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Objective:  Large  health  care  datasets  normally  have  a hierarchical  structure,  in terms  of levels,  as the data
have  been  obtained  from  different  practices,  hospitals,  or regions.  Multilevel  regression  is  the  technique
commonly  used  to  deal with  such  multilevel  data.  However,  for the statistical  analysis  of  interactions
between  entities  from  a domain,  multilevel  regression  yields  little  to  no  insight.  While  Bayesian  networks
have  proved  to be useful  for  analysis  of interactions,  they  do  not  have  the  capability  to deal  with  hierar-
chical  data.  In this  paper,  we  describe  a new  formalism,  which  we  call multilevel  Bayesian  networks;  its
effectiveness  for  the  analysis  of hierarchically  structured  health  care  data  is  studied  from  the  perspective
of multimorbidity.
Methods:  Multilevel  Bayesian  networks  are  formally  defined  and  applied  to analyze  clinical  data  from  fam-
ily practices  in The  Netherlands  with  the  aim  to predict  interactions  between  heart  failure and  diabetes
mellitus.  We  compare  the  results  obtained  with  multilevel  regression.
Results:  The  results  obtained  by  multilevel  Bayesian  networks  closely  resembled  those  obtained  by multi-
level  regression.  For  both  diseases,  the  area  under  the  curve  of  the  prediction  model  improved,  and  the net
reclassification  improvements  were  significantly  positive.  In addition,  the models  offered  considerable

more  insight,  through  its internal  structure,  into  the  interactions  between  the diseases.
Conclusions:  Multilevel  Bayesian  networks  offer  a suitable  alternative  to  multilevel  regression  when ana-
lyzing  hierarchical  health  care  data.  They  provide  more  insight  into  the  interactions  between  multiple
diseases.  Moreover,  a multilevel  Bayesian  network  model  can  be used  for the  prediction  of  the  occur-
rence  of  multiple  diseases,  even  when  some  of  the  predictors  are  unknown,  which  is typically  the case
in medicine.
. Introduction

Health care research is often done using clinical data that con-
ain a hierarchical structure—they have levels as its said—as the data
ave been obtained from different practices, hospitals, or regions.
ince patients within the same practice are often more alike than
wo randomly chosen patients, they will likely have some corre-
ation on variables related to the practice. Statistical analyses that
gnore these correlations will lead to results that are statistically
nvalid [1]. Commonly used statistical techniques such as logis-
ic regression do not allow incorporating the characteristics of the
ifferent levels in the hierarchy. Therefore, multilevel regression
ethods are often used to analyze such data. The books [2,3] offer
n overview of such methods.
In the artificial intelligence literature, probabilistic graphical

odels, such as Bayesian networks [4], have had a significant

∗ Corresponding author. Tel.: +31 (0) 638896321.
E-mail address: mlappens@cs.ru.nl (M.  Lappenschaar).

933-3657/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.artmed.2012.12.007
© 2013 Elsevier B.V. All rights reserved.

impact on the modeling and analysis of the patient data [5]. The
edges in the graphical model represent probabilistic relationships
between specific patient variables for a disease of interest. Bayesian
networks allow for the integration of medical domain knowledge,
and clinical expertise can be modeled explicitly. Moreover, clinical
knowledge derived from clinical health care data can be used to
further refine and validate the model.

In this paper, we combine multilevel modeling and learning with
Bayesian network modeling. This can be useful in complex domains,
for example, when studying the problem of multimorbidity,  i.e., the
epidemiology of patients with multiple diseases. Multimorbidity
is often analyzed using multilevel regression, as it requires a large
amount of data coming from different sources in order to study
the interaction between diseases. Moreover, it is a typical problem
where Bayesian networks can be useful, as expert knowledge is
needed, and representing multiple diseases requires scaling up to

models containing a large number of variables.

Since Bayesian networks have already been successfully applied
to model single diseases [5–11], and also for multiple dis-
eases [12–16], the research question is whether and how it is

dx.doi.org/10.1016/j.artmed.2012.12.007
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
mailto:mlappens@cs.ru.nl
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ossible to adopt the multilevel approach for Bayesian networks.
n that way we would be able to explore complex health care data
hat is hierarchically structured using Bayesian networks with the
dvantage that, in contrast to multilevel logistic regression, mod-
ls are obtained that offer a clear representation of the interactions
etween multiple diseases.

The main contribution of this paper is that it introduces a
ew representation of multilevel disease models using Bayesian
etworks, which we call multilevel Bayesian networks. It has the
dvantage that it is at least as powerful as multilevel logistic regres-
ion, yet supports, in contrast to multilevel logistic regression,
aining new insights into the interactions between multiple dis-
ases.

Using patient data from family practices in The Netherlands, we
pplied this framework to obtain a prediction model for multiple
hronic diseases, namely diabetes and heart failure. The effec-
iveness of multilevel Bayesian networks has been studied by
omparing the resulting model to the traditional models based on
ultilevel regression analysis.

. Related research

Multimorbidity is the health care problem where we  focus on
n this paper, although multilevel Bayesian networks may  have
ther applications as well. We  start, therefore, by introducing the
esearch context.

Although in the current aging society multimorbidity is the
orm rather than something rare, in medicine there is still a focus
n single diseases with respect to their comorbidities, rather than
hat multimorbidity is considered in total. This is often done by
tudying the prevalence and significance of specific factors for pre-
icting the presence or the absence of specific diseases, typically
y applying (multilevel) regression methods where the variance
f the observations is minimized with respect to a linear or logis-
ic model. Where multimorbidity should be studied by exploring
he interactions between diseases with associated signs and symp-
oms in their full generality, in practice current research explores
his only in a very restrictive fashion.

