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Abstract

Mammographic reading by radiologists requires the comparison of at least
two breast projections (views) for the detection and the diagnosis of breast
abnormalities. Despite their reported potential to support radiologists,
most mammographic computer-aided detection (CAD) systems have a major
limitation: as opposed to the radiologist’s practice, computerized systems
analyze each view independently. To tackle this problem, in this paper,
we propose a Bayesian network framework for multi-view mammographic
analysis, with main focus on breast cancer detection at a patient level. We
use causal-independence models and context modeling over the whole breast
represented as links between the regions detected by a single-view CAD system
in the two breast projections. The proposed approach is implemented and tested
with screening mammograms for 1063 cases of whom 385 had breast cancer.
The single-view CAD system is used as a benchmark method for comparison.
The results show that our multi-view modeling leads to significantly better
performance in discriminating between normal and cancerous patients. We
also demonstrate the potential of our multi-view system for selecting the most
suspicious cases.

1. Introduction

Breast cancer is the most common form of cancer among women worldwide and its early
detection does improve the chances of successful treatment and recovery (Breast cancer and
screening 2008). Therefore, many countries have introduced breast cancer screening programs
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Figure 1. (a) MLO and (b) CC views of a right and left breast of a patient. The circle depicts a
(cancerous) lesion in the left breast.

with periodic mammographic examinations in asymptomatic women. In contrast to the clinical
situation, in the screening setting the detected lesions are usually small and due to the breast
compression they are sometimes difficult to observe in both views. In other words, while the
correct detection and location of a cancerous region is important, in breast cancer screening
the crucial decision based on the mammographic exam is whether or not it is likely that a
woman has breast cancer, and if the answer is positive, is referred to the clinic for further
examination.

A screening mammographic examination usually consists of four images, corresponding
to each breast scanned in two views—mediolateral oblique (MLO) view and craniocaudal
(CC) view (see figure 1). The MLO projection is taken under 45◦ angle and shows part
of the pectoral muscle. The CC projection is a top–down view of the breast. In reading
mammograms, radiologists judge whether or not a lesion is present by comparing both views
and breasts. The general rule is that a lesion is to be observed in both views.

To guarantee high detection rates, independent double reading by two radiologists is a
widely used standard in breast cancer screening. Due to its complexity and the variability
in human performance, however, mammographic reading and decision making appear to
be difficult tasks. Radiologists are usually confronted with two main problems in the
mammographic analysis: (i) perceptual oversight where an abnormality is present, but is
missed and (ii) interpretation failure where an abnormality is seen but its significance is
misinterpreted. There are two main types of abnormalities: microcalcifications and masses.
In this work, we deal with the second, more frequently occurring type. There is strong evidence
that for masses misinterpretation is a more common cause of missing cancers in screening
than perceptual oversight.

In an attempt to support radiologists in overcoming these problems, a large number of
mammographic computer-aided detection (CAD) systems have been developed and tested in
the past 20 years. Essentially, the working principle of current CAD systems comprises a
multi-stage process based on identification of regions of interest using image processing and
pattern recognition techniques, extraction of a feature vector for each of these regions and
classification of the regions as cancerous (abnormal) based on supervised learning techniques
such as neural networks.

Despite the reported evidence about their potential benefit, most CAD methods suffer from
certain limitations due to the uncertainty inherent in the domain. For example, misclassification
can arise between a region of interest and its extracted feature vector or lack of separability
between regions of interest that have similar features. One reason for these problems is that,
opposite to the radiologist’s practice, most computerized systems are based on a single-view
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principle where each view and the regions within a view are analyzed independently. Hence,
the multi-view and multi-region dependences in the breast are ignored and the breast cancer
detection can be obscured. As a result, such systems perform worse than the human experts,
which limits their practical application and usability.

To tackle these problems statistical modeling of the domain can be applied to the automatic
detection process. In this paper, we propose a Bayesian network framework for exploiting
multi-view dependences for the analysis of screening mammograms. Given the goal of
screening programs, we focus primarily on the breast cancer detection at a patient level, rather
than on the location of the cancer in the mammogram. The main idea of our methodology lies
in combining the information available as detected regions from a single-view CAD system
in MLO and CC to obtain a single likelihood measure for a patient being cancerous. In
comparison to previous methods, we can outline a number of advantages of our probabilistic
framework:

• Handling noise and missing information: specifying and learning the network parameters
in a probabilistic manner allows uncertain information to be incorporated based on the
values of all the non-missing variables.

