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Abstract

Independence of causal influence (ICI) offer a high level starting point for the design of Bayesian networks. However,
these models are not as widely applied as they could, as their behavior is often not well-understood. One approach is to
employ qualitative probabilistic network theory in order to derive a qualitative characterization of ICI models. In this
paper we analyze the qualitative properties of ICI models with binary random variables. Qualitative properties are shown
to follow from the characteristics of the Boolean function underlying the model. In addition, it is demonstrated that the
theory also allows finding constraints on the model parameters given knowledge of the qualitative properties. This high-
level qualitative characterization offers a new way of identifying suitable ICI models and may facilitate their exploitation in
developing real-world Bayesian networks.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Since the end of the 1980s, the theory of Bayesian networks has gained considerable attention in the field of
artificial intelligence, as it offers a powerful framework for the representation of and reasoning with uncer-
tainty [16]. On the one hand, the theory provides methods for the representation of the dependence and inde-
pendence information associated with a domain, as well as methods for the representation of the underlying
uncertainties. On the other hand, methods to reason with the specified dependencies, independencies and
uncertainties are available. The (in)dependence information is specified by means of an acyclic directed graph,
whereas the uncertainties are specified by means of a joint probability distribution that respects the indepen-
dence information specified in the graph. The joint probability distribution is fully determined by a set of local
probability distributions, usually in the form of conditional probability tables.
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In designing Bayesian networks, developers try to create acyclic directed graphs that are as sparse as pos-
sible, as the size of a conditional probability table is exponential in the number of associated variables. Cre-
ating sparse graphs not only saves space, but may also speed up probabilistic inference. Unfortunately, the
creation of sparse graphs for a given problem may not always be possible. However, by imposing extra inde-
pendence assumptions, supplemented by assumptions of functional dependence, it may be possible to reduce
the number of conditional probabilities that need to be assessed. The theory of independence of causal influence

(ICI), also known as causal independence, is especially suited for this purpose [17,15,9,4].
ICI theory adopts specific independence assumptions to model the interactions between a set of cause vari-

ables and an effect variable; using this approach, the number of parameters that need to be estimated decreases
from exponential to linear in the number of variables. The noisy OR model, that expresses that the presence of
one or more causes is sufficient to give rise to the occurrence of the effect, is an example of an ICI model that is
widely used in practice [8,10,3]. It has been used in the QMR-DT system, which includes knowledge of approx-
imately 600 diseases and approximately 4000 findings [19], the Promedas system, which aims to cover a large
diagnostic repertoire of internal medicine [12], and in DIAVAL, an expert system for electrocardiography that
uses a generalization of the noisy OR for non-binary random variables [5]. Another, frequently used ICI
model is the noisy AND model; it expresses that all causes must be present in order to give rise to the effect.
It has, for example, been used to model the joint effect of antibiotics on bacteria causing ventilator-associated
pneumonia in patients [14].

The noisy OR and noisy AND models are special cases of ICI models based on Boolean functions since in
principle any of the 22n

possible n-ary Boolean functions can be used to model deterministic interactions
between cause and effect variables. Given the favorable properties of ICI models, it is unfortunate that only
very few of these are used in practice: only the mentioned noisy OR and noisy AND are popular amongst
developers. This is caused by the fact that it is often unclear with what behavior a particular ICI model is
endowed when choosing a particular Boolean function. In [13] this problem was addressed by exploiting qual-

itative probabilistic network (QPN) theory to characterize the behavior of ICI models in terms of influences and
synergies [20]. Such a qualitative characterization may then be matched with the behavior that is dictated by
the domain, as suggested in Fig. 1. The qualitative pattern associated with a particular ICI model is termed a
qualitative causal pattern.

The idea that QPN theory might be suitable for analyzing the behavior of ICI models was already recog-
nized by Wellman, who states that: ‘‘. . .prototypical patterns of systematic interaction might alleviate the burden

of specifying qualitative synergies’’ and ‘‘. . .we should expect non-ambiguous synergy results from canonical mod-

els because any representation that specifies an n-way influence in terms of OðnÞ parameters must employ some

systematic assumption about interactions’’ [20]. However, Lucas [13] offers the first systematic approach to ana-
lyzing ICI models in terms of QPN theory. This was done in particular for decomposable ICI models, i.e., ICI
models which are characterized in terms of binary functions. There are 16 binary Boolean functions, which can
be used to compose a subset of n-ary Boolean function, and which can be classified in terms of presence or
absence of the properties of associativity and commutativity. The previously discussed noisy OR model is based
on the Boolean OR, which is both commutative and associative. Although this offers an analysis of a useful
subset of Boolean functions, a general characterization of the behavior of Boolean functions is not provided.

The present paper offers a substantial generalization of previously published results as it develops a general
theory of qualitative causal patterns. The theory identifies:

(1) The qualitative behavior that holds for a given ICI model.
(2) Properties of ICI models that hold given a qualitative specification.
Fig. 1. Comparing the observed qualitative behavior of an ICI model with the desired qualitative behavior as specified by a domain
expert.
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The theory developed in this paper is useful in Bayesian network design, as it provides a tool for matching
desired qualitative behavior of ICI models with the appropriate structural and quantitative parameters. Fur-
thermore, a more widespread use of ICI models in Bayesian networks will facilitate the intelligibility of net-
work behavior, allow the construction of denser networks, and ease the estimation of network parameters.

The structure of this paper is as follows. In Section 2 we review some necessary preliminaries, drawing upon
Bayesian network, ICI and QPN theory. Subsequently, we study some general properties of ICI models in Sec-
tion 3. These properties are then used to identify the qualitative behavior for different Boolean functions in
Section 4. Finally, in Section 5 we round off with a discussion of the obtained results.

2. Preliminaries

In this section we will subsequently discuss Bayesian networks, ICI models, the running example of this
paper, and QPN theory.

2.1. Bayesian networks

Bayesian networks, also called belief networks or probabilistic networks, were introduced in the 1980s as a
framework for probabilistic inference [16]. A Bayesian network representation consists of an acyclic directed
graph and an associated joint probability distribution that reflects the independence information specified in
the graph.

We make use of the following graph-theoretical concepts in the definition of a Bayesian network. We define
a graph as a pair G ¼ ðV;EÞ, where V is a finite set of vertices and E � V� V is a finite set of edges. If for all
pairs ðv; v0Þ 2 E it holds that ðv0; vÞ 62 E, then we say that the graph is directed. If, additionally, there is no
sequence v0; . . . ; vn of distinct vertices such that ðvi�1; viÞ 2 E and v0 ¼ vn, then the graph is an acyclic directed
graph, or ADG for short. The parent set of a vertex v 2 V is defined as the set pGðvÞ ¼ fv0jðv0; vÞ 2 Eg.

Let P be a joint probability distribution of a set of random variables X and assume that there is a one-to-
one correspondence between the vertices in V and the variables in X. We denote a random variable that cor-
responds with a vertex v 2 V by X v and a set of random variables that corresponds with a set of vertices
W � V by X W. A Bayesian network B is then defined as a pair B ¼ ðG; P Þ, where G ¼ ðV;EÞ is an ADG
and P is a joint probability distribution that factorizes as
P ðX VÞ ¼
Y
v2V

P ðX vjX pGðvÞÞ:
In the following, to simplify notation, we will use vertices V and random variables in X V interchangeably,
where the interpretation will be clear from the context. In this paper, it is assumed that all random variables
are binary. We will use x to denote X ¼ > (logical truth) and �x to denote X ¼? (logical falsehood). If the value
of variable X is either true of false, but unspecified, then this is indicated by X ¼ x̂, or simply by x̂.

2.2. ICI models

Independence of causal influence is the notion that causes are independently contributing to the occurrence
of an effect through some pattern of interaction, represented as a set of local conditional probability distribu-
Fig. 2. ICI model.
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tions of a Bayesian network [9]. The associated Bayesian network structure is depicted in Fig. 2, where
variables Ck indicate cause variables, Mk intermediate variables and E is an effect variable. Let B ¼ f?;>g.
We use c 2 Bn, possibly with a subscript, to denote an element of Bn for vectors C ¼ ðC1; . . . ;CnÞ; similarly,
we use m 2 Bn for elements of M ¼ ðM1; . . . ;MnÞ. These are called configurations. To reduce the use of
numeric indices, we associate with each cause variable C an intermediate variable MC. Independence of causal
influence is captured by the requirement that an intermediate variable MC 2M is dependent of cause variable
C and independent of the other cause variables C n fCg. According to the independence structure shown in
Fig. 2, it holds that:
P ðejcÞ ¼
X

m

P ðejmÞP ðmjcÞ ¼
X

m

P ðejmÞ
Yn

i¼1

Pðm̂ijĉiÞ: ð1Þ
An intermediate variable MC can be interpreted as modulating the contribution of a cause C to the effect E and
often specific assumptions are made about this contribution. In this paper, we assume that both consequenti-

ality and accountability hold. Consequentiality states that the truth of a cause variable increases our belief that
the associated intermediate variable is true as well. Formally, we require that P ðmCjcÞ > P ðmCj�cÞ. Accountabil-
ity states that the truth of an intermediate variable must imply the truth of its associated cause variable; for-
mally, PðmCj�cÞ ¼ 0. The conditional probability distribution P ðEjMÞ used in Eq. (1) is assumed to be
deterministic in ICI models, and, thus, can be taken as representing a function f : Bn ! B, such that
P ðejmÞ ¼ 1 if f ðmÞ ¼ e and P ðejmÞ ¼ 0 otherwise. An ICI model is now defined formally as follows:

Definition 1 (ICI model). An ICI model C is a tuple ðC;M;E; f ;PÞ, where C is a set of cause variables, M is a
set of intermediate variables, E is an effect variable, f is an interaction function and P is a set of parameters
fP ðMCjCÞjC 2 Cg, with MC 2M, for each C 2 C and vice versa, such that
P ðejcÞ ¼
X

f ðmÞ¼e

Yn

i¼1

P ðm̂ijĉiÞ: ð2Þ
By f ðmÞ ¼ e is denoted the situation where both f ðmÞ ¼ e and E ¼ e hold. The probability P ðmCjcÞ will often
be abbreviated to P ðmjcÞ. In the literature different interpretations of independence of causal influence exist,
often taking the form of restrictions on an interaction function f that underlies the model [2,9]. Here, we as-
sume that an interaction function can be any Boolean function f : Bn ! B.

