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Abstract

PTA is a decision-theoretic expert system that aims to assist clinicians in diagnosing and
treating patients with pneumonia at the intensive care unit. The underlying probabilistic
network model includes knowledge for diagnosing pneumonia on the basis of the likeli-
hood of tracheobronchial-tree colonisation by pathogens, and symptoms and signs actually
present in the patient. Optimal antibiotic therapy is selected by balancing the expected
efficacy of treatment, which is related to the likelihood of pathogen-specific pneumonias,
against costs and side effects of treatment. In this article, the structure of the system and
results of a preliminary evaluation are described.

Keywords : medical decision support, decision-theoretic expert systems, probabilistic net-
works, Bayesian belief networks.

1 Introduction

The medical community is presently in a state of transition from a situation dominated by
the paper medical record, containing most clinical patient data, to a future situation where
all patient data will be available on-line by an electronic clinical information system. In many
hospitals, laboratory data have already been stored and distributed by a hospital information
system for some time. In technically more advanced hospitals, a number of departments have
their clinical patient data already fully managed by a local clinical information system, usually
supplemented with a traditional hospital-wide information system. This typically holds for
departments in which the amount of data collected for a patient is huge, such as intensive
care units (ICUs).

However, providing facilities to store and retrieve patient data to the clinician is not
enough. Clinical information systems should also offer facilities to assist clinicians in dealing

∗Published in: P. Lokol, B. Zupan, J. Stare, M. Premik, R. Engelbrecht (eds.), Medical Informatics Eu-

rope’99, IOS Press, Amsterdam, pp. 690–695.

1



with hard clinical problems, such as facilities for decision support. In this paper, we describe
the development of a decision-theoretic expert system [4], i.e. a system based on a combination
of the theory of probabilistic networks (Bayesian belief networks) and decision theory [6, 7],
called PTA (Pneumonia Therapy Advisor), that is capable of providing advice about the
administration of appropriate antibiotic therapy to patients with pneumonia. The aim of the
development of this system is the provision of decision support concerning the treatment of
serious infectious diseases as an extension to the current clinical information system at our
ICU.

The structure of this paper is as follows. In the next section, the problem of the manage-
ment of patients with pneumonia is brought in clinical perspective. In Section 3, we describe
the pneumonia model that is used as a knowledge base of the decision-theoretic expert system.
In Section 4, we present results of an evaluation of the system, and, finally, in Section 5 it is
discussed what has been achieved by our research.

2 Management of pneumonia at the ICU

Pneumonia is a frequently occurring clinical problem at the ICU. Many patients admitted
to an ICU need respiratory support by a mechanical ventilator; in addition, many of these
patients are affected by severe disease which may result in depression of their immune system.
Both conditions promote the development of bacterial pneumonia in these patients.

Usually, a distinction is made between community-acquired pneumonia (CAP), which
is pneumonia originating outside the hospital, hospital-acquired pneumonia (HAP), which
develops during a stay at the hospital, and ventilator-associated pneumonia (VAP), which
may arise in patients whom are mechanically ventilated [1]. Mechanically ventilated patients
are intubated, which appears to be a major factor promoting the development of this type of
infection. Since CAP is caused by pathogens outside the clinic, common antibiotic therapy is
usually effective; there is often no need to send the patient to the hospital. This disease can be
handled by primary care physicians. The situation with HAP and VAP is quite different. The
occurrence of HAP or VAP in a patient during a stay at the hospital is seen as a significant
problem due to the presence of multiresistant bacteria in clinical wards, in particular at the
ICU. These bacteria are likely to be the cause of infection, but it is often impossible to
eradicate these bacteria using standard antibiotic treatment regimes, i.e. antibiotic therapy
that is usually prescribed when the chances for multiresistance are small.

