicate, i.e.
its meaning is defined at the meta-layer. Another example of a task, besides ‘diagnosis’ is
‘treatment’; another example of a role of a task besides ‘refining’ is ‘proposing’ (a candidate
for a diagnosis), etc.

The actual knowledge of how the tasks must be combined to solve a medical problem, is
part of the meta-layer, not of the object-layer. For example, in the process of diagnosis, first
a candidate diagnosis is proposed by means of the ‘proposing’ role of the diagnosis task; after
that the diagnosis candidate may be refined.

Although the meaning of predicate symbols, such as Domain and Task, could be defined at
the meta-layer, again using predicate logic, the developers of the DILEMMA decision support
system have adopted a more pragmatic approach by expressing the meaning of the object-
layer knowledge by means of first-order schemas, which can be viewed as as special-purpose
(meta-layer) inference rules. The syntax and meaning of the object-layer has been described
in Section 3.2.1.

For example, the schema depicted in Figure 4 provides a declarative specification of the
reasoning method that is used for proposing a candidate solution, e.g. a candidate diagnosis
as part of diagnostic problem solving. The schema consists of a name, propose candidate, an
antecedent consisting of three conditions, and a consequent. The condition

Context(Taskname ,Focus)

represents the problem-solving context, which consists of a particular task, such as diagnosis
(which is substituted for the meta-variable Taskname), that is carried out, and the particular
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propose candidate

Context(Taskname, Focus),
Task(proposing, Taskname, Relation),
Domain(Focus, Relation, Candidate)

Candidate proposed(Candidate, context(Taskname, Focus))

Figure 4: Proposing inference rule.

finding or disease that is being considered, substituted for the meta-variable Focus. The
condition

Task (proposing ,Taskname ,Relation)

expresses that the particular task is carried out using medical knowledge specified by means
of Relation. Finally, all knowledge that is used to solve the problem, concerning the relevant
Relation is part of the object knowledge, represented using the Domain predicate. The con-
sequent expresses that the particular candidate solution, e.g. a diagnosis, has been found by
means of the given Taskname using a relation with respect to Focus. For example, suppose
that the system has just confirmed that the patient suffers from cardiac ischaemia, which is
expressed by:

Context(diagnosis , cardiac ischaemia)

Then, based on this information the diagnostic process proceeds using causal knowledge:

Task (proposing , diagnosis , causes)

Since the object-layer contains the fact

Domain(cardiac ischaemia, causes ,MI )

myocardial infarction (MI) is proposed as a candidate diagnosis:

Candidate proposed(MI , context(diagnosis , cardiac ischaemia))

Other medical tasks, such as treatment, follow-up and prognostic assessment, are rep-
resented using the same kind of schemas. For example, taxonomic knowledge concerning
disorders is used as part of diagnostic problem solving in order to refine a solution, such as
the refinement of a diagnosis from a disease category to a more specific disease. The specific
inference schema employed is depicted in Figure 5.

4.2 Treatment management

Decisions concerning the choice of the appropriate treatment for a patient, involve various
sorts of medical knowledge. One of the first systems by which treatment planning was studied
in depth, is ONCOCIN, a well-known treatment management system for medical care of
oncology patients [Hickam et al., 1985]. No attempts were made in the ONCOCIN project to
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refine candidate

Context(Taskname, Focus),
Candidate proposed(Candidate, context(Taskname, Focus)),
Task(refining, Taskname, Relation),
Domain(Candidate, Relation, Sub candidate)

Candidate proposed(Sub candidate, context(Taskname, Focus)),
Candidate refined((Candidate, Sub candidate), context(Taskname, Focus))

Figure 5: Refining inference rule.

analyse the treatment knowledge encoded in the system using logical techniques. Research
with respect to the logical aspects of treatment management has commenced only recently.
Treatment selection has mainly been studied in the field of medical decision analysis. We
shall not go into details here, but only mention that several of the problems that have been
addressed in medical decision analysis, have as yet not been studied in depth with respect to
their logical meaning.