An ICI model C ¼ ðC;M;E; f ;PÞ can act as the basis for the specification of a Bayesian network
B ¼ ðG; PÞ, with ADG G ¼ ðV;EÞ, as depicted in Fig. 2, and joint probability distribution P, where G respects
all the dependences represented by the joint probability distribution P. The vertices in G are given by
V ¼ C [M [ fEg

such that the sets C;M and fEg are disjoint, and the arcs in G are given by
E ¼ fðC;MCÞjC 2 Cg [ fðM ;EÞjM 2Mg:

In addition to the parameters P ðMCjCÞ and the interaction function f, we also need to specify a prior joint
probability distribution P ðCÞ to obtain a complete specification of the Bayesian network B.

In the sequel, we will often use the notation P½f � to refer to the probability distribution P ðEjcÞ. We can
alternatively write Eq. (2) in somewhat generalized form as
P½f �ðejcÞ ¼
X

m

f ðmÞP ðmjcÞ ¼
X

m

f ðmÞ
Yn

i¼1

P ðm̂ijĉiÞ; ð3Þ
where we make use of the analogy between Boolean algebra and ordinary arithmetic by interpreting ? as 0
and > as 1, i.e., if f ðmÞ ¼ ? this is interpreted as f ðmÞ ¼ 0, and as f ðmÞ ¼ 1 otherwise [1]. We will sometimes
employ functions f that are not Boolean; even then Eq. (3) still applies, where P½f �ðejcÞ can be interpreted as
the conditional expectation of f given c. If f is a constant and there are no cause variables C then P½f � ¼ f .

As an example of a realistic ICI model that will be used to illustrate the theory developed in this paper,
consider the ICI model shown in Fig. 3 that represents a piece of medical knowledge with respect to the prog-



Fig. 3. A prognostic model of survival in serious illness, modeling the interaction between two drugs, expressed as an ICI model.
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nosis of a serious illness ðIÞ, such as malignant hypertension due to chronic kidney infection, infectious hyper-
tension for short, which is handled by two alternative treatments T 1, an antihypertensive drug, and T 2, rifam-
pin (an antibiotic).1 The seriousness of the infectious hypertension is reflected by the fact that we are interested
in the survival ðSÞ (e.g., within the next 5 years) of a patient with this illness. The resulting ICI model is shown
in Fig. 3. The variable B stands for body failure due to the illness, E1 stands for the effectiveness of treatment
T 1 and E2 for the effectiveness of treatment T 2. If body failure occurs and the disease cause is eradicated, it is
assumed that the patient will survive. However, if both treatments T 1 and T 2 are effective then the patient will
not survive due to the synergistic interaction between the two treatments (rifampin in conjunction with the
antihypertensive drug). This can be expressed by means of a Boolean function f defined by the following Bool-
ean expression:
1 Th
effect
counte
S ¼ ð:B ^ :E1 ^ :E2Þ _ ðE1 ^ :E2Þ _ ð:E1 ^ E2Þ ð4Þ

(survival is equivalent to the absence of body failure or eradication of the disease due either treatment T 1 or
T 2, but not both). In the sequel, we will use Boolean functions and Boolean expressions interchangeably. The
qualitative behavior that arises from this choice should then be in accordance with the domain knowledge as
stated above.

According to what has been said above, the Bayesian network model is an example of an ICI model. It will
be called the prognostic model in the following. Here, the variables I, T 1 and T 2 act as cause variables and B,
E1 and E2 are the intermediate variables. For example, we have that B ¼ MI .

There are two main tasks in building an ICI model. The first is to determine the underlying interaction func-
tion f, in the example a Boolean function that is assumed to model the interaction between the factors Body
Failure ðBÞ, Effectiveness 1 ðE1Þ and Effectiveness 2 ðE2Þ with respect to Survival ðSÞ; where S is the effect var-
iable. The second task is to estimate the parameters P ðBjIÞ, P ðE1jT 1Þ and P ðE2jT 2Þ. Notice that just three con-
ditional probabilities need to be estimated, as P ðmCj�cÞ is assumed to be zero for each cause variable C.
Examples of ICI models that model other real-world problems and employ alternative interaction functions
can be found in [13].

2.3. Qualitative probabilistic networks

Recall that the aim of the research underlying this paper is to develop a theory that is able to assist Bayesian
network developers in quantifying Bayesian networks using qualitative knowledge from a problem domain.
Qualitative probabilistic networks are at the core of this theory. We will therefore briefly summarize the theory
of qualitative probabilistic networks.

Qualitative probabilistic networks (QPNs) were introduced by Wellman as a qualitative abstraction of
ordinary Bayesian networks [20]. The relationships between variables are described by the concepts of influ-
e choice of these drugs was inspired by the death of Slobodan Miloševic. It is hypothesized that his death was due to the combined
of an antihypertensive drug, which was meant to reduce the height of his blood pressure, and the antibiotic rifampin, which
racted the effect of the antihypertensive drug. Here, we abstract away from the actual course of events.
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ences and synergies. In the following, let ðG; P Þ be a Bayesian network, let A;B;C 2 X be binary random vari-
ables and let ðA;CÞ and ðB;CÞ be arcs in G.

A qualitative influence expresses how the value of one variable influences the probability of observing val-
ues for another variable.

Definition 2 (Qualitative influence). Let X denote pGðCÞ n fAg. We say that there is a positive qualitative
influence of A on C, written as dA!C ¼ þ, if
dA!CðxÞ ¼ P ðcja; xÞ � Pðcj�a; xÞP 0;
regardless of the configuration x, with a strict inequality for at least one configuration x. Negative ðdA!C ¼ �Þ
and zero qualitative influences ðdA!C ¼ 0Þ are defined analogously, replacing P by 6 and ¼ respectively. If
there are values x and x0, such that
P ðcja; xÞ � P ðcj�a; xÞ > 0 and P ðcja; x0Þ � P ðcj�a; x0Þ < 0;
then we say that the qualitative influence is non-monotonic, denoted by dA!C ¼ �. If none of these cases hold,
i.e., when there is incomplete information about the probability distribution, then we say that the qualitative
influence is ambiguous, written as dA!C ¼ ?.

Example 3. In order to illustrate the qualitative concepts we assume for the moment that the exact probabil-
ities associated with the prognostic model are known. We assume P ðbjiÞ ¼ 0:9, Pðe1jt1Þ ¼ 0:3 and P ðe2jt2Þ ¼
0:6. Hence, it is very likely that a serious illness gives rise to body failure, as it occurs in 90% of cases, treat-
ment T 1 is effective in 30% of the patients and treatment T 2 is effective in 60% of the patients. What then, we
might ask, is the qualitative influence of a serious illness on the survival? This is computed as follows, where
the Boolean function f is defined by the Boolean expression (4):
dI!Sðf̂t1; t̂2gÞ ¼ P½f �ðsji; t̂1; t̂2Þ � P½f �ðsj�ı; t̂1; t̂2Þ ¼ P ð�e1 ĵt1ÞPð�e2 ĵt2ÞðPð�bjiÞ � P ð�bj�ıÞÞ:
It follows that dI!Sðft1; t2gÞ ¼ �0:252, dI!Sðf�t1; t2gÞ ¼ �0:36, dI!Sðft1;�t2gÞ ¼ �0:63 and dI!Sðf�t1;�t2gÞ ¼
�0:9. In accordance with our expectations, serious illness appears to have a negative influence on survival.

An additive synergy expresses how the interaction between two variables influences the probability of observ-
ing values for a third variable.

Definition 4 (Additive synergy). Let X denote pGðCÞ n fA;Bg. We say that there is a positive additive synergy of
A and B on C, written as dðA;BÞ!C ¼ þ, if
dðA;BÞ!CðxÞ ¼ P ðcja; b; xÞ þ P ðcj�a; �b; xÞ � P ðcj�a; b; xÞ � P ðcja; �b; xÞP 0;
regardless of the configuration x, with a strict inequality for at least one configuration x. Negative, zero, non-
monotonic and ambiguous additive synergies are defined analogous to qualitative influences.

Example 5. With regard to the prognostic model, we might be interested in the additive synergy between seri-
ous illness and treatment T 1 with respect to survival. This is computed as follows, where again we employ
Boolean expression (4):
dðI;T 1Þ!Sðf̂t2gÞ ¼ P½f �ðsji; t1; t̂2Þ þ P½f �ðsj�ı;�t1; t̂2Þ � P½f �ðsj�ı; t1; t̂2Þ � P½f �ðsji;�t1; t̂2Þ
¼ P ð�e2 ĵt2ÞðP ð�bjiÞ � 1ÞðP ð�e1jt1Þ � 1Þ:
It follows that dðI ;T 1Þ!Sðft2gÞ ¼ 0:108 and dðI ;T 1Þ!Sðf�t2gÞ ¼ 0:27 such that illness I and treatment T 1 have a po-
sitive additive synergy with respect to survival.

A product synergy expresses how upon observation of a common child of two vertices, observing the value
of one parent vertex influences the probability of observing a value for the other parent vertex. The original
definition of a product synergy is as follows [11].
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Definition 6 (Product synergy). Let X denote pGðCÞ n fA;Bg. We say that there is a positive product synergy of
A and B with regard to the value ĉ of variable C, written as dĉ

ðA;BÞ!C ¼ þ, if
dĉ
ðA;BÞ!CðxÞ ¼ Pðĉja; b; xÞP ðĉj�a; �b; xÞ � P ðĉj�a; b; xÞP ðĉja; �b; xÞP 0;
regardless of the configuration x, with a strict inequality for at least one configuration x. It is assumed that the
value ĉ of variable C is either true or false. Negative, zero, non-monotonic and ambiguous product synergies
are again defined analogous to the corresponding types of qualitative influences.

