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Abstract

The theory of causal independence is frequently used tbtéaeithe assessment of the proba-
bilistic parameters of discrete probability distributioof complex Bayesian networks. Although
it is possible to include continuous parameters in Bayesgtworks as well, such parameters
could not, so far, be modelled by means of causal indepeedbrory, as a theory of continuous
causal independence was not available. In this paper, stieosgy is developed and generalised
such that it allows merging continuous with discrete patansebased on the characteristics of
the problem at hand. This new theory is based on the disadvelationship between the theory
of causal independence and convolution in probability thediscussed for the first time in this

paper. Itis also illustrated how this new theory can be usexnnection with special probability

distributions.

1 Introduction and the noisy-MAX—in both cases, the interaction
among variables is being modelled as disjunctive

One of the major challenges in building Bayesian(Diez, 1993; Henrion, 1989; Pearl, 1988)—and the
networks is to estimate the associated probabilisti;oisy-AND. Interactions amongontinuouscause
parameters. As these parameters of a Bayesian natariables are usually modelled by statistical tech-
work have the form of conditional probability dis- niques such as logistic regression and probit regres-
tributions P(E | C1, ..., Cy), it has been beneficial sion, typically by using iterative numerical methods
to look upon the interaction between the associatethat estimate the weight parameters by maximising
random variablegr, C1, ..., C,, as the interactions the likelihood of the data given the model (Bishop,
betweercause<;, and areffectE. This insight has 2006). Clearly, these regression models resist man-
driven much of the early work (Pearl, 1988), andual construction based on a solid understanding of
is still one of the main principles used to constructa problem domain; the fact that Bayesian networks
Bayesian networks for actual problems. can be constructed using a mixture of background

Causal principles have also been exploited in situknowledge and data, depending on the availability
ations where the number of causesecomes large, of knowledge and data of the problem at hand, is
as the number of parameters needed to assess a faggen as one of the key benefits of the technique.
ily of conditional probability distributions for a vari- Moreover, it is not possible to combine regression
able E grows exponentially with the number of its models with discrete causal independence models.
causes. The theory of causal independence is fre- In this paper, a new framework of causal inde-
quently used in such situations, basically to decompendence modelling is proposed. It builds upon the
pose a probability table in terms of a small numberink we discovered between the theory of causal in-
of causal factors (Henrion, 1989; Pearl, 1988; Heck-dependence and the convolution theorem of proba-
erman and Breese, 1996). However, so far this thebility theory. The framework is developed by gener-
ory was restricted to the modelling discreteprob-  alising this theorem into an algebra that supports the
ability distributions, where in particular three types modelling of interactions, whether discrete, contin-
of interaction are in frequent use: the noisy-ORuous, or both, in a meaningful way.
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Colories | |Basal Metay Zggg;fya' Lipo(ssu)ction 3.1 Probability theory and Bayesian networks
©) (B) ) In this paper we are concerned with both discrete
¢ and continuous probability distributiorf3, defined
'Ifr?tngey Pro*éiittion EC\‘EEN Fat Removal  IN terms functionsf, called the probability mass
(1) (H) W) (B) function for the discrete case and density function
\\_; // for the continuous case. Associated with a mass and
density function, respectively, are distribution func-
Fa(tL'-)OSS tions, denoted by". Random variables are denoted
by upper case, e.gX, I etc. Instead ofX = x

we will frequently write simplyz. This is also the
notation used to vary over values in summation and
integration and to indicate that a binary variable
has the value ‘true’. The value ‘false’ of a binary
variable X is denoted byz. Finally, free variables

