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Abstract

Bayesian networks have been introduced in the 1980s. Re-
search to explore the use of the formalism in the context of
medical decision making started in the 1990s. The formal-
ism possesses the unique quality of being both a qualitative
and quantitative, statistical knowledge-representation formal-
ism. As it allows for structuring domain knowledge, by exploit-
ing causal and other relationships between domain variables,
the formalism is also model-based. In this paper, a Bayesian-
network model of ventilator-associated pneumonia and an im-
plementation of the decision-support system that incorporates
this model and that is currently being evaluated in the ICU of
the University Medical Centre Utrecht are described.

1 Introduction

The project described in this paper was initially undertaken
to investigate the potential of the commercial clinical infor-
mation system C2000 to act as a foundation for medical de-
cision support in the ICU.1 A 1994 study of antibiotics us-
age in Dutch ICUs revealed that 49% of the antibiotics were
prescribed for respiratory-tract infections. As a clinical prob-
lem for the project the diagnosis and treatment of pneumo-
nia in mechanically-ventilated patients was therefore chosen,
which may be seen as an instance of a much wider clini-
cal problem: the clinical management of infectious disease in
hospitals. The significance of this derives from the presence
of multi-resistant bacteria in clinical wards, in particular the
ICU, makes prescription of antibiotics with a spectrum as nar-
row as possible essential; the prescription of broad-spectrum
antibiotics promotes the development of antimicrobial resis-
tance, and should therefore be avoided when possible. Most
infectious-disease specialists and microbiologists therefore be-
lieve that the guidance of non-expert doctors in treating in-
fectious disease must be improved; one way to achieve this
aim may be through decision-support systems. A number of
studies indicate that decision-support tools may indeed con-
tribute to improving infectious-disease management and con-
trol [3, 5, 9, 15].

In our project Bayesian networks (BNs) have been chosen as

1C2000 is sold by the Eclipsys Corporation, http://www.eclipsys.com

the basis of most of the work. They have been introduced in
the 1980s as a formalism for representing and reasoning with
models of problems involving uncertainty, adopting probability
theory as a basic framework [10]. Since the beginning of the
1990s researchers are exploring its possibilities for developing
medical applications.

The BN formalism offers a natural way for representing the
uncertainties involved in medicine when dealing with diagno-
sis, treatment selection, planning, and prediction of prognosis
[6]. This is due to the fact that the probabilistic influences and
interactions among variables can be described readily in a BN.
As the formalism is declarative in nature, any (often condi-
tional) probabilistic statement can be computed from a given
BN, where the statement may concern both single and arbitrary
Boolean combinations of variables. This allows asking ques-
tions such as “What is likely to be the result for the patient
if I decide to request this test, or to prescribe this treatment”.
Another attractive feature of the formalism is that it is closely
related to causal qualitative models, which explains why some
researchers refer to it as the causal probabilistic network (CPN)
formalism. An actual BN can often be understood in terms
of cause-effect relationships reflected in its structure. Finally,
there also exists a fully qualitative version of the Bayesian-
network formalism, so-called qualitative probabilistic networks
(QPNs) [11]. This, therefore, allows developers to choose for a
fully qualitative modelling approach or for even further mixing
qualitative and quantitative information.

In this paper, a BN model that was developed to assist clin-
icians in the diagnosis and selection of antibiotic treatment for
patients with pneumonia in the ICU is described [8]. The model
is part of a distributed decision-support system that allows clin-
icians to request advice concerning individual patients. This
system is currently being evaluated within the ICU of the Uni-
versity Medical Centre Utrecht, and is also described in this
paper.

2 Modelling

Developing a model of a realistic medical problem is usually far
from easy, and using Bayesian networks for this purpose offers
no exception in this respect. As is the case with other represen-
tation formalisms, there are particular guidelines which facili-



Figure 1: Example of a mechanically ventilated patient in the
ICU. Many of these patients develop pneumonia.

tate developing a BN [7]. We start by summarising some facts
concerning the problem of ventilator-associated pneumonia in
the ICU.