Example 7. With regard to the prognostic model, the product synergy between treatments T 1 and T 2 in the
case of survival, is computed as follows:
ds
ðT 1;T 2Þ!Sðf̂ıgÞ ¼ P½f �ðsĵı; t1; t2Þ � P½f �ðsĵı;�t;�t2Þ � P½f �ðsĵı;�t1; t2Þ � P½f �ðsĵı; t1;�t2Þ ¼ �Pðe1jt1ÞP ðe2jt2Þ:
It follows that ds
ðT 1;T 2Þ!Sðf�ıgÞ ¼ ds

ðT 1;T 2Þ!SðfigÞ ¼ 0:18 such that treatments T 1 and T 2 have a positive product
synergy with respect to survival. This positive product synergy arises due to the fact that in the case of survival
of a patient, it is more likely that one of both treatments is given. The presence of both T 1 and T 2 and the
absence of both T 1 and T 2 will lead to patient death.

The following lemma states that for binary random variables, the product synergy when C ¼ ? is partially
determined by the associated additive synergy.

Lemma 8. For binary random variables, the product synergy when C ¼ ? is determined by the product synergy

when C ¼ > and the additive synergy through the following equality:
d�c
ðA;BÞ!CðxÞ ¼ dc

ðA;BÞ!CðxÞ � dðA;BÞ!CðxÞ:
Proof
d�c
ðA;BÞ!CðxÞ ¼ Pð�cj�a; �b; xÞP ð�cja; b; xÞ � P ð�cja; �b; xÞP ð�cj�a; b; xÞ

¼ ð1� P ðcj�a; �b;xÞÞð1� P ðcja; b; xÞÞ � ð1� P ðcja; �b; xÞÞð1� Pðcj�a; b; xÞÞ
¼ ðP ðcj�a; �b; xÞPðcja; b; xÞ � P ðcja; �b; xÞP ðcj�a; b; xÞÞ � ðP ðcj�a; �b; xÞ þ P ðcja; b; xÞ
� P ðcja; �b; xÞ � P ðcj�a; b; xÞÞ ¼ dc

ðA;BÞ!CðxÞ � dðA;BÞ!CðxÞ: �
Modifications to the definition of a product synergy have been made after the observation that Definition 6 is
incomplete when parent vertices in X are uninstantiated [7,6]. In other words
8x½Pðĉja; b; xÞP ðĉj�a; �b; xÞ � P ðĉja; �b; xÞP ðĉj�a; b; xÞ 6 0

;P ðĉja; bÞP ðĉj�a; �bÞ � P ðĉja; �bÞP ðĉj�a; bÞ 6 0�:
This so-called type II product synergy can be formalized in terms of the more intuitive notion of an intercausal
influence [18].

Definition 9 (Intercausal influence). Let X denote pGðBÞ [ pGðCÞ n fAg. Then a variable A exhibits a positive

intercausal influence on B with regard to the value ĉ if
P ðbja; ĉ;xÞ � P ðbj�a; ĉ; xÞP 0;
regardless of the configuration x. Negative, zero, non-monotonic and ambiguous intercausal influences are
again defined analogous to the corresponding types of qualitative influences.

For ICI models, intercausal influences describe the dependence between two causes C and C0 when the
value of the effect variable is observed. We therefore compute P ðc0jc; ê; c2Þ � P ðc0j�c; ê; c2Þ for all values c2 of
the causes C2 ¼ C n fC;C0g. Using Bayes’ rule we obtain the equal expression:
P ðêjc; c0; c2ÞP ðc0jc; c2Þ
P ðêjc; c2Þ

� P ðêj�c; c0; c2ÞP ðc0j�c; c2Þ
Pðêj�c; c2Þ

: ð5Þ
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Note that P ðc0jc; c2Þ ¼ P ðc0j�c; c2Þ ¼ P ðc0Þ, as cause variables are independent. This leads to the following
expression, whose sign equals that of Formula (5):
P ðêj�c; c2ÞPðêjc; c0; c2Þ � P ðêjc; c2ÞP ðêj�c; c0; c2Þ:
By rewriting P ðêj�c; c2Þ as P ðêj�c; c0; c2ÞPðc0Þ þ Pðêj�c;�c0; c2ÞP ð�c0Þ and P ðêjc; c2Þ as P ðêjc; c0; c2ÞP ðc0Þþ
P ðêjc;�c0; c2ÞPð�c0Þ, we obtain
P ðêjc; c0; c2ÞP ðêj�c;�c0; c2Þ � Pðêj�c; c0; c2ÞP ðêjc;�c0; c2Þ;
which is the definition of the product synergy, specialized to ICI models. Hence, for ICI models over binary
variables the product synergy and intercausal influences are equivalent.

So far, we have assumed that the parameters P ðmCjcÞ are known when qualitative properties are computed.
However, the goal of this paper is to qualitatively characterize ICI models with varying interaction functions.
Therefore, we abstract away from the parameters and derive the qualitative properties solely by taking into
account the properties of a ICI model’s interaction function. In the next section, we infer some general prop-
erties of ICI models.

3. Properties of ICI models

In this section, we will investigate general properties of the probability distribution P½f �, where it is assumed
that f is a Boolean function.

3.1. General properties

Lemma 10 states that P½f � is bounded by f ¼ ? and f ¼ >, which is a basic result due to the first axiom of
probability theory.

Lemma 10. 0 ¼ P½?� 6 P½f � 6 P½>� ¼ 1.

Lemmas 11–13 show how ICI models may be decomposed by decomposing the Boolean function. We will
make use of the analogy between Boolean algebra and ordinary arithmetic by interpreting ? as 0 and > as 1 in
an arithmetic context [1], in order to allow for a compact notation.

Lemma 11. P½:f � ¼ 1� P½f �.

Proof
P½:f �ðejcÞ ¼
X

m

ð1� f ðmÞÞP ðmjcÞ ¼
X

m

P ðmjcÞ �
X

m

f ðmÞP ðmjcÞ ¼ 1� P½f �ðejcÞ: �
Lemma 12. P½f _ f 0� ¼ 1� P½:f ^ :f 0� ¼ P½f � þ P½f 0� � P½f ^ f 0�.

Proof. As f _ f 0 ¼ :ð:f ^ :f 0Þ, we obtain P½:ð:f ^ :f 0Þ�ðejcÞ ¼ 1� P½:f ^ :f 0�ðejcÞ. It also holds that
P½f _ f 0� ¼ P½f ^ f 0� þ P½f ^ :f 0� þ P½:f ^ f 0�. Since P½f � ¼ P½f ^ f 0� þ P½f ^ :f 0� and P½f 0� ¼ P½f 0 ^ f �þ
P½f 0 ^ :f � we obtain the second equality. h

Lemma 13. If f ^ f 0 ¼ ? then P½f _ f 0� ¼ P½f øf 0� ¼ P½f � þ P½f 0�;where ø represents the exclusive OR.

Proof. The operator f øf 0 is defined as ðf ^ :f 0Þ _ ð:f ^ f 0Þ. As this is equivalent to ðf _ f 0Þ ^ :ðf ^ f 0Þ, it
follows straight from Lemma 12 that if f ^ f 0 ¼ ? then P½f _ f 0� ¼ P½f � þ P½f 0�. h

Sometimes, we will add two Boolean functions or compute the difference between two Boolean functions
within an ICI model. In that case, Lemma 10 does not hold and the expression is not a proper probability
distribution anymore, but can be interpreted as a conditional expectation. The following lemma follows
directly from the linearity property of conditional expectation.
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Lemma 14. P½af þ bf 0� ¼ aP½f � þ bP½f 0� for constants a and b.

P½f � can be bounded from below and above through the following inequalities.

Corollary 15. P½f ^ f 0� 6 P½f � 6 P½f _ f 0� 6 P½f � þ P½f 0�.

Proof
P½f ^ f 0�ðejcÞ ¼
X

m

f ðmÞf 0ðmÞP ðmjcÞ 6
X

m

f ðmÞP ðmjcÞ ¼ P½f �ðejcÞ

6

X
m

ðf ðmÞ þ f 0ðmÞ � f ðmÞf 0ðmÞÞP ðmjcÞ ¼ P½f _ f 0�ðejcÞ 6
X

m

ðf ðmÞ þ f 0ðmÞÞPðmjcÞ

¼ P½f �ðejcÞ þ P½f 0j�ðejcÞ: �
3.2. Analytical tools

Next, we introduce a number of analytical tools that will be used in the subsequent sections.

Definition 16 (Curry). Let f : Bn ! B be a Boolean function. Then, the curry of f, denoted by fX j¼x̂j , is defined
as the function fX j¼x̂j : Bn�1 ! B, such that fX j¼x̂jðx̂1; . . . ; x̂j�1; x̂jþ1; . . . ; x̂nÞ ¼ f ðx̂1; . . . ; x̂j�1; x̂j; x̂jþ1; . . . ; x̂nÞ:

Central to the analysis is the notion of a partial order 6 on configurations of C and M.

Definition 17 (Ordered Boolean n-tuples). Let m ¼ ðm̂1; . . . ; m̂nÞ; c ¼ ðĉ1; . . . ; ĉnÞ 2 Bn be Boolean n-tuples. It
holds that m 6 c iff m̂i 6 ĉi for all i, 1 6 i 6 n, where ?< >. The relation m < c holds iff m 6 c and m 6¼ c and
the relation > is defined analogously.

Note that for any two tuples m and c it holds that either m < c, m > c, m ¼ c or 9C½m̂C < ĉ� ^ 9C0½m̂C0 > ĉ0�.
If the latter holds then we say that m and c are incomparable. By means of this ordering we are in a
position to compare configurations m of the intermediate variables M with configurations c of the cause
variables C. In other words, we can compare intermediate states with causal states and prove the following
lemmas.

