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Computer-assisted decision support for the diagnosis and
treatment of infectious diseases in intensive care units

CA M Schurink, PJ F Lucas, | M Hoepelman, M J M Bonten

Diagnosing nosocomial infections in critically ill patients admitted to intensive care units (ICUs) is a challenge

because signs and symptoms are usually non-specific for a particular infection. In addition, the choice of

treatment, or the decision not to treat, can be difficult. Models and computer-based decision-support systems
have been developed to assist ICU physicians in the management of infectious diseases. We discuss the historical
development, possibilities, and limitations of various computer-based decision-support models for infectious
diseases, with special emphasis on Bayesian approaches. Although Bayesian decision-support systems are
potentially useful for medical decision making in infectious disease management, clinical experience with

them is limited and prospective evaluation is needed to determine whether their use can improve the quality of

patient care.

Introduction

The management of infectious diseases is complex,
especially in an intensive care unit (ICU) setting,
because many patients have concomitant diseases. In
daily practice, considerable clinical expertise is required
to establish the correct diagnosis, to choose appropriate
antimicrobial treatment, and to balance optimal patient
care with possible undesirable negative aspects, such as
the development of antibiotic resistance, the risk of
adverse events, and health-care costs. Although
computerised patient records—when properly linked to
hospital information systems—provide physicians with
the information they need for clinical decision making,
some form of computer-based decision support would
assist clinicians in this process.

Computer-based decision-support systems for daily
patient care have been developed. Decision-support
systems based on models of expert knowledge are called
expert systems.! We review the development of such
models applied to infectious disease management. We
use the diagnosis of ventilator-associated pneumonia
(VAP) to illustrate the differences and similarities
between the various methods, in particular regarding
their clinical use.

Conventional clinical approach to diagnosis
and treatment of infectious diseases

Any diagnosis, including that of an infectious disease, is
based on evidence—eg, the various clinical signs and
symptoms obtained by history taking, physical
examination, and laboratory investigations. Using this
information, clinicians decide whether to initiate
empirical anti-infective therapy, even in the absence of
precise information about the causative organisms.
Local ecology and antimicrobial-resistance patterns
must be taken into account when selecting appropriate
empirical treatment, which should be tailored as much
as possible, taking the immunocompetence of the host,
the virulence of suspected pathogens, and the possible
side-effects of the chosen antibiotics into consideration.
Depending on culture results and the evolution of
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clinical signs and symptoms, clinicians then need to
decide whether to continue, adjust, or discontinue the
selected therapy.

In principle, the antibiotic used should be as specific
as possible and discontinued when there is no micro-
biological evidence of infection. However, in practice,
physicians frequently administer, or continue to
administer, antibiotics even when objective criteria of
infection are scarce or absent. Although the dangers of
unnecessary antibiotic use are recognised, sometimes
a patient’s clinical condition is so poor that antibiotics
have to be administered even though culture results
remain negative. Because there is no diagnostic gold
standard for most infectious diseases, in many
situations little is known about the predictive value of
specific signs and symptoms.

Probability-based methods for diagnosing and
treatment of infectious diseases

With decision-support systems, patients are classified
into categories, such as either having or not having a
specific disease. Different systems use different
methods (or so-called classifiers) to achieve this
classification.

Early probabilistic and decision analytical approaches

The first attempts in computer-based decision support
in medicine date back to the early 1960s and mostly
concerned the use of Bayes’ theorem, with subsequent
addition of sequential gathering of information and the
use of graphics for conveying diagnostic information
to the user.”* Bayes’ theorem enables computation of
the probability of the presence (and absence) of a
disease on the basis of a set of clinical criteria and the
prior probability (or prevalence) of the disease. To limit
the amount of information needed and the number of
computation steps required, it was assumed that each
piece of evidence was independent (actually
“conditionally independent” given the presence or
absence of the disease; panel 1). The outcome was the
product of the sensitivity of individual signs and
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Panel 1: Definition of terms

Bayesian approach: knowledge is updated using a statistical rule that uses observed evidence from data.

Bayesian network: graphical network representation of a multivariate probability distribution, where arrows between variables
represent statistical dependence, and absence of an arrow represents statistical independence.