The OaSiS system, an expert system for decision support in oncology much like the
ONCOCIN system, has been developed using techniques from logic programming [Hammond
et al, 1994; Hammond & Sergot, 1995]. One of the central aspects of treatment planning for
cancer patients receiving chemotherapy is that the treatment may need adjustment, based on
therapy results and side effects of administered drugs. For example, the number of white blood
cells may decrease considerably under a regime of chemotherapy, requiring lowering of the
dosage of certain cytotoxic drugs. Medical knowledge concerning the automatic adjustment
of the dosage can be expressed in logic form as a number of equations, and applied using
retrieved laboratory findings of the patient.

A more difficult application of techniques from logic programming to treatment manage-
ment concerns checks for patient conditions or drug interactions that may diminish the efficacy
of the treatment. Logical integrity constraints of the form introduced in Section 3.2.2 have
been shown to provide a suitable representation for medical knowledge concerning forbidden
conditions and actions [Hammond et al, 1994; Hammond & Sergot, 1995]. For example, the
following integrity constraint:

←user suggestion(perform(Action1 ,Plan)),
part of(Action2 , P lan),
produces effect(Action2 ,Effect),
hazardous (Effect),
aggravates(Action1 ,Effect),
is avoidable(Action1 ,Plan).

expresses that if treatment action Action1 is part of the designed treatment plan (Plan), and
a second treatment action (Action2) will have side effect Effect, and this side effect is made
worse by Action1, then Action1 should be avoided as part of the treatment plan.

Treatment planning always involves some reasoning about time, which raises the issue
of appropriate logical formalization of time. Some researchers have chosen for the represen-
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tation of time within a standard logic framework. For example, in [Soper et al., 1991], the
application of temporal knowledge for resource management in patients undergoing vascular
surgery is discussed. Their approach is based on event calculus, which remains within stan-
dard logic [Kowalski & Sergot, 1986]. A disadvantage of this approach is that it does not
really do justice to the special status of time. Although part of temporal reasoning can be
incorporated in standard logical reasoning, there is much to say for separating out the time-
dependent information, and using temporal logic for reasoning about treatment adjustment
in time explicitly. Temporal logic goes beyond standard logic in that the same logical formula
may have a different interpretation at different times [Turner, 1984]. Theoretical work on
temporal and deontic logic (the modal logic of permission and obligation), and modal logic
more generally, may provide a formal underpinning for the explicit manipulation of knowl-
edge concerning the temporal and obligatory aspects of treatment planning [Das et al., 1993].
A technique to extend Prolog for temporal reasoning, and which would be interesting to
investigate in medical applications, is described in [Hrycej, 1992].

4.3 Diagnostic reasoning

There are two different, frequently applied logical models of diagnostic reasoning in medicine;
diagnosis is either described as a deductive process, or as an abductive reasoning process [Char-
niak & McDermott, 1985].

In the deductive model of diagnostic reasoning, a medical knowledge base KB and a col-
lection of patient data F , are used to derive a diagnosis D

KB ∪ F ` D

where, for example, D is a conjunction of the form

Diagnosis(patient1 ,Wilson’s disease) ∧ · · · ∧Diagnosis(patient1 , PBC)

and KB might consist of heuristic rules similar to those discussed in Section 3.2.4. Diagnostic
problem solving is often described using the hypothesize-and-test paradigm; this is expressed
by the following formulation, equivalent to the one above:

∀d ∈ D : KB ∪ F ∪ {¬d} ` ⊥

where the negation of the disorder d is the logic representation of a hypothesis; the refutation
indicates that the hypothesis has been rejected, i.e. the disorder d has been confirmed. If
resolution is the principal inference rule applied, then a hypothesis-driven reasoning strategy
can be designed in terms of a resolution strategy. The set-of-support strategy with negative
hyperresolution for non-Horn theories, [Wos et al., 1992], or SLDNF resolution for gener-
alized Horn-clause theories, [Lloyd, 1987; Lucas & Van der Gaag, 1991], are examples of
strategies displaying such a reasoning behaviour. The former techniques have been applied
in the logical reformulation of the HEPAR system [Lucas, 1993]; the latter have been applied
in KARDIO [Bratko et al., 1989]. In the KARDIO system, for the purpose of diagnosis, the
simulation model was converted to a diagnostic knowledge base by interchanging the condi-
tions and conclusions in rules (cf. formula (1) in Section 3.2.5). A diagnosis D for a given
ECG in a patient is a collection of cardiac arrhythmias, deductively obtained as follows