Lemma 18. m ¼ c) PðmjcÞ > 0.

Proof. If m = c, then
P ðmjcÞ ¼
Y
C2C

P ðmCjcÞĉP ð�mCj�cÞ1�ĉ ¼
Y
C2C

P ðmCjcÞĉ > 0
due to the assumptions that P ðmCjcÞ > 0 and P ðmCj�cÞ ¼ 0. h

Lemma 18 states that the probability that an intermediate state is equal to the causal state is always larger
than zero. Hence, the causal state always conveys information about the actual state of the intermediate
variables.

Lemma 19. P ðmjcÞ > 0) c P m.

Proof. If cjm then there is some cause variable C ¼ ? and MC ¼ >. Since P ðmCj�cÞ ¼ 0 it holds that
PðmCjcÞ ¼ 0. h

Lemma 19 follows from the notion of accountability and states that the truth of an intermediate variable
always implies the truth of its associated cause variable. It is an important lemma, as it essentially shows that
we can ignore all configurations m that are not smaller than or equal, or incomparable, to a given configura-
tion c.

The following lemmas demonstrate how a choice of the parameters influences the value of P ðmjcÞ.

Lemma 20. 8C½P ðmCjcÞ ¼ 1� ) 8m 6¼ c½P ðmjcÞ ¼ 0� for arbitrary c.
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Proof. Choose P ðmCjcÞ ¼ 1 for each C 2 C. If m = c, then P ðmjcÞ ¼ 1, and necessarily P ðmjcÞ ¼ 0 for
m 5 c. h

Lemma 20 states that if the causal relationship between the causes C the intermediates MC is deterministic,
it is not allowed that the values of causes and intermediate variables differ, which is as expected.

Lemma 21. 8C½PðmCjcÞ < 1� ) 8m 6 c½PðmjcÞ > 0� for arbitrary c.

Proof. Since m 6 c we have that for each cause variable C such that MC ¼ > also C ¼ > and for each C such
that MC ¼ ? it is the case that either C ¼ ? or C ¼ >. Therefore, we may write
P ðmjcÞ ¼
Y
C2C

PðmCjcÞm̂C P ð�mCjcÞð1�m̂CÞĉC ;
since P ð�mCj�cÞ ¼ 1 by assumption. Since 0 < P ðmCjcÞ < 1 by assumption, we have P ðmCjcÞ > 0 and
P ð�mCjcÞ > 0, which proves the proposition. h

Lemma 21 states that if there is an uncertain causal relationship between every cause C and its associated
intermediate variable MC, then it follows that each intermediate state whose true variables form a subset of the
true cause variables, has a non-zero probability of occurring.

As the qualitative behavior of an ICI model is completely determined by its interaction function, in the fol-
lowing we will frequently investigate how these functions behave. This analysis will frequently go beyond pure
Boolean functions, as some of the interaction patterns are the result of adding and subtracting Boolean func-
tions. Considerable insight into the interaction patterns is obtained by looking at the function values (positive,
negative or zero) of the resulting function for configurations smaller than a given configuration. For this,
introduction of a special notation will be convenient, as given in the following definition:

Definition 22 (Initial non-negative, non-positive function values). Let q : Bm ! W be a function, where
W ¼ f�b; . . . ; 0; . . . ; bg � Z, then q is said to have initial non-negative function values, denoted by V þq , if
9m½½qðmÞ 2 f1; . . . ; bg� ^ 8m0 < m½qðm0Þ 2 f0; . . . ; b��:
Similarly, q is said to have initial non-positive function values, denoted by V �q , if V þ�q holds.

Thus, V þq means that the function value of q is positive for some value m, and takes non-negative values for
any value m0 lower in the ordering <. The meaning of V �q is analogous.

As an example, consider a function q that indicates quality of life, where the variables ‘happiness’ and
‘beauty’, abbreviated to H and B, are used as summary variables. It is defined as follows. With
qðh; bÞ ¼ 1 is indicated maximal quality of life; for all ðĥ; b̂Þ < ðh; bÞ, for example ð�h; bÞ < ðh; bÞ, unsatisfac-
tory quality of life is quantified by qðĥ; b̂Þ ¼ 0. Thus, for this quality of life function V þq holds whereas V �q
does not. The properties V þq and V �q of a function q will be important tools for the qualitative analysis of
ICI models.

4. Qualitative properties of ICI Models

In this section, it is assumed that a Boolean interaction function underlying an ICI model is given; we then
identify the signs of qualitative influences (Section 4.1), additive synergies (Section 4.2) and product synergies
(Section 4.3). These results can also be used to identify Boolean functions that respect a particular qualitative
characterization.

Note that we can assume that the causes are direct parents of E as the intermediate variables are margin-
alized out of the final computation of P½f �ðejcÞ (cf. Eq. (2)). For our analysis, we assume some fixed ICI model
over a set C of n cause variables, in which we focus on the interaction between different cause variables
C and C0 and the effect variable E, where we abbreviate MC by M and MC0 by M 0. Throughout this paper
we will use M1 to denote M n fMg and M2 to denote M n fM ;M 0g. Likewise, we will use C1 to denote
C n fCg and C2 to denote C n fC;C0g.
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4.1. Qualitative influences

Let dC!E½f � denote dC!E where f is the interaction function of the corresponding ICI model. A qualitative
influence dC!E½f � between a cause C and effect E denotes how the observation of C influences the observation
of the effect e. The sign of a qualitative influence for an ICI model mediated by a function f is then determined
by the sign of
dC!E½f �ðc1Þ ¼ P½f �ðejc; c1Þ � P½f �ðej�c; c1Þ: ð6Þ

The analysis of qualitative influences requires that we isolate the contribution of particular cause variables C

with respect to the effect E. By writing
P½f �ðejĉ; c1Þ ¼
X

m

f ðmÞP ðmjcÞ ¼ P ðmjĉÞP½fm�ðejc1Þ þ ð1� P ðmjĉÞÞP½f�m�ðejc1Þ

¼ P½f�m�ðejc1Þ þ P ðmjĉÞP½g�ðejc1Þ; ð7Þ
where g denotes the difference function fm � f�m, we obtain this isolation of C from the remainder of the cause
variables. Sometimes, we wish to refer to the variable M over which we vary the interaction function f, and
then the notation gM is used. Note that it holds for the difference function that gðm1Þ 2 f�1; 0; 1g. If we sub-
stitute Eq. (7) into (6) we obtain the following equation for the sign of a qualitative influence in ICI models:
dC!E½f �ðc1Þ ¼ ðP ðmjcÞ � P ðmj�cÞÞ � P½g�ðejc1Þ:

Under the assumption that P ðmjcÞ > P ðmj�cÞ, which always holds under the assumption of accountability, i.e.,
Pðmj�cÞ ¼ 0 (cf. Section 2.2), we may write
dC!E½f �ðc1Þ / P½g�ðejc1Þ: ð8Þ

We use Definition 17 and its associated lemmas to derive some properties of qualitative influences in ICI mod-
els. We can write
P½g�ðejc1Þ ¼
X
m1

gðm1ÞP ðm1jc1Þ;
where the configuration m1 ranges over all elements of Bn�1. Let these configurations m1 be represented by mi
1,

for i ¼ 1; . . . ; 2n�1, and ordered such that if mi
1 < m

j
1 then i < j. The configurations c1 of C1 may also be any

element of Bn�1 and we assume that they are ordered likewise such that ci
1 ¼ mi

1 for i ¼ 1; . . . ; 2n�1. From Lem-
ma 19 it follows that for each configuration c1:
P½g�ðejc1Þ ¼
X

m16c1

gðm1ÞPðm1jc1Þ: ð9Þ
Therefore, we need only take into account intermediate states that precede a causal state in the ordering.
Based on this ordering we derive the properties of qualitative influences in ICI models. We will state these
properties compactly in terms of the difference function g.

Proposition 23. dC!E½f � ¼ 0() g ¼ 0.

Proof. Using Eq. (9), we prove by induction that if P½g�ðejck
1Þ ¼ 0 then gðmk

1Þ ¼ 0, for k ¼ 1; . . . ; 2n�1.
Basis. Let k ¼ 1. Then P½g�ðejck

1Þ ¼ gðmk
1Þ � P ðmk

1jck
1Þ. Since P ðm1

1jc1
1Þ > 0 by Lemma 18, it must be the case

that gðm1
1Þ ¼ 0 if P½g�ðejc1

1Þ ¼ 0.
Inductive hypothesis. For i ¼ 1; . . . ; k, it holds that from P½g�ðejci

1Þ ¼ 0 it follows that gðmi
1Þ ¼ 0, and vice

versa.
Induction step. From the inductive hypothesis, it follows that:
P½g�ðejckþ1
1 Þ ¼

X
16i6kþ1

gðmi
1ÞP ðmi

1jckþ1
1 Þ ¼ gðmkþ1

1 ÞPðmkþ1
1 jckþ1

1 Þ:
As Pðmkþ1
1 jckþ1

1 Þ > 0 it follows that gðmkþ1
1 Þ ¼ 0 if P½g�ðejckþ1

1 Þ ¼ 0, and vice versa. But then gðmi
1Þ ¼ 0, for

i ¼ 1; . . . ; 2n�1. h
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In order to distinguish the different signs of qualitative influences it is necessary to know when positive and
negative contributions are possible in principle. We first state an elementary relationship between positive and
negative contributions to the sign of a qualitative influence.

Lemma 24. dC!E½f �ðc1Þ > 0() dC!E½:f �ðc1Þ < 0.