• Incorporating domain knowledge: unlike black-box approaches such as neural networks,
our framework captures explicitly view dependences through the Bayesian network
structure and the definition of the conditional probability tables.

• Using context information over the whole breast: breast classification is done on the basis
of simultaneous consideration of the regions automatically detected in each breast view
and their links to the other view of the same breast.

We adopt the following terminology from the breast cancer domain throughout this
paper. By lesion we refer to a physical cancerous object detected in a patient (the circle in
figure 1). We call a contoured area on a mammogram a region (for example, marked manually
by a human or detected automatically by a CAD system). A region can be true positive (TP),
i.e., correct detection of the lesion (cancer) or false positive (FP). A region detected by a CAD
system is described by a number of continuous (real-valued) features (e.g., size, location,
contrast). By link we denote matching (established correspondence) between two regions
in MLO and CC views, respectively. The term case refers to a patient who has undergone
a mammographic exam. The most recent case for a patient is called current whereas the
previous case(s) are prior(s).

The remainder of the paper is organized as follows. In the following section we briefly
review previous research in multi-view breast cancer detection. In section 3 we describe
the general problem of multi-view detection, introduce basic definitions related to Bayesian
networks and then we present a general Bayesian network framework for multi-view detection.
The proposed approach is evaluated on an application of breast cancer detection using
actual screening data. The evaluation procedure and the results are presented in section 4.
Conclusions and directions for extension of our model are given in section 5.

2. Previous research

A number of previous works deal with the problem of automatic multi-view breast cancer
detection on mammograms. Good et al (1999) have proposed a probabilistic method for
true matching of lesions detected in both views, based on Bayesian network and multi-
view features. The results from experiments demonstrate that their method can significantly
distinguish between true and false positive links of regions. Van Engeland et al describe
another linking method in van Engeland et al (2006) based on linear discriminant analysis



1134 M Velikova et al

(LDA) classifier and a set of view-link features to compute a correspondence score for every
possible region combination. For every region in the original view the region in the other
view with the highest correspondence score is selected as the corresponding candidate region.
The proposed approach demonstrates an ability to discriminate between true and false links.
van Engeland and Karssemeijer (2007) extend this matching approach by building a cascaded
multiple-classifier system for reclassifying the region level of suspiciousness of an initially
detected region based on the linked candidate region in the other view. Experiments have shown
that the lesion-based detection performance of the two-view detection system is significantly
better than that of the single-view detection method.

Paquerault et al (2002) also consider established correspondence between suspected
regions in both views to improve lesion detection. LDA is used to classify each object pair
as true or false. By combining the resulting correspondence score with its one-view detection
score the lesion detection improves and the number of false positives reduces. In this study, the
authors also report improvement in the case-based performance (fraction of TP cases where a
case is TP, if cancer is found in MLO or CC view) based on multi-view information, especially
for cases where the lesion has been detected in both views.

In two recent studies, Sun et al (2001), Qian et al (2007) also demonstrate the superior
performance of a multi-view CAD system over its single-view counterpart. The approach
consists of multiple steps starting with advanced single-view image processing for region
segmentation, followed by multi-view feature extraction and final classification of the detected
regions of interest based on neural networks with Kalman filtering. Using iterative processing
between the single- and multi-view stages, the authors show a reduction at the false positive
rates of masses per image as well as an increase at the case-based detection rate.

However, in all these works the main focus is on improving the localized detection
of breast cancer, mostly for prompting purposes, rather than the detection at a case level.
Therefore, the likelihood for cancer in a case is often determined by the region with the
maximum likelihood. In contrast, in the current study we aim at building a CAD system that
discriminates well between normal and cancerous cases—the ultimate goal of breast cancer
screening programs—by considering all available information (in terms of regions) in a case.
In the following section, we describe such a system based on a probabilistic methodology and
we demonstrate its practical potential on a case study.

3. Bayesian multi-view detection

3.1. Problem description

In multi-view medical imaging, two-dimensional (2D) projections of the organ(s) of interest
(e.g. breast) are acquired from two or more viewing angles. The objective of the multi-view
detection then is to determine whether or not the object has certain characteristics (e.g., being
cancerous) by establishing correspondences between the 2D image characteristics of regions
(subparts) in multiple object views (projections). Figure 2 depicts the general multi-view
detection scheme.

We have a physical object referring to an organ (displayed as a gray cloud), which is
projected in two views, View-A and View-B. Suppose we have a cancerous physical subpart of
the object represented by the ovals in both projections; hence, the whole object is cancerous.
In both views an automatic single-view system detects potential cancerous regions described
by a number of real-valued extracted features. In the figure regions A1 and B1 are correct
detection of the cancerous physical subpart, i.e., these are TP regions whereas A2 and B2 are
FP regions. Since we deal with projections of the same physical object we introduce links
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Figure 2. Schematic representation of multi-view analysis of a physical object with automatically
detected regions.