KB ∪ C ∪ ECG ` D
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where ECG represents the logical description of the patient’s electrocardiogram, and C are
conditions that must be fulfilled.

In the abductive model of diagnosis, such as the model proposed by L. Console and P.
Torasso, the pathological behaviour of a biological system is specified in terms of cause-effect
relationships as discussed in Section 3.2.1. More restrictive models of diagnosis, based on
set theory instead of logic, are described in [Peng & Reggia, 1990], [Josephson & Josephson,
1994] and [Wu, 1991]. Diagnostic problem solving is described as the problem of accounting
for a given set of observed patient findings F by supplying the knowledge base KB with a set
(conjunction) of hypotheses D which, after computation of the deductive closure, accounts
for each of the given observed findings. Formally, abductive diagnosis is defined as follows.
Let

• KB be a logic specification of causal, medical knowledge (usually it is assumed that KB
is a Horn clause theory);

• F = Fp∪Fn be a set of observed patient findings, with Fp denoting the present, abnormal
findings – described by ground, positive unit formulas – and Fn the findings assumed
or entered to be absent –described by ground, negative unit formulas (Fp ∩ Fn = ∅).

A diagnosis D is then a set of (ground) disorder literals, i.e. literals expressing medical
disorders, such as Disorder (patient1 ,myocardial infarction), and assumption literals α, such
that [Console & Torasso, 1990a; Konolige, 1992]:

1. ∀f ∈ Fp : KB ∪D ` f ;

2. ∀f ∈ Fn : KB ∪D ∪ {f} 0 ⊥ (or, equivalently, KB ∪D ∪ Fn is consistent).

Hence, a diagnosis D covers (condition 1 above) all observed (positive) findings in Fp, and
is consistent (condition 2 above) with all (negative) findings included in the set Fn. Often,
it is required that D is subset minimal, i.e. D is a minimal conjunction of disorder and
assumption literals for which the covering and consistency conditions above are satisfied.
This means that none of the disorders can be left out from the set D without sacrificing the
property that every finding can be accounted for. Subset minimality, and similar criteria, are
domain-independent measures, that are applied to reduce the number of alternative diagnoses
that can be produced [Peng & Reggia, 1990; Tuhrim, 1991]. They fall short in providing
a medically relevant reason for selecting or disregarding certain diagnoses. Disorders that
display considerable overlap with other disorders may not appear in any subset-minimal
diagnosis. This is hardly acceptable from a medical point of view. In the following, we shall
not pay further attention to such domain-independent selection criteria.

The set Fn is defined as follows:

Fn = {¬R(c) |R(d) ∈ F, c 6= d} ∪ {¬R′(e) | ¬R′(e) has been entered by the user}

where R,R′ stand for predicates representing particular data groups, for example a finding
corresponding to the result of a test or of the medical interview. Only observable findings
for which at least one result has been obtained by performing a particular diagnostic test,
are included in Fn. The other findings are assumed to be unknown. Note that a weak form
of the closed world assumption with respect to findings is taken to hold in this case (cf.
Section 3.1). It is interesting to note that the deductive method of diagnosis employed in
KARDIO can be viewed as a form of abduction due to the interchange of state conditions
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∀x (Pain(x, cardiac ischaemic)→ Complaint (x, oppressive pain))
∀x (Pain(x, cardiac ischaemic)→ Complaint (x, pain radiating to left arm))
∀x (Disorder (x,myocardial infarction)→ Pain(x, cardiac ischaemic))
∀x (Disorder (x,myocardial infarction)→ Sign(x, vomiting))
∀x (Disorder (x, heart failure)→ Complaint(x, dyspnoea ))
∀x (Disorder (x, heart failure)→ Sign(x, cyanosis))
∀x (Disorder (x, heart failure)→ Sign(x, pitting edema))

Figure 6: Diagnostic causal model.

and a state conclusion. The available literature (e.g. [Bratko et al., 1989]) does not provide
sufficient detail to establish whether or not a diagnosis in KARDIO satisfies the covering and
consistency conditions. It seems likely that it does not, because not all rules in KARDIO
have a causal or state-transition reading.