Proof Using the result of Lemma 11, we derive
Fig. 4.
only n
dC!E½f �ðc1Þ > 0() P½fm�ðejc1Þ � P½f�m�ðejc1Þ > 0

() ð1� P½fm�ðejc1ÞÞ � ð1� P½f�m�ðejc1ÞÞ < 0

() P½:fm�ðejc1Þ � P½:f�m�ðejc1Þ < 0

() dC!E½:f �ðc1Þ < 0: �
Exploring the initial function values of the difference function g, as defined above in Definition 22, yields
further insight into the properties of qualitative influences. Note that we use the definition here by taking
b ¼ 1.

Lemma 25 lists a sufficient condition for observing a positive value of dC!E½f �ðc1Þ.

Lemma 25. For every ICI model with interaction function f it holds that
V þg ) 9c1½dC!E½f �ðc1Þ > 0�:
Proof. Recall from Definition 22 that it holds that
V þg ¼ 9m1½gðm1Þ ¼ 1 ^ 8m01 < m1½gðm01Þ 2 f0; 1g��:
Choosing c1 ¼ m1 we obtain P½g�ðejc1Þ ¼
P

m0
1
6c1

gðm01ÞP ðm01jc1Þ according to Eq. (9). Since for each m01 < c1 it
holds that gðm01Þ 2 f0; 1g and gðm1Þ ¼ 1 with P ðm1jc1Þ > 0 we have proved the lemma. h

We present a similar result for negative values of dC!E½f �ðc1Þ.

Lemma 26. For every ICI model with interaction function f it holds that
V �g ) 9c1½dC!E½f �ðc1Þ < 0�:
Proof. Recall that V �g ¼ 9m1½gðm1Þ ¼ �1 ^ 8m01 < m1½gðm01Þ 2 f�1; 0g��. If we use :f in Lemma 25 and the
correspondence :fmðm1Þ � :f�mðm1Þ ¼ 1() gðm1Þ ¼ �1 then we obtain
9m1½gðm1Þ ¼ �1 ^ 8m01 < m1½gðm01Þ 2 f�1; 0g�� ) 9c1½dC!E½:f �ðc1Þ > 0�:

From Lemma 24 it follows that dC!E½:f �ðc1Þ > 0() dC!E½::f �ðc1Þ < 0 ¼ dC!E½f �ðc1Þ < 0, which proves the
proposition. h

The reason why we can find a positive (or negative) value of dC!E½f �ðc1Þ follows from the fact that we may
choose a configuration c1 that renders all configurations m1 that are larger than or incomparable with c1 irrel-
evant. This is visualized in Fig. 4.

If we consider the functions fm and f �m then one of four different situations may arise. First, if neither V þg
nor V �g hold then the inductive argument of Lemma 23 holds and dC!E½f � ¼ 0. Second, if both V þg and V �g
Illustration of Lemma 25; horizontal bars represent true (black) and false (white) values of fmðm1Þ and f �mðm1Þ, respectively. We
eed to consider configurations m1 6 c1, i.e. the configurations contained within the dashed region.
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hold, then we have two incomparable configurations m1 and m01 that render dC!E½f �ðcÞ positive and negative,
respectively. This leads directly to the following proposition.

Proposition 27. V þg ^ V �g ) dC!E½f � ¼�.

Third, if V þg holds and V �g does not hold then there is a positive value of dC!E½f �ðc1Þ for some configuration
c1 of C1 such that dC!E½f � is either þ or �. Under a specific condition we can infer that the sign must be
positive.

Proposition 28. If V þg and :9m1½gðm1Þ ¼ �1� then dC!E½f � ¼ þ.

Proof. The proposition follows from the observations that dC!E½f �ðcÞ > 0 for some c and no negative contri-
bution to the sign of the qualitative influence. h

The paper by Lucas [13] includes tables for Boolean functions defined in terms of the 16 binary Boolean
functions. We use these results in the following example.

Example 29. For both the AND and the OR operator, we have dC!E½f � ¼ þ since for both operators it holds
that the difference function g ¼ fm � f�m is non-negative and positive for at least one m1, which implies that the
conditions of Proposition 28 hold.

If the conditions of Proposition 28 do not hold then we know for a fact that the sign is ambiguous, since it can
be either non-monotonic or positive if the parameters are unknown.

Proposition 30. If V þg and 9m1½gðm1Þ ¼ �1� then dC!E½f � ¼ ?

In order to prove Proposition 30, we need to prove that if V þg holds, and 9m1½fmðm1Þ < f�mðm1Þ�, then we can
find parameters such that dC!E½f � ¼ � and other parameters such that dC!E½f � ¼ þ. The non-monotonic case
is easily proven by the following lemma.

Lemma 31. If 9m1½gðm1Þ ¼ 1� ^ 9m01½gðm01Þ ¼ �1� then we can choose parameters such dC!E½f � ¼ �.

Proof. From Lemma 20 it follows that we can choose parameters such that dC!E½f �ðc1Þ ¼ gðm1Þ ¼ 1 and
dC!E½f �ðc01Þ ¼ gðm01Þ ¼ �1. h

It is more complex to prove that we can also find parameters such that dC!E½f � ¼ þ. The proof is given in
Appendix A and relies on the fact that we can always find parameters such that the negative contribution re-
mains smaller than the positive contribution to the sign of the qualitative influence.

Lemma 32. If V þg and 9m1½gðm1Þ ¼ �1� then we can find parameters such that dC!E½f � ¼ þ.

Proof. See Appendix A. h

Finally, if V �g holds and V þg does not hold then there is a negative value of dC!E½f �ðc1Þ for some configuration
c1 of C1 such that dC!E½f � is either � or �. Analogous to positive qualitative influences, under a specific con-
dition we can infer that the sign must be negative. This leads to the following proposition, whose proof is anal-
ogous to that of Proposition 28.

Proposition 33. If V �g and :9m1½gðm1Þ ¼ 1� then dC!E½f � ¼ �.

Symmetrically to positive qualitative influences, if this condition does not hold then we know for a fact that
the sign is ambiguous since it can be either non-monotonic or negative if the parameters are unknown.

Proposition 34. If V �g and 9m1½gðm1Þ ¼ 1� then dC!E½f � ¼ ?

The proof that parameters can always be found to generate negative or non-monotonic qualitative influ-
ences proceeds in the same way as that for the positive qualitative influences.

In the above, we have shown how properties of the interaction function f influence the qualitative properties
of ICI models. It is straightforward to recast properties of the difference function g in terms of properties of
the interaction function f due to the identity g ¼ fm � f�m as is demonstrated by means of the prognostic model.



Fig. 5. Qualitative influences with respect to patient survival.
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Example 35. We first consider the qualitative influence of I on S. In order to identify the qualitative behavior,
we need to investigate the curries fb and f �b. If we restrict B to > (i.e., b), we have
2 Re
fb 	 ð:b ^ :E1 ^ :E2Þ _ ðE1 ^ :E2Þ _ ð:E1 ^ E2Þ 	 ðE1 ^ :E2Þ _ ð:E1 ^ E2Þ:

In a similar vein we can reduce f�b to :ðE1 ^ E2Þ. It follows that for g we have2
gðe1; e2Þ ¼ fbðe1; e2Þ � f�bðe1; e2Þ ¼ ðe1 ^ :e2Þ _ ð:e1 ^ e2Þ � :ðe1 ^ e2Þ ¼ 0;

gðe1;�e2Þ ¼ fbðe1;�e2Þ � f�bðe1;�e2Þ ¼ ðe1 ^ :�e2Þ _ ð:e1 ^ �e2Þ � :ðe1 ^ �e2Þ ¼ 0;

gð�e1; e2Þ ¼ fbð�e1; e2Þ � f�bð�e1; e2Þ ¼ ð�e1 ^ :e2Þ _ ð:�e1 ^ e2Þ � :ð�e1 ^ e2Þ ¼ 0;

gð�e1;�e2Þ ¼ fbð�e1;�e2Þ � f�bð�e1;�e2Þ ¼ ð�e1 ^ :�e2Þ _ ð:�e1 ^ �e2Þ � :ð�e1 ^ �e2Þ ¼ �1:
It follows that Proposition 33 holds, such that dI!S ½f � ¼ �. This negative influence of the serious illness on
prognosis is in accordance with the previously stated domain knowledge. We proceed in a similar way for
the qualitative influences of T 1 on S and obtain the following results. For the qualitative influence of T 1 on
S we have fe1

	 :E2 and f �e1
	 ð:B ^ :E2Þ _ E2. It follows that for g we have that gði; e2Þ ¼ 0, gði;�e2Þ ¼ 1,

gð�ı; e2Þ ¼ �1 and gði; e2Þ ¼ 0. As ði;�e2Þ and ð�ı; e2Þ are incomparable and have opposing signs, it follows that
dT 1!S ½f � ¼ � according to Proposition 27. We remark that dT 2!S ½f � ¼ � by symmetry. The qualitative influ-
ences are depicted in Fig. 5.

Previously, we have shown how properties of the interaction function f influence the qualitative properties
of ICI models. Next, we show that, by means of the propositions and lemmas that have been derived, we can
also immediately infer properties of interaction functions that should hold when a qualitative influence is
known. First, observe that, based on the lemmas and propositions above
ðV þg ^ :9m1½gðm1Þ ¼ �1�Þ _ ðV þg ^ 9m1½gðm1Þ ¼ �1�Þ_
ðV �g ^ :9m1½gðm1Þ ¼ 1�Þ _ ðV �g ^ 9m1½gðm1Þ ¼ 1�Þ _ ðg ¼ 0Þ
covers all possible cases. The first two conjunctions in this disjunction handle the positive qualitative influences
(due to Proposition 28 and Lemma 32). The third and fourth conjunctions in this disjunction handle the neg-
ative qualitative influences (by symmetry), and the last conjunction is a necessary and sufficient condition for
observing a zero qualitative influence (due to Proposition 23). The second and fourth conjunctions are con-
ditions that may lead to non-monotonic qualitative influences, and whose disjunction is equivalent to
9m1½gðm1Þ ¼ �1� ^ 9m1½gðm1Þ ¼ 1�. The properties of interaction functions given a qualitative influence are
listed in Table 1.