Bayes' theorem: also known as Bayes' rule. The computation rule allows computing reverse probabilities such as P(VAP|fever)—
ie, the probability that VAP is present after having observed fever in a patient, is based on P(fever|VAP) and the prior probability
P(VAP). In its general form, Bayes' theorem allows computation of the probability of any combination of events, assuming any
other combination of events.

Black-box method: method that produces results that are difficult to explain in terms of the underlying model—eg, because
mathematical arguments are required instead of arguments that are easy to understand by computer users.

Classification: assignment of a patient to a particular class—eg, a patient with signs and symptoms of an infection to the class of
patients with pneumonia. Diagnosis and treatment selection can often be cast as classification tasks.

Conditionally (in)dependent: (in)dependence of variables given the disease. Assuming that VAP (the condition) is present, the
pieces of evidence (eg, fever, radiological signs) are independent (not related) and when VAP is absent, the pieces of evidence are
dependent (related).

Decision-support system: computer program that is able to assist users in making a decision for a particular problem, such as
establishing a diagnosis in a patient with an infectious disease.

Decision variable: variable that represents a choice that must be made using decision theory—eg, treatment.

Dependence: correlation between statistical variables.

Evidence: observed information—eg, signs and symptoms in a patient.

Expert system: decision-support system that is based on the subjective knowledge of one or more experts about a problem.
If-then rule: rule of the form "if certain conditions are true then certain conclusions are true”. If-then rules are used in rule-based
systems to represent problem-solving knowledge.

Independence: lack of correlation between variables.

Linear function: function of the form f(x)=ax + b, where x is an numeric quantity, and a and b represent weights.

Logistic regression: linear function that approximates a probability distribution taking into account conditional independence of
the evidence variables given the class variable.

Medical decision analysis: medical discipline studying the application of decision theory to clinical problems.

Model-based method: method using models that produce output that can be explained in terms of the underlying model, such
that the user understands the output.

Naive Bayes’ theorem: special form of Bayes’ theorem, where the probability of a disorder D is computed based on evidence E,
and where the items in the set of evidence are assumed to be conditionally independent given the disorder. This assumption
facilitates the acquisition of probabilities and eases the computation of the relevant probabilistic information.

Neural network: function that includes threshold values that can be used to approximate any function, such as a probability
function underlying patient data.

Overfitting: lack of generalisation capabilities of a model in comparison with the knowledge underlying data. As a consequence,
the model will perform poorly with new data.

Rule-based method: method based on logic which uses if-then rules to represent medical knowledge; rule-based systems
supports a logical type of reasoning, of the form: if A is true and we have the rule “if A then B”, then B is also true.

Uncertainty calculus: method that provides rule for the representation and reasoning (computing) with uncertain knowledge.
Utility variable: variable that is used in decision theory to represent preferences.

Weight: multiplier of an evidence variable, which is used to increase or decrease the role of a variable, for example, in
classification.

symptoms multiplied by the prior probability of the
disease, converted to a number between 0 and 1.
However, the assumption that signs and symptoms are
independent is rarely justified in medicine, and thus
the calculated probability is not clinically realistic.
These models have since been called naive Bayesian
classifiers. Although such models perform reasonably
well in certain circumstances,’ they are not adequate
when it comes to choosing a treatment.

As a fictitious example, let us assume that the
prevalence of VAP among ICU patients is 20%, that

75% of patients with VAP and 12% of patients without
VAP have signs of consolidation on chest radiograph,
and that 75% of patients with VAP and 23% of patients
without VAP have fever. Assuming that fever has been
observed in a patient and that a chest radiograph has
not yet been done, then:

Certainty of having VAP=0-75 X 0-20=0-15

Certainty of not having VAP=0-23 X 0-80=0-184.

To turn these certainties into probabilities, with the
probabilities of having VAP and of not having VAP
summing to 1, we have to multiply the numbers 0-15
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and 0-184 by 3; thus, the probability of having VAP is
0-45 and the probability of not having VAP is 0-55.