Choosing an appropriate therapy not only involves the issue of susceptibility of pathogens
to antibiotic drugs, but also of possible side effects and of future development of resistance
to drugs. In the case of antibiotic therapy possible side effects are: renal failure, diminished
hearing, epileptic seizures and allergic reactions varying from skin rash to anaphylactic shock.
Clearly, the decisions about appropriate antibiotic therapy must be made on the grounds of
a lot of uncertain medical knowledge. In particular, making decisions concerning the initial
therapy, called empirical therapy, of these patients is difficult because it takes at least 48 hours
before the results of sputum cultures become available. Sputum cultures yield information of
the identity and antibiotic susceptibility of pathogens. Hence, empirical antibiotic therapy,
the subject on which PTA focusses, is usually prescribed without actually knowing the identity
of the causative pathogens.
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Figure 1: Global structure of probabilistic model.

3 A probabilistic model of pneumonia

3.1 The probabilistic network formalism

A natural representation of the uncertainties involved in dealing with treatment of pneumonia
is offered by the probabilistic-network formalism [5, 6]. A probabilistic network is an acyclic
directed graph G = (V (G), A(G)), with a set of vertices V (G) = {V1, . . . , Vn}, where each
vertex Vi ∈ V (G) represents a discrete stochastic variable, and a set of arcs A(G) ⊆ V (G) ×
V (G), where each arc (Vi, Vj) ∈ A(G) represents stochastic dependence. Arcs are often
informally seen as to mirror causal or correlational influences among variables. On the set
of variables {V1, . . . , Vn} is defined a joint probability distribution Pr that can be factorised
according to the topology of the graph as follows:

Pr(V1, . . . , Vn) =

n
∏

i=1

Pr(Vi|π(Vi))

where π(Vi) represents the set of variables associated with the parent vertices of Vi. This
means that the joint probability distribution Pr(V1, . . . , Vn) can be defined in terms of ‘local’
probability tables Pr(Vi|π(Vi)) by assuming the variable Vi to be conditionally independent of
all predecessors of the associated vertex Vi given the parents π(Vi). Hence, the given parents
shield a variable from stochastic influences of the other predecessors; the entire acyclic directed
graph reflects all (un)conditional independencies among the corresponding variables [6].

3.2 VAP model

The probabilistic network model was developed with the help of a number of infectious disease
experts and by consultation of the medical literature. Since the diagnosis and treatment of
VAP appeared clinically most significant, the model presented here is restricted to VAP.
However, extension of the model towards HAP and CAP would have little effect on the global
structure of the present model. Figure 1 gives an overview of the structure of the model.
Boxes indicate processes that can be (partially) observed, or decisions (selection of therapy)
that can be made by the clinician at the time of empirical therapy; ellipses indicate processes
that cannot be observed at the time of empirical therapy selection.
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Figure 2: Part of a probabilistic VAP model.

Central to the model is the temporal process of colonisation of the laryngotracheobronchial
tree by pathogens. The temporal nature of the process is expressed by the interaction between
duration of stay at the ICU (hospitalisation) and the duration of mechanical ventilation: both
duration of stay at the ICU and duration of mechanical ventilation are positively correlated to
colonisation by pathogens. Aspiration of stomach content is another factor positively corre-
lated to colonisation by certain pathogens (Enterobacteriaceae). When a patient is colonised
by specific pathogens, there is a certain probability that pneumonia will develop. This is
expressed in the graph by an arc from colonisation to pneumonia. Duration of mechanical
ventilation and immunological status influence the probability that pneumonia develops as
well; hence, an arc from these vertices to the pneumonia vertex is included in the model.
When the patient is affected by pneumonia, certain symptoms, signs or laboratory abnor-
malities can be observed, as summarised in a corresponding vertex in the graph. Finally,
the susceptibility of pathogens to particular antibiotic treatment is determined by the choice
of medical treatment and the actually present pathogens causing infection. Some antibiotic
drugs may give rise to certain side effects.