Example 36. Suppose we knew the qualitative influences but not the underlying interaction function for the
prognostic model of Section 2.2. According to Table 1 we have:
dI!S ½f � ¼ � ) V �gB
;

dT 1!S ½f � ¼ �) 9m1½gE1
ðm1Þ ¼ 1� ^ 9m01½gE1

ðm01Þ ¼ �1�;
dT 2!S ½f � ¼ �) 9m1½gE2

ðm1Þ ¼ 1� ^ 9m01½gE2
ðm01Þ ¼ �1�;
call that in an arithmetic context, we interpret > as 1 and ? as 0.



Table 1
Properties of interaction functions given a qualitative influence

Qualitative influence Property of the interaction function

0 g ¼ 0
þ V þg
� V �g
� 9m1½gðm1Þ ¼ 1� ^ 9m01½gðm01Þ ¼ �1�
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where gB ¼ fb � f�b, gE1
¼ fe1

� f�e1
; and gE2

¼ fe2
� f�e2

. The results are indeed properties of the interaction func-
tion of the prognostic model, as represented by the Boolean expression (4). The first qualitative influence would,
for example, preclude choosing the AND and OR interaction functions, as both do not satisfy property V �gB

.

4.2. Additive synergies

Additive synergies express how two cause variables C and C0 from the set of cause variables C jointly influ-
ence the probability of observing the effect E. Recall that the remaining cause variables are denoted by
C2 ¼ C n fC;C0g. Using the general definition of additive synergy from QPN theory, the additive synergy
dðC;C0Þ!E½f � between C and C0 given interaction function f is determined by
dðC;C0Þ!E½f �ðc2Þ ¼ P½f �ðejc; c0; c2Þ þ P½f �ðej�c;�c0; c2Þ � P½f �ðej�c; c0; c2Þ � P½f �ðejc;�c0; c2Þ: ð10Þ
The analysis requires an isolation of cause variables C and C0. We apply the decomposition (7) twice and
obtain:
P½f �ðejĉ; ĉ0; c2Þ ¼ PðmjĉÞP ðm0jĉ0ÞP½h�ðejc2Þ þ P½f�m;�m0 �ðejc2Þ þ P ðmjĉÞP½fm;�m0 � f�m;�m0 �ðejc2Þ
þ P ðm0jĉ0ÞP½f�m;m0 � f�m;�m0 �ðejc2Þ; ð11Þ
where the function h : Bn�2 ! f�2;�1; 0; 1; 2g is defined as
hðm2Þ ¼ fm;m0 ðm2Þ þ f�m;�m0 ðm2Þ � f�m;m0 ðm2Þ � fm;�m0 ðm2Þ: ð12Þ

The function h is also sometimes indicated by hM ;M 0 . By inserting Eq. (11) into (10), we obtain
dðC;C0Þ!E½f �ðc2Þ ¼ ðP ðmjcÞ � P ðmj�cÞÞðP ðm0jc0Þ � P ðm0j�c0ÞÞP½h�ðejc2Þ:
Under the assumptions that P ðmjcÞ > P ðmj�cÞ and P ðm0jc0Þ > P ðm0j�c0Þ, which holds under the assumption of
accountability, we may write
dðC;C0Þ!E½f �ðc2Þ / P½h�ðejc2Þ:
We take a similar approach as for qualitative influences and use an ordering on configurations of M2 and C2

which now range from m1 to m2n�2 and from c1 to c2n�2 respectively.
The structure of the expression for qualitative influences and additive synergies is essentially the same,

where the only difference is that we sum over 2n�2 instead of 2n�1 configurations and g is replaced by h. If
we consider the proofs of Lemmas 24–32 and Propositions 23–34 in the previous section, then we find that
none, with the exception of Lemma 32, are dependent upon these two differences. Due to the analogy between
qualitative influences and additive synergies, we state the results in terms of the difference function h without
proof.

A necessary and sufficient condition for observing a zero additive synergy is easily found.

Proposition 37. dðC;C0Þ!E½f � ¼ 0() h ¼ 0.

Again, interaction functions f and their negations :f lead to opposite contributions to the qualitative sign.

Lemma 38. dðC;C0Þ!Eðc2Þ > 0() dðC;C0Þ!E½:f �ðc2Þ < 0.

We next investigate the implications of function values of the function h, as defined above in Eq. (12), using
Definition 22, for the qualitative properties. Here we take b ¼ 2. An analysis of positive and negative contri-
butions to the sign of the additive synergy is given by Lemmas 39 and 40.
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Lemma 39. For every ICI model with interaction function f it holds that
V þh ) 9c2½dðC;C0Þ!E½f �ðc2Þ > 0�:
Lemma 40. For every ICI model with interaction function f it holds that
V �h ) 9c2½dðC;C0Þ!E½f �ðc2Þ < 0�:
Non-monotonic additive synergies are identified by Proposition 41.

Proposition 41. V þh ^ V �h ) dðC;C0Þ!E½f � ¼ �.

Positive additive synergies are identified by Proposition 42 and ambiguous additive synergies (either non-
monotonic or positive signs) are identified by 43. We can always choose parameters such that this ambiguous
additive synergy reduces to a non-monotonic or positive additive synergy. The proof is similar to the proof in
case of qualitative influences and is omitted here.

Proposition 42. If V þh and 8m2½hðm2Þ 2 f0; 1; 2g� then dðC;C0Þ!E½f � ¼ þ.

Proposition 43. If V þh and 9m2½hðm2Þ 2 f�2;�1g� then dðC;C0Þ!E½f � ¼ ?

Symmetric results are obtained for negative additive synergies in Proposition 44, where Proposition 45 iden-
tifies ambiguous additive synergies which can be either non-monotonic or negative, depending on the
parameters.

Proposition 44. If V �h and 8m2½hðm2Þ 2 f�2;�1; 0g� then dðC;C0Þ!E½f � ¼ �.

Proposition 45. If V �h and 9m2½hðm2Þ 2 f1; 2g� then dðC;C0Þ!E½f � ¼ ?

We use the results of Lucas [13] to verify some of our results.

Example 46. For the AND operator, we have dðC;C0Þ!E½f � ¼ þ since the difference function
hðm2Þ ¼ fm;m0 ðm2Þ þ f�m;�m0 ðm2Þ � f�m;m0 ðm2Þ � fm;�m0 ðm2Þ must be non-negative and positive for at least one
configuration of m2. On the other hand, for the OR operator we have dðC;C0Þ!E½f � ¼ � since h is non-positive
and negative for at least one configuration of m2.

We can recast properties of the difference function h in terms of properties of the interaction function f as
we have the identity h ¼ fm;m0 þ f�m;�m0 � f�m;m0 � fm;�m0 . We illustrate the results concerning additive synergies by
means of the running example, shown in Fig. 3.

Example 47. With regard to the additive synergy between the treatments T 1 and T 2, we have fe1;e2
	 ?,

f�e1;�e2
	 :B and f �e1;e2

	 fe1;�e2
	 >. We then have hðbÞ ¼ �2 and hð�bÞ ¼ �1 such that dðT 1;T 2Þ!S ½f � ¼ �

according to Proposition 44. This agrees with the observation that the administration of one of both
treatments is optimal, whereas administration of both treatments yields a suboptimal result. With regard to
the additive synergy between I and T 1, we have fb;e1

	 :E2, f�b;�e1
	 >, f�b;e1

	 :E2 and f b;�e1
	 E2. We then

have that hðe2Þ ¼ 0 and hð�e2Þ ¼ 1 such that dðI ;T 1Þ!S ½f � ¼ þ according to Proposition 42. We also have
dðI ;T 2Þ!S ½f � ¼ þ by symmetry. This is in agreement with the fact that when a treatment is administered to an ill
Fig. 6. Additive synergies with respect to patient survival.
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person, or when no treatment is administered in the absence of the illness improves survival in comparison to
when a non-ill person is treated or when treatment is not given to an ill person. The additive synergies are
depicted in Fig. 6.

So far, we have only considered the qualitative behavior of a given interaction function. Again, we infer
properties of interaction functions that should hold when an additive synergy is known. These properties
are shown in Table 2 and have straightforward derivations due to the correspondence between qualitative
influences and additive synergies. An example is again provided by considering the qualitative properties of
the prognostic model.

Example 48. Suppose we knew the additive synergies but not the underlying interaction function for the
prognostic model. According to Table 2 we have
Table
Proper

Additi

0
þ
�
�

dðT 1;T 2Þ!S ½f � ¼ � ) V �hE1 ;E2
;

where hE1;E2
¼ fe1;e2

þ f�e1;�e2
� f�e1;e2

� fe1;�e2
. This is indeed a property of Boolean expression (4) that represents

the prognostic model, as may be verified. This constraint would, for example, exclude the AND Boolean func-
tion, as it does not satisfy property V �hE1 ;E2

.

4.3. Product synergies

Product synergies describe the created dependence between two causes when the value of the effect variable
is observed. The sign dê

ðC;C0Þ!E½f � of a product synergy between C and C0 with respect to ê when f is the under-
lying interaction function, is determined by
dê
ðC;C0Þ!E½f �ðc2Þ ¼ P½f �ðêjc; c0; c2ÞP½f �ðêj�c;�c0; c2Þ � P½f �ðêj�c; c0; c2ÞP½f �ðêjc;�c0; c2Þ:
This can be rewritten for E ¼ > (presence of the effect has been observed) to
de
ðC;C0Þ!E½f �ðc2Þ ¼ PðmjcÞP ðm0jc0ÞðP½h�ðejc2ÞP½f�m;�m0 �ðejc2Þ � P½fm;�m0 � f�m;�m0 �ðejc2ÞP½f�m;m0 � f�m;�m0 �ðejc2ÞÞ;
where again h ¼ fm;m0 þ f�m;�m0 � f�m;m0 � fm;�m0 . Under our standard assumption of accountability, this yields:
de
ðC;C0Þ!E½f �ðc2Þ / P½h�ðejc2ÞP½f�m;�m0 �ðejc2Þ � P½fm;�m0 � f�m;�m0 �ðejc2ÞP½f�m;m0 � f�m;�m0 �ðejc2Þ:
This can be alternatively written as
de
ðC;C0Þ!E½f �ðc2Þ / P½fm;m0 �ðejc2ÞP½f�m;�m0 �ðejc2Þ � P½f�m;m0 �ðejc2ÞP½fm;�m0 �ðejc2Þ:
Using the distributive law of arithmetic, we obtain
de
ðC;C0Þ!E½f �ðc2Þ / P½fm;m0 �ðejc2ÞP½f�m;�m0 �ðejc2Þ � P½f�m;m0 �ðejc2ÞP½fm;�m0 �ðejc2Þ

¼
X
m2

fm;m0 ðm2ÞPðm2jc2Þ
 ! X

m2

f�m;�m0 ðm2ÞP ðm2jc2Þ
 !