In biomedical modelling one often has to deal with a@re denoted by uppercase, e.y.,
mixture of discrete and continuous causes that give A Bayesian networks a concise representation
rise to an effect. For example, the amountfaf  Of & joint probability distribution on a set of random
storagein the human body is determined by the-  Vvariables (Pearl, 1988). It consists of an acyclic di-
ergy balancei.e., the balance between energy in-rected graptG = (V, A), where each nod¥& € V
take and expenditure. A decrease in fat storage usi§orresponds to a random variable add< V x V
ally occurs whenever the energy intake is smallefs & set of arcs. The absence of arcs in the graph
than the energy expenditure. The energy expendiG models independences between the represented
ture is determined by the internal heat producedyariables. In this paper, we give an drc— V' a
which is mainly the basal metabolic rate (BMR), causal reading: the arc's direction maik$as the
plus external work estimated by physical activity. effectof the causeV'. In the following, causes will
Besides altering the energy balance, the storage cdiiten be denoted by’; and their associated effect
be decreased by means ljfosuction The en- variable byE.
ergy variables are naturally represented as contin- Associated with the qualitative part of a Bayesian
uous variables, whereas ‘Liposuction’ is discrete. network are numerical parameters from the encoded
The causal model is presented in Figure 1 andgrobability distribution. With each variablé in the
the conditional probability distributions of fat loss graph is associated a set@dnditional probability
are represented byP(L | C,B,Y,S). Somehow distributions P(V | 7(V)), describing the joint in-
this distribution must be determined by the interac-fluence of values for the parentl’) of V' on the
tion between the intermediate causal variables conprobabilities of the variablé’s values. These sets
cerned, expressed by = (I < (H + W)) (energy  of probabilities constitute the quantitative part of
intake is less than or equal to heat production plughe network. A Bayesian network represents a joint
external work), withA standing for an appropriate probability distribution of its variables and thus pro-
energy balance. Furthermore, the binary (Booleanyides for computing any probability of interest.
effect variable fat losd. is defined ad. = (A V R)
(fat lossL is due to a change in the energy balance3.2 Causal modelling

A or fat removalR). The techniques developed in e nopular way to specify interactions among sta-
this paper will allow one to exploit such information (igsical variables in a compact fashion is offered by
in building a Bayesian network. the notion ofcausal independendgieckerman and
Breese, 1996). The global structure of a causal-
independence model is shown in Figure 2; it ex-
This section provides a review of the basics underpresses the idea that causés= (Ci,...,C,) in-
lying the research of this paper. fluence a given common effeét through interme-

Figure 1: Causal factors that affect fat loss in hu-
mans.

2 Motivating Example

3 Prdiminaries
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Henrion, 1989; Pearl, 1988; Srinivas, 1993) and
noisy-MAX (Diez, 1993; Heckerman and Breese,
1996; Srinivas, 1993) models, where the function
g represents a logical OR and a MAX function, re-
spectively.

In the case of continuous causal factors with a
discrete effect variable, there are two main propos-

Figure 2: Causal independence model. als for the conditional distribution of the discrete
node (Bishop, 2006). Suppose we have a binary ef-
. . fect variableE’ and continuous parents,, ..., C,.
diate variablesl = (I,...,1I,) and a Boolean, P ! "

] . If £ is modelled using #ogistic function then
or Boolean-valued, function, called theinterac- 9@g &

tion function The influence of each caus&, on  p. |y ) = exp(b + w’o(C)) @
the common effecE is independent of each other Y 1 +exp(b +wTp(C))
cause(’j, j # k. The functionb represents in which \yherew? = (wy,...,w,) is a weight vector and

way the intermediate effectg,, and indirectly also ©(C) a, possibly nonlinear, basis function applied

the cause’y, interact to yield the final effecEl. (g the cause§. The other option is to use tipeobit
Hence, this functiorb is defined in such way that yegression modelwith

when a relationship, as modelled by the function

P(e|Cy,...,Ch) = PO < (b+uw"p(C)) (3)

betweenly, k = 1,...,n,andE = 1 (true) is sat-

isfied, then it holds thai(/y,...,I,) = 1, denoted where© ~ N (0, 1). Although both types of model

byo(ly,...,I1,) =e. are flexible, it is very hard to come up with sensible
The conditional probability of the occurrence of weight vectorsw and basis functiong based only

the effectE given the cause§’,...,C,, can be on available domain knowledge of the relations be-

obtained from the conditional probabilitig3(I; | tween causes.

C) as follows: .
2 3.3 Theconvolution theorem

A classical result from probability theory that is use-
ful when studying sums of variables is the convo-
lution theorem. The following well-known theorem

F la (1) icall K (cf. (Grimmett and Stirzaker, 2001)) is central to the
ormula (1) is practically speaking not very Use- cearch reported in this paper.

ful, because the size of the specification of the func-_l_h 1 Let f be a ioint probabilit f
tion b is exponential in the number of its arguments. eorem 1. Let f be a joint probability mass func-

The resulting probability distribution is therefore in tion of the random. variablest and ', such that
general computationally intractable, both in termsX +Y =z Thenitholds thaP(X + VY = z) =

of space and time requirements. An important sube+Y(Z) =20 fl@2—2).