(Lij ) between the detected regions in both views, Ai and Bj . Every link has a class (label)
Lij = �ij defined as follows

�ij =
{

true if Ai or Bj are TP,

false otherwise.
(1)

This definition allows us to maintain information about the presence of cancer even if
there is no cancer detection in one of the views. A binary class C with values of true (presence
of cancer) and false for region, view or the whole object (organ) is assumed to be provided
by pathology or a human expert.

In any case, multiple views corresponding to the same cancerous part contain correlated
characteristics whereas views corresponding to normal parts tend to be less correlated. For
example, in mammography an artifactual density might appear in one view due to the
superposition of normal tissue whereas it disappears in the other view. To account for
the interaction between the breast projections, in this paper we develop a Bayesian network
framework for mammographic analysis. The power of Bayesian networks lies in their ability
to (i) explicitly and efficiently encode causal dependences in a domain and (ii) model and
reason about uncertainty in a probabilistic fashion. This makes them a suitable modeling tool
for the multi-view detection problem. The following section gives some general background
about Bayesian networks.

3.2. Bayesian networks

Consider a finite set U of random variables, where each variable U in U takes on values from
a finite domain dom(U). Let P be a joint probability distribution of U and let X, Y, Z be
disjoint subsets of U. We say that X and Y are conditionally independent given Z, denoted by
X ⊥⊥ P Y | Z, if for all x ∈ dom(X), y ∈ dom(Y), z ∈ dom(Z), the following holds:

P(x | y, z) = P(x | z), whenever P(y, z) > 0.

In short, we have P(X | Y, Z) = P(X | Z).
A Bayesian network is defined as a pair BN = (G, P ) where G is an acyclic directed

graph (ADG) G = (V ,E) with a set of nodes V corresponding to the random variables in U

and a set of edges (arcs) E ⊆ (V × V ) corresponding to direct causal relationships between
the variables. We say that G is an I-map of P if any independence represented in G, denoted
by A ⊥⊥ GB | C with A,B,C ⊆ V mutually disjoint sets of nodes, is satisfied by P, i.e.,

A ⊥⊥ GB | C �⇒ XA ⊥⊥ P XB | XC,
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Figure 3. Causal-independence model.

where A,B and C are sets of nodes of the ADG G and XA, XB and XC are the corresponding
sets of random variables. The acyclic directed graphical part of a Bayesian network G is
by definition an I-map of the associated joint probability distribution P. A Bayesian network
BN offers a compact representation of the joint probability distribution P in terms of local
conditional probability distributions (CPDs), or, in the discrete case, in terms of conditional
probability tables (CPTs), associated with the individual nodes. The conditional probability
distributions are usually more compact than in the general case, as they take into account the
conditional-independence information represented by the ADG. For a more detailed recent
description of Bayesian networks, the reader is referred to Jensen and Nielsen (2007).

Causal-independence models. It is known that the number of probabilities in a CPT for a
certain variable grows exponentially in the number of parents in the ADG. Therefore it is
often infeasible to define the complete CPT for variables with many parents. One way to
specify interactions among statistical variables in a compact fashion is offered by the notion
of causal independence (Heckerman and Breese 1996). Causal independence arises in cases
where multiple causes (parent nodes) lead to a common effect (child node). Here we present
the formal definition of the notion of causal independence as given in Lucas (2005).

The general structure of a causal-independence model is shown in figure 3; it expresses
the idea that causes C1, . . . , Cn influence a given common effect E through intermediate
variables I1, . . . , In; the intermediate variable Ik is considered to be a contribution of the
cause variable Ck to the common effect E. The interaction function f represents in which
way the intermediate effects Ik , and indirectly also the causes Ck , interact. This function f is
defined in such way that when a relationship between the Ik’s and E = true is satisfied, then it
holds that f (I1, . . . , In) = true; otherwise, it holds that f (I1, . . . , In) = false. Note that each
variable Ik is only dependent on its associated cause Ck and the effect variable E. Furthermore,
the graph structure expresses that the effect variable E is conditionally independent of each
cause Ck given the associated intermediate variable Ik .