�
X
m2

f�m;m0 ðm2ÞP ðm2jc2Þ
 ! X

m2

fm;�m0 ðm2ÞP ðm2jc2Þ
 !

¼
X

m2;m
0
2

rðm2;m
0
2ÞP ðm2jc2ÞP ðm02jc2Þ;
2
ties of interaction functions given an additive synergy

ve synergy Property of the interaction function

h ¼ 0
V þh
V �h
9m2½hðm2Þ 2 f1; 2g� ^ 9m02½hðm02Þ 2 f�2;�1g�
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where the function r : Bn�2 � Bn�2 ! f�1; 0; 1g is defined as follows:
rðm2;m
0
2Þ ¼ fm;m0 ðm2Þf�m;�m0 ðm02Þ � f�m;m0 ðm2Þfm;�m0 ðm02Þ: ð13Þ
We will also sometimes use the notation rM ;M 0 . From the expression above, it follows that the behavior of the
product synergy is determined by the function r.

It appears that it suffices to carry out the analysis for E ¼ > (the effect has been observed to be present), as
application of the following lemma renders the analysis of the qualitative behavior of the product synergy for
E ¼ ? (absence of the effect has been observed) a straightforward exercise.

Lemma 49. de
ðC;C0Þ!E½:f � ¼ d�e

ðC;C0Þ!E½f �.

Proof
de
ðC;C0Þ!E½:f �ðc2Þ / P½:fm;m0 �ðejc2ÞP½:f�m;�m0 �ðejc2Þ � P½:f�m;m0 �ðejc2ÞP½fm;�m0 �ðejc2Þ

¼ ð1� P½fm;m0 �ðejc2ÞÞð1� P½f�m;�m0 �ðejc2ÞÞ � ð1� P½f�m;m0 �ðejc2ÞÞð1� P½fm;�m0 �ðejc2ÞÞ
¼ P½fm;m0 �ð�ejc2ÞP½f�m;�m0 �ð�ejc2Þ � P½f�m;m0 �ð�ejc2ÞP½fm;�m0 �ð�ejc2Þ / d�e

ðC;C0Þ!E½f �ðc2Þ: �
Hence, if de
ðC;C0Þ!E½:f �ðc2Þ has a particular sign for configuration c2 then d�e

ðC;C0Þ!E½f �ðc2Þ will have the same
sign. Therefore, the sign of the product synergy for E ¼ > with interaction function 6¼ f will be the same as
that for E ¼ ? with interaction function f. Due to this relationship between the signs of the product synergy
for E ¼ > and E ¼?, we will only consider the case where E ¼ >. Recall that by Lemma 8, we have the fol-
lowing interesting relationship between product synergies and additive synergies, which offers an alternative
way to compute the product synergy d�e

ðC;C0Þ!E½f �ðc2Þ, based on the associated additive synergy
dðC;C0Þ!E½f �ðc2Þ and the associated product synergy de

ðC;C0Þ!E½f �ðc2Þ:
d�e
ðC;C0Þ!E½f �ðc2Þ ¼ de

ðC;C0Þ!E½f �ðc2Þ � dðC;C0Þ!E½f �ðc2Þ:
Lemma 8 is useful for constructing tables of signs for particular Boolean functions, as it saves constructing one
of these tables.

Example 50. The paper by Lucas [13] includes tables for Boolean functions defined in terms of the 16
binary Boolean functions. Consider the AND operator, ^; its additive synergy is equal to dðC;C0Þ!E½^� ¼ þ,
whereas its product synergy for E ¼ > is equal to de

ðC;C0Þ!E½^� ¼ 0. Lemma 8 tells us that the product synergy
for E ¼ ? is equal to d�e

ðC;C0Þ!E½f � ¼ �, which is indeed the value for the product synergy for E ¼ ? in Table 12
in [13].

In the following, we derive sufficient conditions for observing particular qualitative behavior in terms of prod-
uct synergies.

Proposition 51. de
ðC;C0Þ!E½f � ¼ 0 if it holds that
8m2;m
0
2½ðfm;m0 ðm2Þ ^ f�m;�m0 ðm02ÞÞ () ðf�m;m0 ðm2Þ ^ fm;�m0 ðm02ÞÞ�:
Proof. Note that if the premise holds, then, according to Definition (13) of the function r, we have that
rðm2;m

0
2Þ ¼ 0, for each m2;m

0
2, and thus de

ðC;C0Þ!E½f � ¼ 0. h

A special case of this proposition, is the following condition:
ðfm;m0 	 ? _f�m;�m0 	 ?Þ ^ ðfm;�m0 	 ? _f�m;m0 	 ?Þ;

i.e., if at least one Boolean function at both sides of the negation of Definition (13) is equal to falsum, then a
zero product synergy results.

We again determine conditions under which de
ðC;C0Þ!E½f �ðc2Þ is positive or negative. Similar to previous sec-

tions, we use the notations V þr and V �r , this time in terms of the function r defined above; for example V þr
means that
9m2;m
0
2½½rðm2;m

0
2Þ ¼ 1� ^ 8m002 < m2;m

000
2 < m02½rðm002;m0002 Þ 2 f0; 1g��:
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Lemma 52. For every ICI model with interaction function f we have
Fig. 7
f�m;mðm
V þr ) 9c2½de
ðC;C0Þ!E½f �ðc2Þ > 0�:
Proof. Simply note that if r is initially non-negative, we have a positive de
ðC;C0Þ!E½f �ðc2Þ for at least one value c2

by definition. h

An example of a positive value of de
ðC;C0Þ!E½f �ðc2Þ is demonstrated in Fig. 7.

A similar result holds for negative values of de
ðC;C0Þ!½f �ðc2Þ and the proof is analogous to that of Lemma 52.

Lemma 53. For every ICI model with interaction function f we have
V �r ) 9c2½de
ðC;C0Þ!E½f �ðc2Þ < 0�:
The following proposition follows directly from the definition of a non-monotonic product synergy.

Proposition 54. If both V þr and V �r hold then de
ðC;C0Þ!E½f � ¼ �.

It also follows directly from Lemmas 52 and 53 that if V þr holds and V �r does not hold, then the sign of the
product synergy is either positive or non-monotonic. Conversely, if V �r holds and V þr does not hold, then it
follows that the sign of the product synergy is either negative or non-monotonic. The following two proposi-
tions identify under which conditions the sign of a product synergy is known to be positive or negative,
respectively.

Proposition 55. If 9m2;m
0
2½rðm2;m

0
2Þ ¼ 1� and 8m2;m

0
2½rðm2;m

0
2ÞP 0� then it holds that de

ðC;C0Þ!E½f � ¼ þ.

Proof. This is just the general case of Lemma 52, where we ensure that the conditions listed for configurations
m002 < m2;m

000
2 < m02 such that rðm002;m0002 ÞP 0 not only hold for configurations smaller than m2;m

0
2, but for all

configurations m002 6¼ m2;m
000
2 6¼ m02. h

Proposition 56. If 9m2;m
0
2½rðm2;m

0
2Þ ¼ �1� and 8m2;m

0
2½rðm2;m

0
2Þ 6 0� then it holds that de

ðC;C0Þ!E½f � ¼ �.

Proof. This is the generalized case of Lemma 53. h

The cases that are not covered by the above propositions will be categorized as ambiguous.

Proposition 57. If none of Propositions 51–56 hold then de
ðC;C0Þ!E½f � ¼ ?

Proposition 57 collects those cases for which no sufficient conditions for observing a particular sign of a
product synergy have been derived. In such cases, the sign can still be positive, negative or non-monotonic,
depending on the parameters and depending on the structure of the interaction function. It is important to
realize that due to Lemma 49, the above results equally hold for the case where E ¼ ? whenever we replace
each occurrence of f by :f .

We illustrate the results concerning product synergies again by means of the prognostic model, depicted in
Fig. 3.
. Illustration of Lemma 52. Similarly to Fig. 4, the horizontal bars represent the truth values of fm;mðm2Þ, f�m;�mðm2Þ,
2Þ and f m;�mðm2Þ.
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Example 58. We first focus on the case where we hypothesize that the patient will survive, i.e., S ¼ >. With
regard to the product synergy between treatments T 1 and T 2, we have that fe1;e2

	 ?,
f�e1;�e2

	 :B0 and f �e1;e2
	 fe1;�e2

¼ >. Condition 3 of Proposition 56 is satisfied since rðB;B0Þ ¼ �1 for each
value of B;B0, and thus ds

ðT 1;T 2Þ!S ½f � ¼ �. This agrees with the observation that we expect that one of both
treatments was administered given that we observe patient survival. With regard to the product synergy
between I and T 1, we have that fb;e1

	 :E2, f�b;�e1
	 >, f�b;e1

	 :E2 and f b;�e1
	 E02. Condition 1 of Proposition

55 is satisfied since rð�e2;�e02Þ ¼ 1, whereas rðE2;E02Þ ¼ 0 for any value of E2, E02, with the exception of
E2 ¼ ? and E02 ¼ ?; thus ds

ðI ;T 1Þ!S ½f � ¼ þ. Hence, it is likely that treatment T 1 is administered given disease
progression and patient survival and that treatment T 1 is not administered given no progression and patient
survival. It is less likely that treatment T 1 is administered given no progression and patient survival and that
treatment T 1 is not administered given disease progression and patient survival. The same holds for the
product synergy between I and T 2 by symmetry. The results are summarized by Fig. 8.