2.1 Ventilator-associated pneumonia

Many of the patients in the ICU are severely ill, which con-
tributes to the likelihood that these patients get pneumonia.
One explanation for this is that the functionality of the immune
system in these patients is diminished. In addition, many pa-
tients admitted to an ICU need respiratory support by mechan-
ical ventilation (See Figure 1). These, and a number of other
factors, promote the development of bacterial pneumonia [1].
Pneumonia is a common disease in ICU patients; ventilator-
associated pneumonia (VAP) may arise in patients who are me-
chanically ventilated. Because of the wide-spread dissemina-
tion of multi-resistant bacteria in hospitals and ICUs in partic-
ular, with which patients start to become colonised after one
or two days, effective treatment of VAP is seen as an issue of
major concern.

Unfortunately, already diagnosing the presence of VAP in
patients is difficult, as many of the signs and symptoms that oc-
cur in VAP also occur in other disorders. For example, fever
is a very common finding in patients in the ICU, and is typical
for pneumonia, but it is more often associated with urinary tract
infection. Hence, choosing the ‘right’ therapy, i.e. selecting an-
tibiotics that are effective against the causative organisms, with-
out causing major side effects and that are as much as possible
directed to the causative organisms only, i.e. have a narrow an-
timicrobial spectrum, is even more difficult in the face of this
uncertain diagnosis.

2.2 The Bayesian-network model

Figure 2 gives an overview of the structure of the BN model
of VAP which we developed. The structure of a BN can be
designed using knowledge of known causal dependences, in-
fluences or correlations. All or part of these may be derived
from knowledge of domain experts, obtained from descriptions
in literature, or extracted from data using structure-learning
algorithms. Formally, a Bayesian network B = (G, Pr) is
a directed acyclic graph G = (V (G), A(G)) with set of
vertices V (G) = {V1, . . . , Vn}, representing stochastic vari-
ables, and a set of arcs A(G) ⊆ V (G) × V (G), represent-
ing stochastic dependences and independences among the vari-
ables. On the set of stochastic variables a joint probability dis-
tribution Pr(V1, . . . , Vn) is defined that is factorised respecting
the (in)dependences represented in the graph:

Pr(V1, . . . , Vn) =

n
∏

i=1

Pr(Vi | π(Vi))

where π(Vi) stands for the variables corresponding to the par-
ents of vertex Vi. One of the attractive features of BNs is that
it is possible to combine information from various sources, for
example starting with defining a probability distribution from
one source, and then refining it using data.

An important role in the model is played by the temporal
process of colonisation of the airways by bacteria. The fact
that this process is temporal, is expressed by the interaction
between duration of stay (hospitalisation) and duration of me-
chanical ventilation: both are positively correlated to colonisa-
tion with particular bacteria. It is in principle also possible to
represent temporal knowledge by means of temporal arcs be-
tween the same variables at different points in time, but reason-
ing with such a representation, which resembles a Markov pro-
cess, may be very demanding computationally. Other arcs have
a causal reading without a strong temporal connotation. For
example, aspiration of stomach content is another factor posi-
tively correlated to colonisation with particular bacteria. When
a patient gets colonised with a particular bacterium, there is
a certain probability that pneumonia will develop. Therefore,
an arc is drawn from ‘colonisation’ to ‘pneumonia’. Duration
of mechanical ventilation and the immunological status of a
patient influence the probability that pneumonia will arise as
well; therefore, an arc is drawn from ‘immunological status’
and ‘mechanical ventilation’ to ‘pneumonia’. When a patient is
affected by pneumonia, symptoms and signs can be observed,
as well as abnormalities in laboratory values; this part of the
model is shown in Figure 3. Here the arcs sometimes have a
causal reading and sometimes the less specific meaning of a
correlational influence.