An important subclass of causal-independence models is obtained if the deterministic
function f is defined in terms of separate binary functions gk; it is then called a decomposable
causal-independence model (Heckerman and Breese 1996). Usually, all functions gk(Ik, Ik+1)

are identical for each k. Typical examples of decomposable causal-independence models are
the noisy-OR (Diez 1993) models, where the function g represents a logical OR. These models
express that the presence of any of the causes Ck with absolute certainty will cause the effect
E = true. A simple example of a noisy-OR model is given in the Appendix.

In our modeling framework, presented in the following section, we apply such a
decomposable causal-independence model with the logical OR. Our choice is motivated by
two major features of the representation of the noisy-OR models. First, from the definition of
the noisy-OR model it follows that the higher the number of causes influencing the effect the
higher the probability that the effect occurs. This rule is definitely applicable in the domain
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of breast cancer detection where the more the evidence (e.g., in terms of detected regions) is
added the higher the probability for cancer. Another important feature from a computational
point of view is that the representation of the noisy-OR models has a linear complexity with
respect to the number of causes.

3.3. Model description

Our modeling scheme is based on two Bayesian networks with a hand-constructed (fixed)
structure to explicitly represent the multi-view dependences in the detection problem. Consider
again the detection scheme presented in figure 2. The regions Ai and Bj are generally
conditionally independent given the case. However, they become dependent once we have
evidence that they are the projections of the same lesion in two views. In the context of
Bayesian networks, this region dependence can be modeled by (i) three nodes: two for the
regions and one for the link and (ii) the so-called v-structure where directed arcs are drawn
from the region nodes to the link node: Ai −→ Lij ←− Bj . Such a representation of the
dependence between a relation (link) and its parts (regions) has also been advocated by other
researchers in the field of vision perception (Sarkar and Boyer 1993). Note that swapping
the arc direction from the link to the regions would imply that the regions are conditionally
independent given the existence of a link, which contradicts our intuition.

Furthermore, by definition the link variable is discrete and the regions are represented by
a vector of real-valued features (x1, x2, . . . , xn) extracted from an automatic detection system.
Therefore we apply logistic regression to compute P(Lij = �ij |Ai, Bj ):

P(Lij = �ij |Ai, Bj ) = exp
(
β

�ij

0 + β
�ij

1 x1 + · · · + β
�ij

2n x2n

)
1 + exp

(
β

�ij

0 + β
�ij

1 x1 + · · · + β
�ij

2n x2n

) ,

where β’s are the model parameters to be estimated and the index 2n is the total number
of region features from both views. We note that other estimators such as multilayer neural
networks can be also used to define P(Lij = �ij |Ai, Bj ) but we choose logistic regression as
it ensures in a straightforward way that the outputs P(Lij = �ij |Ai, Bj ) are probabilities.

In our multi-view detection problem the object (organ) contains a number of links where
every region in one view is connected to all the regions in the other view. Hence, it is
intuitive and straightforward to construct a causal structure where all the links are modeled in
parallel (see the first top layer in the network depicted in figure 4(a)). Thus, using the context
modeling capabilities of Bayesian networks we consider at once all information available
about the object.

Next we estimate the probabilities P
(
CAi

= true
∣∣{Lij = �ij }NB

j=1

)
and P

(
CBj

=
true

∣∣{Lij = �ij }NA

i=1

)
where CAi

(CBj
) is the class of region Ai(Bj ),NA(NB) is the total

number of regions in View-A (View-B) and {Lij = �ij }NB(NA)

j (i=1) denotes the set of all links
containing Ai(Bj ). Given our link class definition in (1), we can easily model these conditional
dependences through a causal model using the logical OR. We refer to this Bayesian network
as RegNet (see figure 4(a)).

Recall that our main goal is to optimize classification globally in terms of the whole
object (organ). Therefore, we construct a second Bayesian network to combine the computed
region probabilities from RegNet to obtain the probability of a view being true. We use
a causal-independence model with the logical OR where the cause nodes Ci are the region
probabilities, the intermediate nodes Ii are the region classes and the only leaf node is the view
probability. This Bayesian network is depicted in figure 4(b) and we refer to it as ViewNet.
The whole multi-view model based on RegNet and ViewNet is called MV-CAD.
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Ai/ Bj = (x1, x2, …, xn)
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(a) RegNet (b) ViewNet

L12 L21 L22

CB1 CB2 CA2

CA2 CB1 CB2

View-B

Figure 4. Bayesian network framework for representing the dependences between multiple views
of an object.

Finally, we combine the view probabilities obtained from ViewNet into a single
probabilistic measure for the object (organ) as a whole by using different schemes. The
first scheme MV-CAD-Avg is straightforward—simply averaging both view probabilities. In
another more advanced scheme MV-CAD-LR, we take into account the class of the object ( false
or true) by using a logistic regression model with the estimated view probabilities as input
variables.