A disadvantage of the abductive model of Console and Torasso is that all observed findings
Fp must be explained by the covering condition. The underlying assumption is that all possible
disorders that may cause the particular findings in the medical domain are included in the
knowledge base, i.e. a form of domain closure is assumed to hold. Hence, every observed
finding must be the effect of the presence of at least one of the described disorders. However,
in medicine there are many situations in which this condition fails to hold. The huge number
of interactions among concepts in medicine makes it feasible to represent only a small fraction
of the entire body of domain knowledge. Furthermore, it is not very realistic to expect that
a knowledge base will cover all fields of medicine. In practice, the assumptions of complete
accuracy and exhaustiveness of a knowledge base fail to hold.

We illustrate the problem by the following example. Consider the logical specification KB
presented in Figure 6, in which only strongly causal rules are included, and the following set
of observed findings concerning cardiac disorders:

Fp = {Complaint (patient1 , oppressive pain),
Complaint (patient1 , pain radiating to left arm),
Complaint (patient1 , dyspnoea),
Sign(patient1 , vomiting),
Sign(patient1 , cyanosis)}

The set of absent findings is equal to:

Fn = {¬Sign(patient , pitting edema)}

Obviously, if it is assumed that

D = {Disorder (patient1 ,myocardial infarction)}

then

KB ∪D ` Complaint (patient1 , oppressive pain)

and

KB ∪D ∪ Fn 0 ⊥
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but

KB ∪D 0 Complaint (patient1 , dyspnoea)

Hence, D is not a diagnosis, because not all findings in Fp are covered, although D is consistent
with KB and Fn. On the other hand, if Disorder (patient1 , heart failure) ∈ D ′, then

KB ∪D′ ∪ Fn ` ⊥

although the covering condition might be fulfilled. Hence, in the present case no diagnosis ex-
ists. Intuitively, this result may be taken as warning that if the knowledge base is correct, the
given combination of findings Fp cannot have been observed. Unfortunately, if the knowledge
base is not completely accurate, then the abductive model gives up too early.

From a medical point of view, a more realistic approach to abductive diagnosis in the
medical domain would be to cover as many as possible of the findings in the set of observed
abnormal findings Fp, i.e. Fm ⊆ Fp, such that

KB ∪D ` Fm (2)

and

KB ∪D ∪ Fn 0 ⊥ (3)

with the original set of negative findings Fn. Now, if the set Fm in the covering condition (2)
is equal to:

Fm = {Complaint (patient1 , oppressive pain),
Complaint (patient1 , pain radiating to left arm),
Sign(patient1 , vomiting)}

where Fm ⊆ Fp, it follows that the diagnosis is equal to

D = {Disorder (patient1 ,myocardial infarction)}

and the covering and the consistency conditions are both satisfied. In contrast with the
original model of Console and Torasso, it is possible to have some remaining observed findings
that cannot be accounted for. This is fairly common in medical practice. Note that only the
definition of the set Fp in the covering condition has been adapted. Part of the attraction of
this abductive model derives from the happy circumstance that a diagnosis can be computed
efficiently. A single, for example, subset-maximal diagnosis D that disregards no relevant
disorder, can be computed in polynomial time, where the original abductive problem, in
which alternative diagnoses are computed, is NP hard [Bylander et al., 1992].