Graphs like the one shown in Figure 2 appear easy to under-
stand, but their underlying formal semantics is sophisticated.
For example, the structure in Figure 3 tells us that leucocy-
tosis is conditionally independent of body temperature given
presence or absence of pneumonia. The notion of induced de-
pendence is also central to the theory; it signifies a (dynamic)
change in the dependence relation represented by the graph.
For example, the various colonisation variables are (uncondi-
tionally) independent, but will become dependent once infor-
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Figure 2: Detailed structure of part of the VAP model. Only three of the microorganisms included in the model are shown. Boxes
stand for collections of similar vertices. Dotted arcs point to the actual topology of the network. Solid arcs stand for atemporal
stochastic influences, whereas dashed arcs indicate temporal influences. Abbreviations of names of bacteria: PA = Pseudomonas
aeruginosa, HI = Haemophilus influenzae, SP = Streptococcus pneumoniae.
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Figure 3: Probabilistic model of signs and symptoms of pneumonia.
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mation on the presence or absence of their common conse-
quence, pneumonia, is entered into the network. Insufficient
understanding of the formal meaning of BNs may give rise to
modelling flaws.

Prescription of antibiotic therapy amounts to selecting none,
one or two antibiotic drugs, which was originally modelled by
two identical therapy vertices. Let d be the number of possible
drugs (including none). Then with two treatment vertices d2

combinations are possible, of which
(

d−1

2

)

are unique; the total
number of different (bi- and mono-)therapies that actually can
be prescribed is thus

(

d−1

2

)

+ d. However, as not every possi-
ble combination makes clinical sense, a single treatment vertex
was used in the final version of the network to represent the
prescription of one and two antibiotics.

3 Medical problem solving

As a Bayesian network allows for the computation of any prob-
abilistic statement, if all variables relevant for making a diag-
nosis and for prediction and treatment selection are included,
the same network can be used to deal with a variety of medical-
decision making tasks. This is an example of knowledge reuse;
it will be illustrated below for the VAP model.

3.1 Diagnosis of pneumonia

Diagnosing VAP is a difficult task, because none of the signs
and symptoms are unique for the bacteria that cause VAP. De-
termining a diagnosis based on available evidence E is often
defined as:

d = argmax
d∈D

Pr(d | E)

where D here stands for the ‘pneumonia’ variable, and E for ev-
idence, such as presence of leucocytosis, body temperature, du-
ration of hospitalisation, and mechanical ventilation. Receiver
operating characteristics (ROC) analysis is another frequently
used method. It is employed to determine a probability cut-
off point, which is then used to establish a diagnosis for future
cases [14]. ROC analysis, however, requires a gold standard
diagnosis, which often is not available in medicine. This is ac-
tually a problem with the diagnosis of VAP, as its pathological
diagnosis is very unreliable. The results of an ROC analysis
of the model with an infectious disease specialist and the ICU
clinicians as gold standards are shown in Figure 4.

As mentioned above, the BN model of VAP incorporates
temporal knowledge; however, it was recently shown that this
is not really important for the diagnosis of VAP [2]. This can be
understood by the fact that progress in time increases the likeli-
hood of pneumonia, but time does not interact in a complicated
non-monotonic fashion with ‘pneumonia’. This implies that for
the purpose of diagnosis it would be sufficient to use the part of
the model shown in Figure 3, with a prior probability distribu-
tion for the variable ‘pneumonia’ determined by the marginal
probability distribution as derived from the complete model.

0.2 0.4 0.6 0.8 1.0
False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.2

0.4

0.6

0.8

1.0

+
10

+
20

+
30

+
40

+
50

+
60

+70
+80

+90

10
20

30

40

50
60

70

80
90

BN vs gold standard expert
BN vs gold standard clinical practice

Figure 4: ROC curves based on patient data. The points are
labelled with cut-off points in percentages. The upper curve is
based on expert judgement; the lower curve on judgements by
ICU doctors. The BN’s performance is clearly nearer to expert
opinion than to clinical practice.

3.2 Prediction and treatment selection

For the purpose of prediction of likely causative organisms,
as well as for the selection of optimal antibiotic therapy, the
temporal knowledge incorporated into the Bayesian-network
model of VAP is of major importance. Figure 5 clearly indi-
cates that both likelihood of colonisation and pneumonia by
particular pathogens vary in time. As in particular the ‘coloni-
sation’ variables together with selected antibiotics determine
choice of treatment by predicting coverage, time cannot be ig-
nored [2].