Since the a priori probability of having VAP was
0-20, the likelihood of VAP more than doubled by
observing fever. The ultimate decision whether VAP is
present or not depends on the chosen threshold
probability. For example, if we take a threshold
probability of 0-5, then it would be concluded that this
patient does not have VAP. It is possible to use a naive
Bayesian classifier without taking all possible evidence
(eg, chest radiograph results) into account.

Logistic regression, developed in the 1960s, is closely
related to the naive Bayesian approaches (table 1).
Logistic regression models the interactions among
signs and symptoms as a linear function, weighing
their contribution to the probability of disease
presence. A logistic regression prediction rule depends
on an existing database. Disadvantages of this
technique are the frequent inclusion of variables that
cannot be justified by the opinion of experts® and the
inability to make a prediction for a specific patient if
one or more variables are missing. There are several
logistic regression models for infectious diseases. For
example, Leibovici and colleagues™ developed a
logistic regression model containing five variables to
diagnose urinary tract infection in women. The model
had a sensitivity of 95%, a specificity of 85%, and a
positive predictive value of 98%.

For a logistic regression model with two variables (ie,
fever and radiological signs) and with a VAP
prevalence similar to that used in the previous
example, the probability of VAP can be calculated as
follows:

P(VAP)=1/(1 + exp —[0-6*V1 + 0-8*V2 — 139])

where Vl1=fever; V2=radiological signs.

The figures 0-6 and 0-8 are weights for the variables
V1 and V2 computed by the logistic regression model.
V1 is 1-18 if fever is present (probability of fever in
case of VAP/probability of fever in case of not having
VAP=75/23=3-26 [ln 3-26=1-18]) and V2 is 1-83 for
the presence of radiological signs of pneumonia
(probability of radiological signs in case of
VAP /probability of radiological signs in case of not
having VAP=75/12=6-25 [In  6.25=1-83]). The
probability of VAP would be 0-69. As with the naive
Bayesian models, it is necessary to define a probability
threshold to distinguish between patients with and
without VAP. With a threshold of 0-5, this particular
patient would be considered to have VAP.*"

Rule-based methods

An entirely different, non-statistical method for
building computer-based decision-support programs
was proposed in the 1970s by Shortliffe and
colleagues."? The basic idea was to collect a large
number of if-then rules from experienced clinicians
and to use these rules, together with data on patients’
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signs and symptoms, in a logical reasoning computer
program to classify a patient’s condition into
diagnostic and therapeutic categories. However, a
drawback of this approach was the difficulty in dealing
with missing information.” For this reason, rule-based
methods have largely been abandoned. MYCIN, one of
the first rule-based expert systems, proved able to
identify the microbiological cause of septicaemia and
meningitis, and to determine the appropriate anti-
infective treatment.'>*'* Unfortunately, the system has
never been tested in clinical practice, because of the
immature state of the clinical information
infrastructure in the 1980s."”

For diagnosing VAP with rule-based methods, two
rules (concerning fever and radiological signs) need to
be defined:

IF fever is present, THEN VAP has a likelihood of 0-7

and:

IF radiological signs of pneumonia are present,
THEN VAP has a likelihood of 0-8.

If both fever and radiological signs are observed,
then the so-called certainty-factor calculus determines
that the likelihood of VAP is 0-7 + 0-8*%(1-0-7)=0-94."
Although it is possible to take available clinical
evidence into account, rule-based methods are based
on a very restrictive type of probability theory, making
it impossible to express correlations between signs and
symptoms.”

Modern methods

New computational techniques (model-based methods
and black-box methods) developed in the past two
decades are better at detecting patterns hidden in
biomedical data and have better statistical techniques
to represent and manipulate uncertainties. Model-
based methods are understandable to the user and can
often be used in the absence of data, whereas black-box
methods cannot be explained in terms of logical
relationships among variables and are almost solely
based on data.