Still, a disadvantage of this adapted abductive model of diagnosis is that a disorder may be
ruled out by the assumption of the absence of certain findings, included in the set Fn, which
for certain medical domains might place too much emphasis on assumed negative findings.
Doing away with the CWA for observed findings, thus accepting the open-world assumption
for the knowledge base, yields yet another abductive diagnostic model. The set Fn only
comprises negative findings entered by the user; the definition of the consistency condition,
however, is left unchanged. Given this definition of the set Fn, there are good reasons to
modify the definition of the covering condition, as follows

1′. ∀d ∈ D∃f ∈ Fp: KB ∪ {d} ` f , where D is maximal.
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This version of the covering condition expresses that only disorders having at least one asso-
ciated finding in common with the set of observed findings, may be included in a diagnosis.

Above we have discussed deductive and abductive models of diagnosis. Abductive di-
agnosis has been considered in some detail, because many researchers believe that medical
diagnosis is essentially abductive in nature [Josephson & Josephson, 1994; Peng & Reggia,
1990; Pople, 1973]. As we have argued, abductive diagnosis should not be taken as a fixed
concept. Several different notions of abductive diagnosis, based on the nature of the medical
domain, can be designed. Both the characteristics of the patient data and the medical knowl-
edge base are important in this respect. For example, adoption of the open-world assumption
for observed findings might be a good design option in medical emergency situations, where
there is insufficient time to collect all data; the closed-world assumption might be taken to
hold in the clinic. In [Console & Torasso, 1990b; Console & Torasso, 1991a], some other
variations in the definition of abductive diagnosis are discussed, but not from a medical per-
spective. It is also worthwhile to design a special abductive reasoning scheme, based on a
detailed analysis of a medical problem, for computational reasons. It is not unlikely that the
resulting scheme will be less troublesome with respect to the computational complexity than
abduction in general.

5 Conclusions

In this article, we have reviewed the application of logical techniques for building knowledge-
based systems in medicine, referred to as ‘logic engineering’. In particular, the tailoring of
logical techniques to the representation of medical declarative and problem-solving knowledge,
has been reviewed. The application of logic engineering to the field of medicine brings into
the picture the question of for which problems in medicine the approach would be especially
suitable. It has appeared to be difficult to get the products of this, and similar, research
accepted by the medical community, in spite of accumulating evidence of the value of these
systems [De Dombal, 1991]. Various reasons have been suggested as an explanation for this
situation, such as the inadequate computational infrastructure in health care [Shortliffe, 1991].
Medical doctors are still not accustomed to the idea of a workstation as a general problem
solving tool, contrasting practitioners in many other disciplines. This situation is likely to
change as soon as information technology in general has gained greater acceptance in the
clinic.

Logic engineering is still mainly a research area; many of the techniques and applications
discussed in the paper have been developed fairly recently. It seems, therefore, unjust to judge
the merits of logic engineering by the number of applications that have left the laboratory
into the clinic. Nevertheless, several of the systems briefly discussed above indicate that logic
engineering has something to offer in terms of clarity, accuracy, reliability, safety, and elegance.
As a language for modelling medical knowledge, logic has several advantages. Firstly, by using
logic for building or analysing a medical expert system, the developer is enforced to take a
closer look at the meaning of the medical concepts involved. Although logic does not shield
the developer completely from semantic inaccuracies, a logic engineering approach eases the
identification of such problems. Secondly, even if the semantic analysis of a medical problem
is cumbersome because of the vague, empirical nature of the medical knowledge involved,
logic provides sufficient freedom to leave particular aspects of a specification open.

There are several other formal approaches, that share the aforementioned features of logic
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engineering, in particular decision theory, which has been discussed in the introduction, and
algebraic specification languages. Although, algebraic specification language, such as OBJ,
([Futatsugi et al., 1985]), and Z, ([Spivey, 1989]), offer similar advantages as full predicate
logic, they generally provide little language support for the structuring of information. This
turns out to be one of the nicests feature of predicate logic, as has been illustrated by several
of the examples above. Such a structure is usually exploited by the reasoning process. In
this respect, algebraic specification languages have little to offer. Moreover, many algebraic
specification languages, such as Z, do not fully support the operationalization of a specifi-
cation, because no compiler or interpreter is available. This contrasts the logic engineering
approach, in which the execution of a logical specification is of central concern. Nevertheless,
for some medical problems which are algebraic in nature, algebraic specification might be
more suitable than other techniques [Todd, 1994; Hammond & Davenport, 1995].