Treatment selection is based on selecting the antibiotic com-
bination that yields an optimal outcome. In the case of treat-
ment of VAP this can be defined as maximal coverage with
minimal side effects, using antibiotics with a spectrum as nar-
row as possible, as this reduces the chances of the development
of antimicrobial resistance in the hospital. This implies that the
Bayesian network needs to be extended with decision theory,
i.e. a utility function

u : COVERAGE × SIDE-EFFECTS × SPECTRUM → R

has to defined and treatment variables become decision vari-
ables. The resulting formalism is known under various names,
among others decision networks and influence diagrams [12,
13]. The optimal treatment is the one with maximum expected
utility.

Influence diagrams can be converted to Bayesian networks,
among others by mapping the (bounded) image of the utility
function u to the interval [0, 1], and Bayesian-network infer-
ence algorithms can be used to determine (the sequence of)
optimal decisions. In the VAP model, this mapping is very
straightforward, as there is only one decision to make (antibi-
otic therapy). The actual mapping is derived in Ref. [8].
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Figure 5: Obtained predictions after entering information concerning duration of hospitalisation and mechanical ventilation.
Names of pathogens have been abbreviated (e.g. PA stands for Pseudomonas aeruginosa and SA for Staphylococcus aureus).
For each pathogen, the probability of colonisation and pneumonia are depicted, in that order.
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Figure 6: Architecture of the decision-support system that has been integrated with the clinical information system C2000 of
Eclipsys. CPR stands for Computer-based Patient Record system, i.e. C2000.
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4 Implementation and evaluation

A preliminary laboratory evaluation of the Bayesian network
and decision-theoretic model has been carried out, and yielded
promising results [8]. However, one of the major problems in
the project has been the fact that VAP is not commonly recorded
in C2000 by the ICU doctors, as VAP is never the reason for ad-
mission to the ICU but a concomitant disease in mechanically
ventilated patients. In addition, there is not a single reliable
gold standard for the diagnosis of VAP, and so the only way to
make progress was to have each patient being judged on hav-
ing VAP or not by one of the infectious disease experts. This
has been taken into account in the design and implementation
of the decision-support system, which has been set up in such
a fashion that it supports carrying out clinical trials.

The overall architecture of the present decision-support sys-
tem is shown in Figure 6. The system runs on a RedHat Linux
server, which ensures that the decision-support system does
not place extra CPU and memory load on the C2000 clinical
information system servers. Information from C2000 to the
decision-support system is extracted from the Sybase back-end
of C2000 by SQL scripts. A PHP module takes care of the com-
munication between C2000, Web clients (e.g. a Web browser
used by the doctors), and the Bayesian-network reasoning en-
gine. Hence, the decision-support system is accessible at every
bed workstation from the C2000 graphical user-interface, and
also from the hospital’s intranet by those granted access to it.

Currently, the system is undergoing a clinical trial. The set-
up of the study is as follows. Before entering any information,
the ICU doctor has to enter a clinical diagnosis and preferred
antimicrobial treatment. Subsequently, the doctor has to en-
ter part of patient-specific information; most of the informa-
tion, however, is extracted from the C2000 patient records, and
is simply presented to the doctor. On the average in 50% of
the cases, the doctor is given an advice concerning diagnosis
and treatment of the patient; in the remainder 50% no advice
is given. The doctor is finally requested to enter preferred di-
agnosis and treatment again, and arguments for changes from
the first entry. This set-up ensures that it is possible to filter
out the Hawthorne effect, an effect on study outcome caused
by the circumstance that the medical doctors know that their
performance is being measured [4].

5 Conclusion

We have attempted to convey an impression of the process un-
derlying the development and clinical deployment of a model-
based decision-support system that intends to assist medical
doctors in diagnosing VAP and selecting appropriate antimi-
crobial treatment for this disorder. The main advantages of
adopting a model-based approach from a biomedical point of
view are its versatility and strong links with how biomedical
people think about problems. Also when data are not available,
or scarce, as was the case in the early phases of our project, it
is still possible to design a Bayesian network using subjective
estimates based on expert knowledge. The subjective estimates
can then be refined later when data become available.

Providing access to the decision-support system from every
ICU-bed’s workstation was an essential prerequisite for the suc-
cess of our project, as was its integration with the clinical infor-
mation system C2000. In the clinical trail we plan to study the
effects of the system on the diagnostic and prescription perfor-
mance of ICU doctors.
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