class of causal independence models, however, Broof. The (X,Y’) space determined h¥ + Y =
formed by models in which the deterministic func- z can be described as the union of disjoint sets
tion b can be defined in terms of separate binary(for eachz): |J, ({X = 2} N {Y = z — z}), from
functions g, also denoted by (I, Ix+1). Such  which the result follows. O
causal mdependen_ce models have been calted If X andY are independent, then, in addition, the
composablecausal independence models (Hecker-

man and Breese, 1996); these models are of sigp llowing corollary holds.

nificant practical importance. Often, all functions Corollary 1. LetX andY’ be two independent ran-
gx(Ix, Is1) are identical for eactk; a function ~dom variables, then it holds that
9k (I, Ir+1) may therefore be simply denoted by PX+Y=2) = fxiv(2)
’ .
g(I,1"). Typical examples of decomposable causal _ fo(a?)fy(Z — ) @)

Pye|Cr,....Co)= > [ PGrICe) @)

b(i1 ... in)=€ k=1

independence models are the noisy-OR (Diez, 1993;
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The probability mass functiorfxy is in that  Proof. The(Z,.J) space defined bi(I, J) = e can
case called theonvolutionof fx and fy, and itis be decomposed as follows:),{I = i} N {J =
commonly denoted agx+y = fx * fy. Thecon- j | b(i,j) = e}, where the expressioi(i,j) = e
volution theorem is very useful, as sums of randomshould be interpreted as a logical constraint on the
variables occur very frequently in probability theory Boolean values of the variable As in Theorem 1,
and statistics. The convolution theorem can also béhe individual set§7 =i} N{J = j | b(4,j) = e}
applied recursively, i.e., are mutually exclusive. O

FXpttXn = Fxy %+ * fx This theorem is illustrated by the following ex-

ample.
as follows from the recursive application of Equa- Example 1. Consider the example given in Figure
tion (4): 1 as discussed in Section 2, and the Boolean rela-

P(Xy 4+t Xy = 2) = tion AV R = L, which expresses that fat lods
n is due to changes in the energy balanteor fat
Z Z Zfol T1) fx, (Y1 — 21) - removal R. By applying Theorem 2 the follow-
Yn—2 Yn—3 1 ing results: P(AV R = 1) = >, fala)P(a V
an_1<yn72 —Yn-3)fx, (2 =yn-2) O)  R=1)= fa(a)(fr(r) + fr(7) + fa(@)fr(r) =
fa(a) fr(r)+ fa(a) fr(T)+ fa(a) fr(r), where the
term (fr(r) + fr(7)) results from the logical con-
Y = Xi+ X straint thata V R = [, i.e., R € {0,1}. Note that
this is exactly the same result as for the noisy-OR
model with the causal variabl€s marginalised out:

where we use the following equalities:

Yi = Y+ Xipr, Vi2<i<n-—2

Thus,Y, o = X3+ -+ X,,_1,and X,, = z — Z fA P(A\/R—l)

Y,,_o. As addition is commutative and associative,

any order in which th&’;'s are determined is valid.
The convolution theorem does not only hold for

the addition of two random variables, but also for

Boolean functions of random variables. However,In this section, we start to systematically explore

in contrast to the field of real numbers where a valuahe relationship between the convolution theorem of

of a random variableX,, is uniquely determined by probability theory and the theory of causal indepen-

areal number andy,,_» throughX,, = z — y,_2,  dence.

in Boolean algebra values of Boolean variables only

constrain the values of other Boolean variables. *-1 General idea

These constraints may yield a set of values, rathefhe idea now is that we can use any Boolean-valued

than a single value, which is still compatible with function, as long as the function is decomposable, to

the convolution theorem. In the following, we use model causal interaction using the convolution the-

the notatiorb(X, y) = z for such constraints, where orem. A discrete causal independence model can

the Boolean valueg andz constrainX to particular ~ also be written as follows:

values. For example, f(tX Vv y) = z, wherey, z . .

stand forY =1 (Y has tﬁe valuza ‘true’) and =1 Byle] €)= P(L, - Tn) =€ O)

aVvr=l

4 Convolution-based Causal
I ndependence

(Z has the value ‘true’), it holds that < {0,1}. where the right hand side can be determined as fol-
Theorem 2. Let f be a joint probability mass func- 1OWS:
tion of independent random, Boolean variables Pb(L,...,I,)=¢| C) =
and J and letb be a Boolean function defined on
I and J, then it holds that JZ ]Z szh | )
n—2 Jn—3
P(b(I,J)=e)=>_ fi(i)P(b(i,J) =e) P, (bl(u,lz) =J1]C)--
i Pr, (bp-1(jn-1,1In) = €| Cp) (6)
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and the Boolean random variablés are defined in _ // frx( k| C)dkdj
terms of[;'s dependent on the constraints imposed b(j,k)=e ’

by the Boolean operatorlg,. This can be proven B © .
by an inductive argument over all the cause vari- - /on(J 1C1) b k):ff(k‘CK) dkdj (7)
ables. If we use a single operater that is com- 0o 7

mutative and associative, then the order of evalua- = / fi(G1CHP (), K) = e|Ck)dj (8)

tion does not matter, and we can ignore parentheses:

b(l1,.... 1) = I ©--- © I, (Zhang and Poole, The constrainb(j, K) = e determines a subspace