Some of the vertices shown in the graph in Figure 1 actually comprise a number of sep-
arate vertices. For example, colonisation by pathogens was modelled as a biological process,
in which it was assumed that pathogens occur independently. Given this assumption, the
processes of colonisation and development of pneumonia by each possible pathogen have been
modelled by separate vertices, with corresponding stochastic variables, in the probabilistic
model. Note that this representation allows for the presence in the patient of a pulmonary
infection due to multiple organisms; if, in contrast, colonisation (pneumonia) by different
pathogens had been represented as values of a single stochastic variable, they would have been
assumed mutually exclusive, which obviously is incorrect. Colonisation by 11 of the most fre-
quently occurring pathogens, such as Pseudomonas aeruginosa and Neisseria meningitidis,
is represented in the current model. In Figure 2, a small part of the model, only involv-
ing the vertices hospitalisation, mechanical ventilation, colonisation (e.g. COL P.AERUGINOSA,
i.e. colonisation by Pseudomonas aeruginosa), and pneumonia (e.g. P.AERUGINOSA Pneumonia),
susceptibility of pathogens to antimicrobial drugs, and medication is shown, restricted to 4 of
the 11 included pathogens. Vertices with captial I are instantiation vertices (see below).

The probabilistic model has been implemented using the Ideal probabilistic expert-system
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shell [8]. Figure 3 shows the complete model as seen by a user of the current version of the
system.

Antibiotic treatment consists of the selection of one or two different antibiotics – possibly
also none – modelled by two identical therapy vertices; each therapy vertex includes 24 dif-
ferent antibiotic drugs (including none), yielding 242 = 576 possible combinations, of which
(

23
2

)

= 253 (excluding ‘none’) are different, yielding a total of 253 + 24 = 277 (now including
‘none’ and single drugs) different therapies.

3.3 Decision-making capabilities

The efficacy of treatment for a patient can be examined by entering observed symptoms and
signs in the patient, duration of hospitalisation, mechanical ventilation, previously experi-
enced side effects of antibiotic therapy, and laboratory data. Treatment selection is flexible in
the sense that only data concerning vertices that are denoted as instantiation vertices must
be supplied always; although entering more patient data may provide additional evidence
concerning the cause of pneumonia, the model can be used even when most other findings
are unknown. Using the probabilistic inference algorithm as described in [3], the probability
distribution defined on the coverage variable can be updated, yielding an a posterior proba-
bility of coverage of all possible pathogens, Pr ∗, reflecting knowledge concerning all entered
evidence (Evidence), i.e.

Pr ∗(coverage) = Pr(coverage|Evidence)

By indicating particular vertices without parents as instantiation vertices, meaning that a
value for the corresponding variable must always be supplied, yielding additional stochas-
tic independence information, the speed of the probabilistic inference could be dramatically
improved. By defining a utility measure in terms of coverage, it is possible, in principle,
to automatically determine the treatment that gives optimal coverage by computation of
the maximum expected utility. By including the side effect variables, it is also possible to
automatically determine the antibiotic treatment that balances maximum coverage against
minimum side effects. However, since the number of possible drug combinations was 576,
computation of optimal therapy is practically infeasible, because even probabilistic inference
for one antibiotic drug combination takes seconds to minutes.

As a practical solution to this problem, we have restricted the 277 different therapies to
the 32 different therapies considered adequate for most patients, and represented in a single
vertex.

4 Evaluation

4.1 Soundness of the structure of the model

The structure of the probabilistic model was designed, taking colonisation as a starting point.
The structure of the model reflects evolution of hospital-acquired infectious disease, start-
ing with hospitalisation and mechanical ventilation, and finally resulting in pneumonia and
therapeutic intervention. Hence, the present structure of the network has a strong logical
foundation, and we, therefore, believe it to be basically correct. There may be particular arcs
missing due to gaps in the medical knowledge concerning pneumonia. However, correlations
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Figure 3: Probabilistic VAP model.
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Figure 4: Obtained predictions after entering information concerning duration of hospital-
isation and mechanical ventilation. Names of pathogens have been abbreviated. For each
pathogen, the probability of colonisation and pneumonia have been depicted, in that order.

due to missing medical knowledge would likely to be weak, and hence have little effect on the
probability distribution.

4.2 Accuracy of probabilistic information

In addition to the structure of a probabilistic network, the accuracy of the represented proba-
bilistic information is an issue that also requires attention. This has been investigates in two
ways. Firstly, a number of simulation experiments was carried out, and secondly the model’s
conclusions were evaluated for a number of different patients.