4. Application to breast cancer detection

As mentioned in the introduction, multi-view analysis plays a crucial role in the breast cancer
detection on mammograms. Here, we describe the application of the proposed Bayesian
network framework in this domain.

4.1. Single-view CAD system

The inputs for our multi-view detection scheme are the regions detected by a single-view CAD
system (van Engeland et al 2006) that consists of the following main steps (see figure 5):

(i) Segmentation of the mammogram into background area, breast, and for MLO, the pectoral
muscle.

(ii) Initial detection of pixel-based locations of interest. For each location in the breast area a
number of features are computed that are related to tumor characteristics such as presence
of spicules and focal mass. Based on these features, a neural network (NN) classifier is
then employed to compute likelihood for cancer. The locations with a likelihood above
certain threshold are selected as locations of interest.

(iii) Region extraction with dynamic programming using the detected locations as seed points.
For each region a number of continuous features are computed based on breast and local
area information.

(iv) Region classification as ‘normal’ and ‘abnormal’ based on the region features. A
likelihood for cancer is computed based on supervised learning with a NN and converted
into normality score (NormSc): the average number of normal regions in a view (image)
with the same or higher cancer likelihood. Hence, the lower the normality score the higher
the likelihood for cancer.
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Figure 5. Stages in the single-view CAD system.

4.2. Data description

The data set we use in this study contain 1063 screening exams (cases) from which 385
were cancerous. The data is a mixture of 795 current cases and 268 prior cases; 33 were
cancerous priors with the cancer visible in retrospect. We considered the exams of one patient
as independent cases. All exams contained both MLO and CC views. The total number of
breasts were 2126 from which 388 had cancer. All cancerous breasts had one visible lesion
representing a mass, architectural distortion, or asymmetry in at least one view, which was
verified by pathology reports to be malignant (cancerous). Lesion contours were marked by,
or under supervision of, an experienced screening radiologist.

For each image (mammogram) we have a number of regions detected by the single-view
CAD system. Every region is described by 11 real-valued features automatically computed by
the system. These features include the neural network’s output from the single-view CAD and
lesion characteristics such as spiculation, focal mass, size, contrast, linear texture and location
coordinates. Since the only certain information we have about the findings is the one related
to the cancer, for each region, based on the ground-truth data, we have a class value of true
(‘cancerous’) if the detected region hits a cancerous finding and false (‘normal’) otherwise,
which may also include hits of benign findings. Every region from MLO view was linked with
every region in CC view. For every link we added the binary class values of false (‘normal’)
and true (‘cancerous’) following the definition in equation (1). We assign analogous binary
classes for view, breast and case based on the ground-truth information.

We construct the data such that every row corresponds to one breast observation
represented by all feature vectors for the regions in MLO, followed by the regions in CC.
The sequence of regions per view was determined by the level of suspiciousness, starting with
the most suspicious one. In this study we conduct experiments with two datasets where we
select five and three regions per view with the lowest NormSc. The two datasets are described
in table 1. The selection of five regions per view leads to data where in only five out of
385 cancerous cases there is no TP detected region and thus no true link is available in these
cases for training the networks. On the other hand, we have a large number of MLO and CC
regions, which are mostly FP. Therefore for the second data set we choose three regions per
view. However, this leads not only to considerably less FP regions in MLO and CC but also
to a higher number of missed TP regions—in total 13 out of 385 cases.

4.3. Training and evaluation

To train and evaluate the proposed multi-view CAD system, we used two-fold cross validation:
the dataset is randomly split into two subsets with approximately equal number of observations
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Table 1. Description of the two datasets used in the current study.

Dataset-1 Dataset-2
Parameter (Data5reg) (Data3reg)

Number of regions per view 5 3
Total number of regions (MLO/CC) 10478/10343 6358/6328
Number of cancerous cases 5 13

without true links

and proportion of cancerous cases. The data for a whole case belonged to only one of the
folds. Each fold is used as a training set and as a test set. At every level (region, view, breast
and case) the same data folds were used. Although we use the results from the single-view
CAD system, we want to emphasize that the random split for the multi-view CAD system is
done independently—the single-view CAD system was trained and tested with ten-fold cross
validation on a much larger dataset including regions from cases without CC views.

Bayesian network training. Both RegNet and ViewNet have been built, trained and tested by
using the Bayesian Network Toolbox in Matlab (Murphy). The learning has been done
using the EM algorithm, which is typically used to approximate a probability function
given incomplete samples (in our networks the OR-nodes are not observed) (Dempster
et al 1977).