1996; Lucas, 2005). However, if the single oper-of the real numbers for variabl& over which the
ator used to define the Boolean functibns nei-  density functionf is integrated.

ther commutative nor associative, then the order in Egr a generah-ary Boolean-valued functiohof
which the Boolean expression is evaluated mattersontinuous variables, we can apply this equation re-
and one should use parentheses. cursively, which gives:

The principles discussed above carry over to the
continuous case. The convolution theorem for con-fy(e | C) = P(b(11,Is,...,1,) =e| C) =

tinuous variablesX, Y, andZ, with Z = X + Y, o0 ) ]
has the following form: / fr (i | Cl)/b(‘ _r f1(iz | Ca) -+
—00 11,02,...y0n ) =€
fxiv(z) = / Ifx(@)fy(z —x)dz '/b(‘ . J1,(in | Cn) iy ---dip  (9)
—o0 i1,..nyin)=€

where fx iy, fx, and fy are probability density ¢ is defined on both discrete and continuous vari-
functions, and the variable¥' andY” are assumed  gpjes then this yields a mix of sums and integrals

to be in_dependent. In the context of th(_—:- theory Ofby repeated application of Theorem 2 and Eq. (8).
causal independence, we use convolution to com- Analogously to the convolution notation, we de-

pute the conditional probability density function fine an gperatofd for denoting this decomposition
fo(e | €), inaway very similar to the discrete case, ¢, any Boolean function such that:
whereb is the causal interaction function.

c Cor(oy _ 4C _
4.2 A language for modelling interactions OUR" - 1) = fiyay...n) (€) = fole | C)

To carry over the ideas of causal independence fronwhere the superscripts; andC, represent condi-
the discrete case, we consider various operators fafoning on the corresponding variables. This allows
continuous variables. This will build up a rich lan- us to deal with complex combinations of such oper-
guage for modelling causal independence. ators in a compact fashion.
4.2.1 Boolean-valued continuous operators If bis binary, we use_ gn infix notatioq;'e.gﬁv)
. . . denotes the decomposition of two densitfgsand
Moving to the continuous case, first létbe a fr using a logical OR. Returning to the fat loss

set of independent continuous causal random variz . ; .
roblem (denoted by the variablewith | standin
ables with associated probability densjty/ | C'). for I — 1§ of Examp?/e 1. we have: g

Consider the Boolean-valued decomposable func-

tions b, i.e., functionsb : I — {0,1}, such that o 1) = OP((aVR) =1
constraints on some variablés C I imposed byb (4O ) ;fA( JP(( )=1

are measurable sets of values f6r We now wish o _ _

to use the theory of causal independence in ordefhich is again the noisy-OR operator.

to decompose the probability magg(e | C). If In the following section, a language that supports
I = {J,K} are continuous intermediate variables Boolean combinations of relations is developed.
andC = {Cj,Ck} the relevant causal variables

' 4.2.2 Relational operators
then:

The relational operators are treated similarly to
fole|C)=PO(J,K)=€e]|C) convolutions and Boolean operators by viewing a
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relation and a value of a random variable as a con- For modelling the interaction between convolu-
straint on the other variables. First, basic operatorsions of variables, lef a set of continuous random
to build up our language are basic relational operavariables and< a set of constants. Then,sam-

tors, such as-, <, >. Consider<: relation is a Boolean-valued functiomsuch that
n m
Pele|C)=P((Lh <) =e|C) = b(1) = RO Vi, S W)
/ / f(i1,ia | O)dipdiz  (10) k=1 1=l
(i1<ig)=e

whereV C JUK, W C TUK, andR is arelational
If I, andI, independent, then the following equality OPerator.

results: If V andW do not overlap in variables except for
o the constants, the sums bf and IV are indepen-
Pc(e|C) = / fr(i1 ] C1) dent. In that case, the relation can be decomposed

by Eg. (9). So we have the following proposition.