Learning new medical knowledge using logical techniques, i.e. inductive logic program-
ming, is an interesting new research direction. Inductive logic programming has been applied
to the medical field using the MOBAL system, ([Sommer et al., 1994]), an extensive machine-
learning environment that incorporates a variety of techniques. For example, the system has
been used for learning knowledge about the treatment of boys with maldescensus testis [Morik
et al., 1993; Wrobel, 1990]. Only limited experience in applying inductive logic programming
to medicine exists as yet.

One of the limitations of the logic-based approach to medical problem solving is that a
methodology of problem solving in the medical field is still lacking. Medical problem solving
is usually only described in very global terms. For example, although in many diagnostic
systems, such as the DILEMMA system, diagnostic reasoning is carried out in stages from
proposing candidate solutions to refining, and finally rejecting or accepting candidates, such a
theory of diagnosis is as yet not part of the core of the medical sciences. We expect that such
medical expert systems will be more readily accepted by the medical community if supported
by fundamental research into the nature of the medical problem solving process.

Another limitation of the current logic engineering research is that no generally accepted
formal methods for constructing logic-based medical expert systems is available. This sit-
uation may improve if formal specification languages for building medical expert systems
become available. In contrast with the specification languages applied in software engineer-
ing, knowledge-based specification languages are usually based on logic. Hence, they share
the advantages of logic mentioned above. Presently, there is still little experience in the ap-
plication of such languages in the building process, which is a subject of on-going research.
Recently, Fox et al., ([Fox, 1993; Krause & Glowinski, 1993]), have investigated the use of
the logic-based specification language (ML)2 for the development of knowledge-based sys-
tems, a language that is embedded in the KADS methodology for building knowledge-based
systems [Van Harmelen & Balder, 1992]. Besides formal specification, clarifying the logical
meaning of medical knowledge will remain a subject of study for at least one more decade to
come.
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[Console et al., 1989] Console, L, Dupré, DT and Torasso, P, 1989. “A theory of diagnosis
for incomplete causal models”, In: Proceedings of the 10th International Joint Conference
on Artificial Intelligence, pp 1311–1317.

[Console & Torasso, 1990a] Console, L and Torasso, P, 1990. “Hypothetical reasoning in
causal models”, International Journal of Intelligent Systems 5 83–124.

[Console & Torasso, 1990b] Console, L and Torasso, P, 1990. “Integrating models of correct
behaviour into abductive diagnosis”, In: Proceedings of ECAI’90 pp 160–166.

[Console & Torasso, 1991a] Console, L and Torasso, P, 1991. “A spectrum of logical defini-
tions of model-based diagnosis”, Computational Intelligence 7(3) 133–141.

[Console & Torasso, 1991b] Console, L and Torasso, P, 1991. “On the co-operation between
abductive and temporal reasoning in medical diagnosis”, Artificial Intelligence in Medicine
3(3) 291–311.

[Das et al., 1993] Das, SK, Clarke, M and Fox, J, 1993. “A logic for reasoning about safety
in decision support systems”, 2nd European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty, Granada.

[Van Denneheuvel et al., 1990] Van Denneheuvel, S, Van Emde Boas, P, De Geus, F and
Rotterdam, E, 1990. “RL, a language for constraint solving”, In: Logic Programming and
Database Processing Computer Science in the Netherlands.

[Dincbas et al., 1988] Dicbas, M, Van Hentenryck, P, Simonis, H, Aggoun, A, Graft, T and
Berthier, F, 1988. “The constraint logic programming language CHIP”, In: Proceedings of
the International Conference in Fifth Generation Computer Systems, Tokyo, Japan.