Breast data training. As we discussed in the description of our model, we apply two combining
schemes—averaging and logistic regression—to compute the probability for a breast being
cancerous given the respective view probabilities. For the logistic regression, the input contains
view information represented by the probabilities for MLO and CC obtained from ViewNet
and the minimum NormScs for each view, which are also indicators for view suspiciousness.

Case classification. We compute the likelihood of a case being cancerous based on the
computed right and left breast probabilities. The first simplest approach is to take the
maximum out of both probabilities. Furthermore, for the MV-CAD-LR model, which accounts
for the breast classes, we presume that further improvement can be achieved by using the
case class. Therefore we perform logistic regression using two inputs: the maximum out
of both breast probabilities and the single-view measure for suspiciousness. Thus from
the multi-view CAD system, we obtain in total three measures for a case being cancerous:
MV-CAD-Avg-max, MV-CAD-LR-max and MV-CAD-LR-LR.

The performance of our multi-view model is compared with that of the single-view CAD
system (SV-CAD). For the latter, the likelihood for a view, breast and case being cancerous is
computed by taking the likelihood (NormSc) of the most suspicious region. The comparison
analysis is done using the receiver operating characteristic (ROC) curve (Hanley and McNeil
1982) and the area under the curve (AUC), a standard performance measure in the radiologists’
practice. The significance of the differences obtained in the AUC measures is tested using
the ROCKIT software for fully paired data: for each patient we have a pair of test results
corresponding to MV-CAD and SV-CAD Metz et al (1984).

4.4. Experiments and results

4.4.1. Individual view, breast and case classification. Based on the results from ViewNet,
figures 6(a) and (b) present the classification outcome with the respective AUC measure per
MLO and CC view for Data5reg and Data3reg. First we observe that for both MV-CAD



Improved mammographic CAD performance using multi-view information 1141

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC curve per MLO view

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC curve per CC view

(a) Data5reg

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC curve per MLO view

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it

iv
e
 r

a
te

ROC curve per CC view

(b) Data3reg

Figure 6. ROC analysis per MLO and CC view.

and SV-CAD the performance for CC view in terms of AUC is better than that for MLO view.
This can be explained by the fact that the classification of CC views is generally easier than
that of MLO views due to the breast positioning. At the same time our multi-view system
improves considerably upon the single-view CAD system in better distinguishing cancerous
from normal MLO views whereas for CC views this improvement is less. Another interesting
result is that the largest improvement, especially for MLO view, is observed in the lower scale
of the false positive rate (<0.5).

To check the significance of the difference between the AUC measures we test the
hypothesis that the AUC measures are equal against the one-sided alternative hypothesis that
the multi-view system yields higher AUC for MLO and CC views. Table 2 summarizes the
statistical test results by providing the corresponding p-values and 95% confidence intervals of
the difference between the AUC measures. The results clearly indicate an overall improvement
in the discrimination between cancerous and normal views for both MLO and CC projections.
Such an improvement is expected as the classification of each view in our multi-view system
takes into account region information not only from the view itself but also from the regions
in the other view.
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Table 2. AUC (std. error) obtained from the single- and multi-view system per MLO and CC with
the respective one-sided p-values and 95% confidence intervals for the difference.

View Method Data5reg p-value Data3reg p-value

MLO SV-CAD 0.805 – 0.805 –
(0.013) (0.013)

MV-CAD 0.851 0.000 0.854 0.000
(0.011) (0.028, 0.063) (0.011) (0.031, 0.067)

CC SV-CAD 0.830 – 0.830 –
(0.012) (0.012)

MV-CAD 0.853 0.004 0.856 0.001
(0.011) (0.006, 0.039) (0.011) (0.009, 0.044)

Table 3. AUC (std. error) obtained from the single- and multi-view system at a breast level with
the respective one-sided p-values and 95% confidence intervals for the difference.