Some of the vertices in the model were instantiated (i.e. a specific value was chosen), and
the resulting a posteriori probability distribution was compared with frequency information
available from the ICU. The results of these experiments are shown in Figure 4.

It appears that the patterns of frequency of colonisation and pneumonia for particular
pathogens changes with duration of stay at the hospital. For example, the relative frequency
of colonisation and pneumonia by Moraxella Catharrhalis (MC in the figure), which is high
when entering the hospital, decreases during the first 96 hours of mechanical ventilation
(upper three graphs), to become nearly absent when the patient has stayed more than five
days in hospital. This frequency decreases to nearly zero for patients whom are mechanically
ventilated during the next 96 hours (lower graph). These observations did agree with expert
opinion.

Furthermore, the conclusions obtained by the model were examined for a group of 12
patients, drawn from the files of the ICU. For these patients, the system selected the ther-
apy that best covered suspected pathogens. Similarly, a specialist in infectious disease was
requested to select the best antibiotic therapy, and also to assess recommendations made by
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n Hosp Vent Extra Info Expert Advice Diff PTA Assessment C
1 <5days 24-48 colonisation Augmentin 3/21 Aug+Gen acceptable >

HI
2 <5days 48-96 colonisation Augmentin 8/19 Aug+Gen acceptable >

HI+SA
3 <5days 48-96 colonisation Augmentin 8/21 Aug+Gen acceptable >

SA
4 <5days 48-96 - Augmentin 3/21 Aug+Gen acceptable >
5 <5days 48-96 - Augmentin 4/22 Aug+Gen 2nd best >
6 <5days 48-96 - Augmentin 5/21 Aug+Gen acceptable >
7 <5days 48-96 - Augmentin 4/23 Aug+Gen acceptable >
8 <5days 24-48 COPD Cefta+Tobra 5/23 Aug+Gen 2nd best <
9 ≥5dW/IC 0-24 aspiration Aug+Gen 7/28 Tazocin acceptable >

10 ≥5dIC 96-144 - Cefta+Tobra 8/24 Tazocin 2nd best =
11 ≥5dIC >144 phagocyts dys Cefta+Tobra 7/19 Tazocin 2nd best =
12 ≥5dIC >144 colonisation Imipenem 1/12 Imipenem acceptable =

E1+E2

Table 1: Results for 12 patients. Meaning of abbreviations: Hosp: Hospitalisation stay and
location; ≥5daysW/IC: ≥5 days in hospital (at ward or ICU); Vent: duration of mechanical
ventilation in hours; colonisation HI: colonisation by H. influenzae; Diff x/y: position x out of
y different groups of drugs, ordered according to probability (from high to low) and grouped
when probabilities were equal; Aug+Gen: Augmentin + Gentamycin; acceptable: advice of
PTA is acceptable according to the expert; 2nd best: advice of PTA is second best choice of
expert; C: coverage of recommendation by PTA; <: less broad spectrum; =: similar spectrum;
>: broader spectrum.

the system as being either acceptable or second best choice. The results are shown in Table 1.
It appears that in 8 cases the model prescribed a therapy that covers more pathogens than the
therapy prescribed by the expert. This is caused by the fact that the present model does not
take broadness of antimicrobial spectrum into account. All 12 prescriptions were considered
acceptable or second best choice; none of the recommendations was considered unacceptable.

5 Discussion

Above, we have discussed the development of a decision-theoretic expert system that assists
in exploring the diagnosis and treatment of ventilator-associated pneumonia. The knowledge
incorporated in the model has been gathered from various sources: medical specialists, data
extracted from the hospital information systems and from the local clinical information system
at the ICU.

In the near future, we will design additional utility models, for example models that take
into account antimicrobial spectrum and financial costs of antibiotics, to obtain a system
that balances different costs and benefits of antibiotic drugs, to reach optimal treatment. We
intend to embed the resulting system in the clinical information system of the ICU.
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