Artificial neural networks and related black-box
methods

Artificial neural networks are powerful mathematical
functions, often represented by a network diagram
with input nodes, output nodes, and internal, or

Neural networks ~ Function approximation  Black-box No
and optimisation

Bayesian networks  Probability theory Model-based Yes

Method Theoretical Model-based or Possibility of incorporation  Use for data
basis Black-box of expert opinion analysis

Logistic regression  Probability theory and Black-box No Yes
function approximation

Rule-based Logic Possibly model-based ~ Yes No

Yes

Yes

Table 1: Comparison of various methods underlying decision-support systems
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hidden, layers.” Input nodes are connected by links to
hidden layers and these are in turn connected to output
nodes. Individual links are weighted and are used to
calculate the output at the next layer. As the neural
network learns from a dataset, the weighting of the
links is continuously adjusted: important links are
given a heavier weighting and unimportant links a
lighter weighting. Figure 1 shows an example of a
three-layer neural network, able to classify patients as
having or not having VAP on the basis of the signs
“(body) temperature” and “PO,/F,0,”."

Neural networks are black-box models that function
reasonably well when it comes to problems of pattern
recognition, for example in medical image analysis.”
However, because they need a lot of training data to
perform well, they are less suitable for the construction
of clinical classification and prediction models. The
fact that clinical data are often limited and modelled
relations are hidden and, therefore, not readily
understood or explained, further limits the use of
neural networks to compensate for the lack of data.”

Bayesian networks and influence diagrams

Bayesian networks are built on the probability
distributions of multiple variables, taking information
about dependence and independence between
individual variables into account. These probability
distributions can be based on subjective estimates,
information from the literature, patient data, or a
mixture of these. A diagram representing a Bayesian
network consists of arrows that connect variables
(panel 2). Variables linked to each other by an arrow
are assumed to be dependent—ie, if we have
information about one of the variables (eg,
leucocytosis) we also have some information about
another variable (eg, fever). If variables are not directly
connected by an arrow, they are assumed to be

Input Hidden layer Output

Temperature

Figure 1: Fictitious three-layer neural network with two input variables
Input variables are “Temperature” (value 0 for <38-5°C and 1 for >38-5°C) and
"PO,/F0,", (value 0 for >240 and 1 for <240). H,, H,, and H, represent three
hidden units, and there is one output variable (VAP, where 0 means VAP is
absent and 1 that VAP is present). The weights given to each variable are given
on the arrows that connect the variables and hidden units.

Panel 2: Bayesian network representation of the simplified
VAP problem

Signsand
symptoms

A4

Fever < Antipyretic drugs

v

Radiological
signs

Knowledge about fever is determined by information about
whether the patient has VAP or not, and whether
antipyretic drugs have been prescribed. The observation of
radiological signs depends only on the presence or absence
of VAP. Patient-based observations can be used for any
subset of the four variables and any resulting probability
can be computed. For example, even if it is not known
whether a patient has received antipyretic drugs and a chest
radiograph has not been done yet, it is possible to compute
the probability of VAP on the basis of the patient having a
fever. Moreover, it is also possible to predict how often
fever and radiological signs are observed in patients with
VAP.

independent. The direction of an arrow signifies
causality, so the arrow “pneumonia - fever” is simply
read as “pneumonia may cause fever”. If two or more
arrows point to the same variable, this can be
interpreted clinically as a consequence of these two or
more causes. For example, “mechanical
ventilation - sputum” and “pneumonia - sputum”
represent two separate, but interacting, causes of
increased sputum production.

Figure 2 illustrates a more complex example of a
simple Bayesian network for diagnosing VAP.” Here,
VAP is causally related to six variables, such as
leucocytosis, radiological signs, changes in body
temperature, PO,/F O, ratio, and number of leucocytes
in sputum. Thus, information about the probability
distribution of each variable and patient data is needed
as input. If new patient information is added, the
resulting probability distributions are automatically
updated. For example, if we add patient data about the
duration of mechanical ventilation (24-48 h), the
presence (yves) and colour of sputum (purulent), and
the PO,/F O, ratio (decreased) to the model, then the
probability of VAP changes from 10% if nothing is
known about the patient, to 92% (figure 2). The
probability distribution of the variable “temperature”,
is shown in table 2.