Breast

Method Data5reg p-value Data3reg p-value

SV-CAD 0.849 – 0.849 –
(0.012) (0.012)

MV-CAD-Avg 0.862 0.047 0.860 0.094
(0.011) (−0.002, 0.029) (0.011) (−0.005, 0.026)

MV-CAD-LR 0.868 0.010 0.865 0.024
(0.011) (0.003, 0.034) (0.011) (0.000, 0.031)

While the view results are very promising from a radiologists’ point of view it is more
important to look at the breast and case level performance. Tables 3 and 4 present the
respective AUC (standard error) obtained from MV-CAD and SV-CAD systems as well as the
one-sided p-values and 95% confidence intervals obtained from the tests on the differences
between our multi-view model and the single-view system. Although the simple averaging
method MV-CAD-Avg(MV-CAD-Avg-max) tends to show better distinction between normal and
cancerous breasts (cases) with respect to the SV-CAD, the difference in the AUC measures is
statistically insignificant. However, taking into account the breast classes and performing new
training as done in the more advanced MV-CAD-LR leads to a significant improvement in the
classification outcome. The best performance for both datasets at a case level is achieved
for MV-CAD-LR-LR, confirming our expectation that further improvement can be achieved by
training using the case class. Furthermore, we note that for both datasets, MV-CAD-LR-LR
yields the same AUCs but with slightly different p-values. To explain this difference we plot
the ROC curves; see figure 7. We see that for Data5reg improvement in the breast cancer
detection is observed over the whole range of false positive rates whereas for Data3reg it is
achieved for false positive rates <0.6.

4.4.2. Use of CAD for prescreening of cases. The results so far presented demonstrate the
superior performance of the multi-view system in comparison to its single-view counterpart in
terms of individual view, breast and case classification. Here we demonstrate another potential
application of the multi-view CAD system to support mammographic decision making, namely
automated prescreening of cases. The objective is to group cases into two basic categories:
‘suspicious’ and ‘normal’ in order to handle these by a different reading protocol.
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Figure 7. ROC analysis per case.

Table 4. AUC (std. error) obtained from the single- and multi-view system at a case level with the
respective one-sided p-values and 95% confidence intervals for the difference.

Case

Method Data5reg p-value Data3reg p-value

SV-CAD 0.807 – 0.807 –
(0.014) (0.014)

MV-CAD-Avg-max 0.825 0.040 0.819 0.104
(0.014) (−0.002, 0.040) (0.014) (−0.008, 0.035)

MV-CAD-LR-max 0.830 0.014 0.828 0.037
(0.013) (0.003, 0.045) (0.014) (−0.002, 0.041)

MV-CAD-LR-LR 0.831 0.007 0.831 0.008
(0.013) (0.005, 0.043) (0.013) (0.004, 0.043)

One can argue that cases selected as ‘suspicious’ would benefit most from receiving more
attention from radiologists. If resources in a screening program only allow for single-reading
programs, for example, one might consider a modest extension of the program by double
reading only the most suspicious cases. On the other hand, if double reading is practiced and
resources are limited, one might consider to use single reading for a subset of cases selected
by a CAD system as highly normal, leading to a considerable reduction in the workload.
Alternatively, if both radiologists in a double reading setting do not find an abnormality in a
case that is judged highly suspicious by a CAD system, one could present such a case to a third
reader performing arbitration, similar to the procedure that is often followed if both readers
disagree.

The problem of case prescreening has already been addressed in the literature
introducing the concept of using specially trained, non-physician personnel for mammographic
prescreening. With the increasing demand for mammography, required training times and
shortage of manpower, however, it may be more beneficial to use CAD systems as a
prescreening tool. To our knowledge only a few studies discussed so far the application
of CAD systems for prescreening of cases (Kalman et al 1997, Astley et al 2002). The current
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Figure 8. Percentages of cancerous cases within subsets of most suspicious normal cases for the
single- and multi-view systems.

work contributes to the fund of knowledge in this area by considering the use of the multi-view
and the single-view CAD system for the selection of most and least suspicious cases.

The aim of prescreening is optimizing the detection rate while reducing the workload.
Because in the breast cancer screening programs the number of normal cases is far larger
than that of cancerous cases, the workload is determined by the number of normals to be
read. Therefore, for the prescreening task we consider the percentage of detected cancers as a
function of a percentage of normal cases with highest likelihood for cancer. Figure 8 depicts
the results for MV-CAD-LR-LR and SV-CAD.

The results demonstrate that using multi-view information leads to overall increase in the
number of detected cancers when a subset of normal cases with highest likelihood for cancer is
selected. For example, if 10% of the normals are selected then MV-CAD-LR-LR on Data5reg
and Data3reg detects 62% and 62% of the cancers against 57% of SV-CAD. This trend is
especially observed for the lower range (<20%) of selected normal cases.