Pl <) =e|Co)diy Proposition 1. The causal independence model of

o
= / fr.(i1 | C1) a sum-relationR (>, Vi, >, W;) with contin-
—00 uous interaction variableg can be written as:

), el eadnan PRV W) =)
=1

. . . . k=1
A similar expression can be derived for, while

P(h=5)=e¢|C)=0asP((I = iy | Cy) = = (Wit @ fwigogwan ) €)
0 for continuous variableg; andl>. This expres- ifvV nwnI = &.
sion implies that, in casg andl, are independent, Example 2. Recall the example in Figure 1 as

the relation can be d_ecomposed. AS_ aresult, We Caffiscussed in Section 2. The causal independence
use the notation as introduced earlier to obtain OProdel of the energy balancé can be written as:
erators(® : '

o . P(I<H+W)=a|C,B,Y)
1 2 —
Un' @) = JrelC) = (ff O 1ifw)) @) = UF O U * Fi)a)
= P(R(Il,fg):6|0) ) )
wherex is the convolution operator.
whereR is one of the basic relational operators. This approach could be extended easily to other

Subsequently, we look at the extension of thispperators, such as subtraction, but we refrain from
language with convolutions of the interaction be-thjs because of space limitations.

tween variables and constants. A constacan be

described by a uniform probability distribution with 423 Boolean combinations of relations

density function Sum-relations can now be combined using
Boolean functions in a uniform manner. LEtbe
£10) = { 1/6 if j e (k—=0/2,k+0/2] a set of continuous causal random variablesa
0 otherwise set of discrete causal random variables, dne-

1. U I;. A Boolean combination bis a Boolean-

+
for g € R™ very small, then valued function defined oh as follows:

P(I<J)=e€) = (f1O fe)e) be(I) = b(R1(Vh), ..., Ru(Via), 1a)

k
= / fr(@)di = P(I <k) whereb is a Boolean function an&, ..., R,, a set
> of sum-relations.
as one would expect. For convenience, we have If the continuous variables in the Boolean com-
written f;, for this density functionf; and will do  binations of relations are partitioned, Eg. (6) can be
so in the following. applied to obtain the following proposition.
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Proposition 2. The causal independence modelis the time it takes before the effect occurs. The
of a Boolean combination of sum-relations associated probability density function f§¢) =

b(R1(V1),...,R2(V,)), can be written as: F'(t) = Ae~™. Now, let; and I, stand for two of
such temporal random variables such thak 15,
P(b(R1(V1), R2(Va)) = ¢ | C) meaning that intermediate effeft does not occur
= (fgj(vl) ® fgj(vg))(e) later than/,. The probability mass oF to occur is:
ifVinV; =o. P<(e| C) = (fil O fi})(e)
Example 3. Again, consider the example in Fig-  _ /Oo fr(in | e)P((in < L) = e cp) dia
ure 1 as discussed in Section 2. We are now in the 0o

position to decompose the full causal independence _ /°° . /°° s a5 di
function representing fat logs. oo UACHEEY 0 Jrlin+0 ] e;)dodin

o0
4 . A
P(I<H+W)VR)=1|C B,Y,S) = / VT IRa T L ppp—

oo AL+ A2
= P(RVUI <H+W))=1|C,B,Y,S5) where we use a delay > 0. If \; = A, then

RV(I<SH+W P[1§]2(6|C)=1/2.
= (RO fLenaw) D) 53 Conditional Gaussian distribution
= (fROUT OUf i)W The most common hybrid distribution for Bayesian

, . T networks is the conditional Gaussian distribution
5 Special Probability Distributions (Lauritzen and Wermuth, 1989). We illustrate the
In this section, the theory developed in the previougheory for the case when a continuous interaction
sections is illustrated by actually choosing speciavariable has a continuous cause varialdle The

probability distributions to model problems. distribution of[ is given in this model by (i | C') =
S N(a + BC,c?). LetI; andI be two such random
5.1 Bernoulli distribution variables with causal variablé€y andCs. Itis well-

As an example of discrete distributions, we take the&known that variableE' with fr,_r,(e | C) is dis-
simplest one: the Bernoulli distribution. This distri- tributed Gaussian with mean + 3;C1 —as— (3205
bution has a probability mass functighsuch that and variancer? + o3. Similarly, the convolution of
f(0) =1—pandf(l) = p. Let P(Ix | ¢x) two Gaussian variables is a Gaussian variable with
be Bernoulli distributions with parametess where  the sums of means and variances. Because of space
k = {1,2}. Suppose the interaction betweéh limitations, the derivations are omitted.