A Bayesian network can be extended with decision
and utility variables. Decision variables represent the
various decisions the user can take, such as the
prescription of antibiotics. Utilities are assessments of
outcomes of diagnostic and treatment decisions, taking
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Pneumonia

Mechanical ventilation
>144h
96-144h

No8 [
Yes 92

48-96 h
24-48h
0-24h
No

PO,/FO

o | ] ]

Yes

PO,/F0,

0 1]

<240

Sputum PMNs
>25 100 | | |

<250

Sputum colour
Purulent
Non-purulent

Leucocytosis

No 35
Yes 65

Radiological signs
>38.5 51 i

Normal 30
<36-0 18 [

Radiological signs

No 30
Yes 70

Radiological signs
No 80
Yes20 [

Figure 2: Fragment of a Bayesian network of ventilator-associated pneumonia with variables “mechanical ventilation”, “sputum”, “PO,/F,0,”, and “sputum

colour” filled in with patient data

The bar graphs show the probability distribution of each individual variable, given the patient findings concerning these four variables.

into account the patient’s condition, cost of treatment,
side-effects, etc. For example, the choice of antibiotics
for VAP can be categorised so that relatively narrow-
spectrum agents are chosen first, instead of broad-
spectrum antibiotics.” Bayesian networks can be also
used for simulations, to determine the characteristics
of patient groups and to investigate what will happen if
a (potentially inappropriate) drug is prescribed.?

Clinical experience with decision-support
systems

Probably the best-known medical decision support
system for the treatment of nosocomial infections is
the Health Evaluation by Logical Processing (HELP)
system developed in the early 1970s in the LDS
hospital in Salt Lake City, Utah, USA, and
continuously improved since then.” The system
combines data from multiple medical services, such as
emergency, pharmacy, radiology, surgery, pathology,
nursing, and respiratory therapy, as well as clinical
laboratories,  including  microbiology, = within
computerised medical records connected with
Bayesian networks.” This system has been used to
register and analyse hospital-acquired infections and to
identify patients at high risk of developing a
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nosocomial infection.*®” Over the years, many of the
techniques of model development for decision-support
systems have been explored with the HELP system. For
example, the rule-based method has been integrated to
suggest  alternatives  for  patients receiving
inappropriate anti-infective therapy,”” to improve the
timing of antibiotic prophylaxis in surgery,** to limit
unnecessarily prolonged prophylaxis,” and to survey***
and prevent adverse drug events.** Computerised
surveillance of adverse drug events, as reflected by
sudden medication stop orders, and the ordering of
antidote and specific laboratory tests (such as elevated
eosinophil counts, elevated serum potassium levels,
and low white blood cell counts), has increased the

Antipyretic drugs Pneumonia Temperature Temperature Temperature
>38-5°C =36-0°Cand <38.5°C <36-0°C

No No 0-03 0-95 0-02

No Yes 0-6 0-2 0-2

Yes No 0-02 0-95 0-03

Yes Yes 0-4 0-4 02

The chance of having fever when the patient has pneumonia and the patient is using antipyretic drugs:
P(temperature|pneumonia, antipyretic drugs); eg, P(temperature>38.5|pneumonia=yes, antipyretic drugs=yes)=0-4.

Table 2: Conditional probability distribution associated with the variable “temperature”
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Hospitalisation

Signsand

symptoms Side-effects
4

A

Colonisation » Pneumonia | Anti-infective
therapy

Mechanical
ventilation

Previous
antibiotics

Immunological
status

Susceptibility

Figure 3: Schematic representation of the VAP Bayesian network model

Each box represents a collection of similar variables. For example, the box labelled “colonisation” represents
colonisation of the patient by organisms such as Pseudomonas aeruginosa or Haemophilus influenzae; colonisation
by each of these organisms is modelled by a separate variable, indicating that it is possible to be colonised by more
than one organism at the same time (ie, they are not mutually exclusive). A dotted arrow indicates that the
variable (hospitalisation or mechanical ventilation) has time-related states, reflecting temporal effects of duration
of hospitalisation and mechanical ventilation on likelihood of colonisation and pneumonia.
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detection and reporting of such events 60-fold.* In a
prospective study, the use of an expert model to advise
on anti-infective drugs for prophylaxis, empirical
therapy, and microbiologically confirmed infections
improved the quality of patient care (reflected by
reductions in drug allergies, excess drug dosages, and
antibiotic-susceptibility mismatches) and reduced
costs.” Integration of a Bayesian network model to
diagnose  patients  with  community-acquired
pneumonia in the emergency room was prospectively
compared with diagnoses made by emergency room
physicians.*** During a 9-week period, 4361 patients
entered the emergency room, of whom 112 had
pneumonia. The area under the receiver operating
characteristic (ROC) curve of the model was 0-93 (CI
0-91, 0-95), with a sensitivity of 95% and a specificity
of 68-5%.%