When considering the other prescreening task–selection of the least suspicious cases–we
would like to minimize the number of cancers missed when a subset of highly normal cases is
chosen. In this respect, looking at the upper range of the percentage of selected normal cases in
figure 8 (these are the least suspicious cases), we see that the multi-view leads only to a slight
reduction in the number of misclassified cancerous cases in comparison to the single-view
CAD system. We note that the result that both CAD systems do not detect all the cancers at
smaller subsets of normal cases could be explained by the fact that 9% of the cancerous cases
included in our study were priors, i.e. cancers that were not detected by the radiologists at the
screening stage.

5. Conclusions and future research

In this paper we proposed a Bayesian network framework for multi-view mammographic
analysis. We showed that the incorporation of expert knowledge in a probabilistic manner
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led to a higher detection rate of breast cancer compared to a single-view CAD system. This
improvement was achieved at a view, breast and case level and it is due to a number of factors.
First, we built upon a single-view CAD system that demonstrates a good performance at local
breast cancer detection. Second, following the radiologists’ practice, we considered multi-
view dependences between MLO and CC views to obtain a single measure for the view, breast
and case being cancerous. This was done by: (i) defining links between the regions detected
by the single-view CAD system in MLO and CC views (ii) building a probabilistic causal
model where all detected regions with their feature vectors and the established region links
are considered simultaneously, and (iii) using the logical OR to compute the region and view
probability for cancer. Our multi-view scheme also benefits from its Bayesian nature allowing
to handle noisy or incomplete information such as the lack of detected or visible lesions in
one of the views.

Except the improvement in the individual case-based performance, in the current study
we also demonstrated the potential of the multi-view CAD system for prescreening purposes.
In contrast to the traditional prompting CAD systems, in this work we considered the problem
of breast cancer detection in screening mammography at a case level. From this perspective,
the proposed CAD system could be used to select the most suspicious cases or to group them
for batch reading, as a set of difficult cases. In this way, the selected cases would get more
attention from radiologists, for example, by providing additional reading. This could help
increase the breast cancer detection rate.

Furthermore, our experiments show that the proposed Bayesian network framework is
relatively stable with respect to the number of selected regions per mammogram detected
by the single-view CAD. In the current study, we used two versions of the same set of
patient cases: one with five regions and the other with three regions per mammogram. The
results indicate that the performance of the models built on both datasets is comparable on
individual view, breast and case classification as well as on the selection of most suspicious
cases.

Although we demonstrate that the proposed framework has the potential to assist screening
radiologists to improve the evaluation of breast cancer cases, we consider a number of
directions for extension. First, the current model is based on features that are independently
computed per region. However, it is natural to include multi-view features such as the distance
to the nipple or correlation features. In such a way, we can explicitly represent multi-view
dependences not only in a qualitative way (through the Bayesian network’s structure) but also
in a quantitative way (through the input information). This can help improve the system’s
detection performance. Another possible extension is based on the model structure. Following
our Bayesian network framework with using logistic regression and OR-function at a link and
view level, we can also apply similar combining schemes at a breast and case level. Thus
we can allow for better handling of missing or noisy information in the estimation of the
breast/case likelihood for cancer. A third interesting extension of the proposed CAD system
is the incorporation of temporal information. In the screening practice, the decision whether
a patient has cancer depends not only on the breast multi-view comparison but also on the
comparison of current mammograms with previous mammograms of the same patient. The
appearance of a new or developing lesion is a strong indication for suspiciousness. Therefore,
by integrating multi-view with temporal information in our Bayesian network framework,
we can better represent and more accurately model the decision-making process in screening
mammography.

Finally, we note that the straightforward nature of the proposed Bayesian network
framework allows its relatively easy application to any domain where the goal is computerized
multi-view (object) detection.
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Figure A1. Example of a noisy-OR model.
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Appendix

Figure A1 depicts an example of a causal-independence model with two cause variables Flu
(Fl) and Pneumonia (Pn) and one effect variable Fever (Fe). Probability distributions P(I1|Fl)
and P(I2|Pn) represent a noise. The interaction function f (I1, I2) for the effect Fever is the
logical OR.

Then the probability of having fever given the states of Fl and Pn is computed as follows:

P(Fe = true|Fl, Pn) =
∑

f (I1,I2)=true

P(Fe = true|I1, I2)P (I1|Fl)P (I2|Pn)

= P(I1 = true|Fl)P (I2 = true|Pn)

+ P(I1 = true|Fl)P (I2 = false|Pn)

+ P(I1 = false|Fl)P (I2 = true|Pn).

For example, given the evidence of Fl = true and Pn = true then we obtain

P(Fe = true|Fl, Pn) = 0.9 · 0.75 + 0.9 · 0.25 + 0.1 · 0.75 = 0.975,

indicating the combined influence of both causes on the probability of having fever.
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