and(Cs is modelled by<, then the effect variabl& Here we illustrate the relational operator The

also follows a Bernoulli distribution with parameter: probability P<(e | C') can be obtained by

P(e| e ) = (£ O fi)(e) Pc(e|C) = f{r O f1}
Cy Ca .
= th(il | c1)P((in < I2) = e | c2) = (' Ofg )© 0= F;(0)
i1 — % [‘1 +erf ((041%31612(1225262))}
= pr—pip2 +1 V2(c3+03)

= P(@ < b+U)161 +%U202)

By the same reasoning, we obtain the parameters %hereb N N
the resulting distribution whei, or . Voi+o?’ Voi+od’ Voito3'
and © ~ N(0,1), which is a probit regression

5.2 Exponential distribution model (cf. Section 3.2).

In order to model the time it takes for the effect Example 4. Consider the energy balanckas de-
to take place due to the associated cause, we us®mposed in Example 2. Suppose all causal and in-
the exponential probability distribution with distri- teraction variables are conditionally Gaussian. Sup-
bution functionF(t) = 1 — e=*, wheret € R{  pose the balance is negative, i.e.js true, then,
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Figure 3: Example distributions, where, from left to riglihe first figure shows the density 6f ~
N (2800, 700); the second figure shows the density ®f+ Y ~ N(2300,200); the third figure shows
the probability distributions?(A | C,B +Y) with A =T < (H + W) wherel ~ N(0.9 - C,200) and
H+W ~ N(1.1-(B+Y),300); finally, the figure on the right shows the joint density{of, C, B + Y'}.

(fE = fi)(a) represents a distributiotV (o +  tools for solving the inference problem can be used,
aw + BuCg + BwCy, aff + o—%/), i.e., the sum of such as the probit model for the conditional Gaus-
the mean and variance. Using the above, it followssian distribution, more research is required and such
that the probability of: is: we intend to undertake in the near future.

P(a) = (ff O (ff * fiv))(a)

which is a probit regression model with= (o —
ag —aw)/o’, we = Br/o’', wp = —py /o', and

wy = —Pw /o', wheres’ = /0% + 02, + 02,.
Y= Pw/ I 7H "W F.J. Diez. 1993. Parameter adjustment in Bayes net-
In Figure 3 a number of plots are given to illus- \yorks: the generalized noisy OR-gate. WAI'93,

trate this model for some realistic parameters. Note pages 99-105.
that the energy balance distributions depicted in th% Grimmett and D. Stirzaker. 2001Probability and

third figure are split up into 0 (too much intake),  Random Processe®xford University Press, Oxford.

1 (too much energy expenditure), and an uncertainD Heck 43S B 1996. C lind
band in the middle. . Feckerman an .. breese. . Causal iInaepen-

dence for probabilistic assessment and inference using
6 C luSi Bayesian networks.|EEE Transactions on Systems,
onclusons Man and Cybernetic26(6):826—-831.

We presented a new algebraic framework for causall. Henrion. 1989. Some practical issues in constructing
independence modelling of Bayesian networks that belief networks. In J.F. Lemmer and L.N. Kanal, edi-
goes beyond what has been available so far. In con- tors,Uncertainty in Artifipial Intelligencepages 161—
trast to other approaches, the framework supports 173, Amsterdam. Elsevier.
the modelling of discrete as well as of continuousS.L. Lauritzen and N. Wermuth. 1989. Graphical
variables, either separately or mixed. models for associations between variables, some of

The design of the framework was inspired by which are quallltatlve and some quantitativ&nnals

of Statistics17:31-57.

the convolution theorem of probability theory, and
it was shown that this theorem easily generalise?
to convolution with Boolean-valued functions. We
also studied a number of important modelling oper-J- Pearl. 1988.Probabilistic Reasoning in Intelligent
ators. Contrary to regression models, we were thus Egﬁ%n;?;n gﬁ%g;ﬁ;‘]ﬂguﬂge Inferenadorgan
able to model interactions between variables using ’ '
knowledge at hand. Furthermore, the theory was- Srinivas. 1993. A generalization of the noisy-OR
illustrated by a number of typical probability distri- ~ Mdel- INUA'93, pages 208-215.
butions which one needs to use when actually buildN.L. Zhang and D. Poole. 1996. Exploiting causal
ing Bayesian network models for problems. Finally, independence in Bayesian network inferendéIR
although some of the results suggest that standard 5:301-328.
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