[De Dombal, 1991] De Dombal, FT, Dallos, V and McAdam, WA, 1991. “Can computer-
aided teaching packages improve clinical care in patients with acute abdominal pain?”,
British Medical Journal 302 1495–1497.

[Duda et al., 1976] Duda, RO, Hart, PE and Nilsson, NJ, 1976. “Subjective Bayesian methods
for rule-based inference systems”, In: AFIPS Conference Proceedings of the 1976 National
Computer Conference 45 1075–1082.

[Ehrig & Marh, 1985] Ehrig, H and Mahr, B, 1985. Fundamentals of Algebraic Specifica-
tion I: Equations and Initial Semantics, Monographs on Theoretical Computer Science
6, Springer-Verlag, Berlin.

[Ehrig & Marh, 1990] Ehrig, H and Mahr, B, 1990. Fundamentals of Algebraic Specification
II: Module Specifications and Constraints, Monographs on Theoretical Computer Science
21, Springer-Verlag, Berlin.

[First et al., 1982] First, MB, Weimer, BJ, McLinden, S and Miller, RA, 1982. “LOCAL-
IZE: computer-assisted localization of peripheral nervous system lesions”, Computers and
Biomedical Research 15 525–543.

[Fox, 1993] Fox, J, 1993. “On the soundness and safety of expert systems”, Artificial Intelli-
gence in Medicine 5 159–179.

29



[Fox et al., 1990a] Fox, J, Clark, DA, Glowinski, A and O’Neil, MJ, 1990. “Using predicate
logic to integrate qualitative reasoning and classical decision theory”, IEEE Transactions
on Systems, man, and Cybernetics 20 347–357.

[Fox et al., 1990b] Fox, J, Gordon, C, Glowinski AJ and O’Neil, M, 1990. “Logic engineer-
ing for knowledge engineering: the Oxford System of Medicine”, Artificial Intelligence in
Medicine 2 323–339.

[Futatsugi et al., 1985] Futatsugi, K, Goguen, JA, Jouannaud, JP and Meseguer, J, 1985.
“Principles of OBJ2”, In: Proceedings of the Symposium on Principles of Programming
Languages, pp 52–66, ACM, New-York.

[Genesereth & Nilsson, 1987] Genesereth, MR and Nilsson, NJ, 1987. Logical Foundations of
Artificial Intelligence, Morgan Kaufmann, Palo Alto, California.

[De Geus et al., 1991] De Geus, F, Rotterdam, E, Van Denneheuvel, S and Van Emde Boas,
P, 1991. “Physiological modelling using RL”, In: M Stefanelli, A Hasman, M Fieschi and
J Talmon (eds.), AIME91, Lecture Notes in Medical Informatics, pp 198–210, Springer-
Verlag, Berlin.

[Grodins, 1963] Grodins, FS, 1963. Control Theory and Biological Systems, Columbia Uni-
versity Press, New York.

[Hammond et al., 1993] Hammond, P, Davenport, JC and Fitzpatrick, FJ, 1993. “Logic-
based integrity constraints and the design of dental prostheses”, Artificial Intelligence in
Medicine 5(5) 431–446.

[Hammond et al, 1994] Hammond, P, Harris, AL, Das, KS and Wyatt, JC, 1994. “Safety and
decision support in oncology”, Meth. Inf. Med. 33(4) 371–381.

[Hammond & Davenport, 1995] Hammond, P and Davenport, JC, 1995. “Eliciting and mod-
elling the design knowledge of multiple experts”, submitted for publication.

[Hammond & Sergot, 1995] Hammond, P and Sergot, M, 1994. “Computer support for
protocol-based treatment of cancer”, J. Logic Programming, to appear.

[Van Harmelen, 1991] Van Harmelen, F, 1991. Meta-level Inference Systems, Pitman, Lon-
don.

[Van Harmelen & Balder, 1992] Van Harmelen, F and Balder, J, 1992. “(ML)2: a formal
language for KADS models of expertise”, Knowledge Acquisition 4 127–161.

[Hill & Lloyd, 1994] Hill, PM and Lloyd, JW, 1994. The Gödel Programming Language, The
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