Leibovici and colleagues developed a logistic
regression model incorporated into a decision-support
system to predict the presence of a broad range of
infections, including urinary tract infections” and
bacteraemia.” In retrospective evaluation this decision-
support system predicted the causative pathogen in 78%
of the infections and advised appropriate anti-infective
treatment in about 77% of the episodes. By comparison,
treating physicians predicted the causative pathogen in
55% of the infections and advised appropriate anti-
infective treatment in about 58% of the episodes.” If a
blood culture tested positive, the microbiologist used
the decision-support system to provide the treating

physician with an initial antibiotic advice. This advice
was compared with that suggested by a guideline and
with the empiric treatment prescribed by the
physicians.*#* Causative microorganisms were covered
by empirical therapy in 94-6% of the cases when the
advice was based on decision-support systems, in
92-7% of the cases when it was based on guidelines, but
only in 60-7% of the cases when it was prescribed by
the physicians. However, the probabilistic information
in these models was based only on the presence of
bacteraemia. Clinical, laboratory, or radiographic signs
of infections were not incorporated, and the decision-
support system was not integrated into a clinical
information system, which hampers its use in daily
clinical practice.

We have developed a Bayesian network to assist in
the diagnosis and treatment of VAP (figure 3). The
model covers progression from bacterial colonisation
to infection of the lungs. The variables
“hospitalisation” and “mechanical ventilation” and
signs and symptoms of pneumonia are used to adjust
the likelihood that a patient is colonised or infected by
particular hospital-specific bacteria. The choice of
optimal anti-infective treatment is then based on the
most likely causative organisms, taking into account
their susceptibility and the potential side-effects of the
treatment. An extra variable (called “utility”) has been
added to prevent the prescription of only very broad-
spectrum antibiotics for all patients with VAP. The
model has been incorporated in a decision-support
system, which has been implemented in the ICUs of
the Utrecht Medical Centre. We evaluated our
decision-support system using a database of 883
patients that were mechanically ventilated for more
than 48 hours (9422 patient-days) over a 3-year period.”
There were 157 episodes of VAP based upon a
diagnostic flowchart. Median likelihood predictions of
the decision-support system were 98% (interquartile
range [IQR] 61-100%) for the 157 VAP-days and 20%
(IQR 1-87%; p<0-001) for the 9265 non-VAP-days. The
optimal cut-off point for this decision-support system
was 74-5%, resulting in a sensitivity and a specificity of
70%, a positive predictive value of 3-8%, and a negative
predictive value of 99-3%. The area under the ROC
curve for decision-support system predictions and
presence of absence of VAP was 0-76.*

Search strategy and selection criteria

Data for this review were identified by searches of Medline,
PubMed, and references from relevant articles, using the
search terms “computer-assisted decision report”, “computer
model”, or "expert systems”, and “infection”. Only papers
published from 1960 to 2004 were chosen. Studies were

selected and references from relevant articles were retrieved.
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Conclusions

We have described several computer models that may
be used in clinical practice in the near future. Some
clinicians believe that the use of decision-support
systems in medicine will improve the quality of patient
care through better treatment choices and by achieving
a better balance between costs (both financial and
medical, such as side-effects of drugs) and benefits. In
the past, the lack of a suitable electronic information
infrastructure in many hospitals was seen as a major
obstacle to the use of decision-support systems;”
however, most hospitals have started—or will start—to
use electronic systems for patient management within
the next 10 years. Clinicians are generally reluctant to
use computerised guidelines that require additional
data entry and time and effort.” As a result, decision-
support systems still lack clinical credibility.” Yet, a
few decision-support systems have actually been
shown to improve the care process. Therefore, as for
any other new diagnostic technique or therapy,
prospective trials are needed to provide the necessary
evidence on which implementation and wide-scale use
of decision-support systems can be based.
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