As has been proved in Lemma 49, we can use also the derived propositions for E ¼ ? by replacing f with
:f . With regard to the product synergy between T 1 and T 2, we have that :fe1;e2

	 >,
:f�e1;�e2

	 B and :f�e1;e2
	 :fe1;�e2

¼?. Condition 3 of Proposition 55 is satisfied, since rðB;B0Þ ¼ B, thus
d�s
ðT 1;T 2Þ!S ½f � ¼ þ. With regard to the product synergy between I and T 1, we have that :fb;e1

	 E2, :f�b;�e1
	 ?,

:f�b;e1
	 E2 and :fb;�e1

¼ :E02, thus rðE2;E02Þ ¼ �ðE2 ^ :E02Þ. We classify the product synergy as
d�s
ðI ;T 1Þ!S ½f � ¼ �. The same holds for the product synergy between I and T 2 by symmetry. The results are

summarized by Fig. 9.
Table 3
Properties of interaction functions given a product synergy for E ¼ >
Product synergy Property of the interaction function

0 :V þr ^ :V �r
þ :V �r
� :V þr
� 9m2;m

0
2½rðm2;m

0
2Þ ¼ 1 ^ 9m2;m

0
2½rðm2;m

0
2Þ ¼ �1�

Fig. 9. Product synergies with respect to patient death.
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Again, we look at the converse analysis from qualitative specification to constraints on interaction func-
tions using the propositions and lemmas that have been derived. Properties of product synergies with the effect
observed to be present ðE ¼ >Þ are shown in Table 3 and are derived by negating the properties for opposite
signs when E ¼ >. For example, since V þr with E ¼ > implies that there is a configuration c2 of cause variables
such that de

ðC;C0Þ!E½f �ðc2Þ > 0 (Lemma 52), we know that :V þr must hold for negative product synergies with
E ¼ >. Likewise, :V �r must hold for positive product synergies with E ¼ >. For the same reason, :V þr ^ :V �r
must hold for zero product synergies with E ¼ >. For non-monotonic product synergies it holds that
Propositions 55 and 56 must both be false. Since, according to Proposition 51, it cannot be the case that
8m2;m

0
2½rðm2;m

0
2Þ ¼ 0�, it must hold that both 9m2;m

0
2½rðm2;m

0
2Þ ¼ 1� and 9m2;m

0
2½rðm2;m

0
2Þ ¼ �1�. Properties

of product synergies with E ¼ ? are obtained using Lemma 49 by replacing the function r with the function
�rðm2;m
0
2Þ ¼ :fm;m0 ðm2Þ:f�m;�m0 ðm02Þ � :f�m;m0 ðm2Þ:fm;�m0 ðm02Þ:
In order to demonstrate this converse analysis, we look at the product synergy between treatments T 1 and T 2

of the prognostic model.

Example 59. Suppose we knew the product synergies but not the underlying interaction function for the
prognostic model. For the product synergy between treatment T 1 and T 2 with the effect assumed to be present
ðE ¼ >Þ, we have
de
ðT 1;T 2Þ!S ½f � ¼ � ) :V þrE1 ;E2

;

whereas its product synergy for the effect assumed to be absent ðE ¼ ?Þ is given by
d�e
ðT 1;T 2Þ!S ½f � ¼ þ ) :V ��rE1 ;E2

:

Note that here we use the complementary function �rE1;E2
. Again, it may be verified that these are properties of

the Boolean expression (4) that underlies the prognostic model. For example, these properties are not satisfied
by the AND function, which, therefore, cannot be selected as a basis for a prognostic model that satisfies the
given qualitative constraints.
5. Discussion

This paper offers a detailed analysis of ICI models that employ Boolean interaction functions. In contrast to
previous work, [13], the present paper offers a characterization of ICI models based on Boolean functions in
general, and it can, thus, be used as a foundation for the analysis of any of such ICI models. It was shown that
QPN theory can be applied to these models in order to characterize model behavior in terms of influences and
synergies. By making use of difference functions and an order on Boolean tuples we were able to derive both
the conditions under which positive, negative, zero, non-monotonic and ambiguous signs for qualitative influ-
ences, additive synergies and product synergies are observed and the constraints these signs impose on the
underlying interaction functions.

The theory developed in this paper allows one to identify whether a particular ICI model with a chosen
interaction function can fulfill the specified qualitative properties in principle. This is a useful development
since without the theory one would need to estimate the conditional probabilities P ðm̂0ĉÞ for each of the causes
and exhaustively compute the influences and synergies for the model as in Section 2.3. By means of the theory,
the qualitative behavior can be read off directly from the underlying interaction function.

The developed theory can also be employed for placing direct constraints on the structure of the underlying
interaction function given a qualitative specification in terms of influences and synergies, as demonstrated by
Tables 1–3. These results can also be used to generate the set of interaction functions that respect the con-
straints which facilitates the selection of a suitable interaction function for problems that can be represented
as ICI models. Even though there exist a superexponential number of interaction functions, it may still be pos-
sible to identify a small set of interaction function that respects a (partial) qualitative specification. This results
from the fact that most interaction functions are characterized by ambiguous influences and synergies whereas
this is not to be expected for most real world models.
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In conclusion, we believe that the theory can aid in Bayesian network construction, where the prognostic
model served as an example to illustrate the usefulness of the theory in practice. If the ICI assumptions hold
then the appropriateness of an interaction function can be determined without the need to specify the param-
eters in advance and properties of the interaction function can be derived from a qualitative specification.

Appendix A

Lemma 32. If V þg and 9m1½gðm1Þ ¼ �1� then we can find parameters such that dC!E½f � ¼ þ.
Proof. It suffices to prove that 8c½dC!E½f �ðcÞP 0� for some choice of the parameters. We know that there
must be some configuration m1 with gðm1Þ ¼ 1 and for all configurations m001 < m1 it holds that gðm001Þ 2 f0; 1g.
We assume that 8m001 < m1½gðm001Þ ¼ 0� and 8m01 > m1½gðm01Þ ¼ �1�, which minimizes P½g�ðejc1Þ. The incom-
parable configurations must be either zero or positive (otherwise a non-monotonic qualitative influence is
implied) such that these cannot contribute negatively. We therefore obtain
P½g�ðejc1ÞP
Y

C2C1

P ðmCjĉÞm̂C Pð�mCjĉÞ1�m̂C �
X

m0
1
>m1

P ðm01jc1Þ: ðA:1Þ
By choosing PðmCjcÞ ¼ 1 for each C such that MC ¼ >, we obtain
P½g�ðejc1ÞP
Y

C2C1

P ð�mCjĉÞ1�m̂C �
X

m0
1
>m1

Y
C2C1

P ðmCjĉÞð1�m̂CÞm̂0C P ð�mCjĉÞð1�m̂CÞð1�m̂0CÞ
due to the fact that if MC ¼ ? then M 0
C ¼ > or M 0

C ¼ ?. Given that for each m01 there must exist at least one
cause Cuðm0

1
Þ with u : Bn�1 ! f1; . . . ; ng, such that M 0

uðm0
1
Þ ¼ > and Muðm0

1
Þ ¼ ?, we obtain
P½g�ðejc1ÞP
Y

C2C1

P ð�mCjĉÞ1�m̂C �
X

m0
1
>m1

P ðmuðm0
1
Þjĉuðm0 ÞÞ:
By distinguishing present and absent causes, we may write
P½g�ðejc1ÞP
Y

C2C1

P ð�mCjcÞð1�m̂CÞĉ �
X

m0
1
>m1

P ðmuðm0
1
Þjcuðm0

1
ÞÞ

ĉuðm0
1
Þ � 01�ĉuðm0

1
Þ :
A key step is to distinguish C1 into Ca ¼ fCjC 2 C1; 8m01 > m1½C 6¼ Cuðm0
1
Þ�g and Cb ¼ fCjC 2 C1; 9m01 >

m1½C ¼ Cuðm0
1
Þ�g; such that
P½g�ðejc1ÞP
Y

C2Ca

P ð�mCjcÞð1�m̂CÞĉ
Y

C02Cb

P ð�mC0 jc0Þð1�m̂C0 Þĉ0 �
X

m0
1
>m1

P ðmuðm0
1
Þjcuðm0

1
ÞÞ

ĉuðm0
1
Þ � 01�ĉuðm0

1
Þ :
By choosing P ð�mCjcÞ ¼ q for each C 2 Ca such that MC ¼ ? and choosing P ðmuðm0
1
Þjcuðm0

1
ÞÞ ¼ p for all m01 > m1,

we obtain
P½g�ðejc1ÞP
Y

C2Ca

qð1�m̂CÞĉ
Y

C02Cb

ð1� pÞð1�m̂C0 Þĉ0 �
X

m0
1
>m1

p
ĉuðm0

1
Þ � 01�ĉuðm0

1
Þ :
Let w be the cardinality of fm01jm01 2 Bn�1;m01 > m1g. As there are at most n� 1 cause variables in C1, we obtain:
P½g�ðejc1ÞP qnð1� pÞn � wp;
where w is the cardinality of fm01jm01 2 Bn�1;m01 > m1g. It follows from Bernoulli’s inequality that
P½g�ðejc1ÞP qnð1� npÞ � wp, such that by choosing p < qn

qnnþw, we have ensured that P½g�ðejc1ÞP 0. As there
must be at least one configuration of C1 for which P½g�ðejc1Þ 6¼ 0, we have proved the proposition. h
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