For example, prevalence of multimorbidity has been studied in
amily practices [17,18], sometimes by clustering of specific dis-
ases [19]. Multimorbidity indices are a way to measure specific
ypes of multimorbidity within a population. A systematic review of
hese indices can be found in [20]. These methods illustrate the size,
mpact and complexity of multimorbidity, but give little insight into
nteractions between diseases.

Multilevel regression has many applications in the social sci-
nces and in medicine; however, it was not especially designed
o model multimorbidity [21–23]. In [24] complex hierarchical
atient data were used to analyze the predictive value of cardio-
ascular diseases for hypertension and diabetes mellitus. Since both
iseases are analyzed separately, the results only give a preliminary
iew on correlations between cardiovascular diseases.

Various Bayesian network models for multiple disease have
een developed since the beginning of the 1990s. Examples are
athfinder [12,13], Hepar II [15] and MUNIN [25]. They deal with
ultiple diseases, although belonging to the same class. One of few

xisting exceptions is QMR-DT [26,27], as it covers a broad sub-
et of internal medicine. However, it was never meant for actual
se. All these Bayesian network models have been constructed
ased on expert opinion and engineering background knowledge.
hey did only incorporate known disease interactions; they were

ot meant for uncovering new disease interactions. This explains
hy dealing with multilevel data was not seen as a problem. In

his paper we make an important step forwards in this respect,
s Bayesian network models are learned in order to gain insight
ce in Medicine 57 (2013) 171– 183

into the interactions between diseases. Without the capability to
deal with hierarchical data, using multilevel methods, such learning
results are statistically unsound.

Bayesian networks have also been used in algorithms for learn-
ing patient-specific models from clinical data to compare mixed
treatments and to predict disease progression [28,29]. Somewhat
confusingly, the adjective ‘hierarchical’ is also used in connection
to Bayesian networks. For example, nested, hierarchical Bayesian
network allow one to define genetic models that can be reused
[30]. Hierarchical Bayesian networks have also been proposed as an
aggregating abstraction [31] that clusters variables closely related
to each other. This all closely relates to object-oriented Bayesian
networks [32], but there is no relationship to multilevel anal-
ysis where the hierarchy stands for nested data from different
groups.

Eventually, one would preferably obtain models for health care
data that can handle multimorbidity, and have the ability to be per-
sonalized, i.e., put observations on the patient into the underlying
probabilistic model and obtain updated parameters that specifi-
cally account for that patient. Such personalized models help to
obtain specific advice that relates to the patient’s health status. The
probabilities of the underlying model could be extracted from exist-
ing clinical research or from available patient data, using a valid
method that takes interactions between diseases into account.

To illustrate the type of relationships that can occur, we show
in Fig. 1 at the left-hand side the typical relationships between
variables for a single disease, and at the right-hand side the
integration of multiple diseases into one graphical model. Rep-
resenting multiple diseases in one model avoids redundancy of
separate representations and has the advantage that it shows
where diseases interact. Mutual dependences may concern dis-
eases, therapies, pathophysiology, symptoms, signs, and lab results,
and modeling interactions explicitly, allows us to make better
decisions for patients having multiple diseases. In fact, the archi-
tecture of networks such as MUNIN [25] is similar, as it also
models diseases in terms of their pathophysiology and patient
findings.

3. Preliminaries

In this section, the basic concepts are introduced that we will use
in the following sections. Before moving on to Bayesian networks
and multilevel regression we first review basic probability theory
putting emphasis on multivariate probability distributions.

3.1. Probability theory

Disease variables can be seen as random variables, either dis-
crete or continuous, each with their own distribution. Random
variables are denoted by uppercases, e.g., X, and lowercases, e.g.,
x, indicate their values. Binary variables have the values x and x.
We assume there is a multivariate probability distribution over the
set of random variables X, denoted by P(X). The joint probability
distribution of two  disjoint sets X and Y is denoted as P(X, Y).

Furthermore, a probability distribution is defined by a proba-
bility density function fX for the continuous case, or a probability
mass function fX, for the discrete case. The marginal distribution
of Y ⊆ X is then given by summing (or integrating) over all the
remaining variables: P(Y) =

∑
Z=X\YP(Y, Z). A conditional probabil-

ity distribution P(X|Y) is defined as P(X, Y)/P(Y), for positive P(Y).
Corresponding conditional density or mass functions are denoted

by fX|Y. Two variables X and Y are said to be conditionally inde-
pendent given a third variable Z, if P(X|Y, Z) = P(X|Z), for any value
of Y, also denoted as X � PY|Z. If, in contrast, these variables are
(conditionally) dependent, this is denoted by X PY|Z



M. Lappenschaar et al. / Artificial Intelligence in Medicine 57 (2013) 171– 183 173

sin gle di sease

environment

characteristics

genetics

diseasetherapy

pathophysiolog y

signs

symptoms

laboratory
results

mul tipl e di seases

environment

characteristics genetics

disease A therapy A disease B therapy B

patho-
physiolog y X

patho-
physiolog y Y

patho-
physiolog y Z

sign 1 sign 2 sign 3

symptom 1 symptom 2 symptom 3

laboratory
results 1

laboratory
results 2

laboratory
results 3

sease 

3

r
w
d
(
d
T
b
i

P

w
d
e
r

w
(
i
o

A

i
p
c
i
d
M
i
M
s
d

i
d
p
T
i
d
t

Fig. 1. Abstract model of a single di

.2. Bayesian networks

Bayesian networks offer an effective framework for knowledge
epresentation and reasoning under uncertainty [4]. A Bayesian net-
ork, or BN for short, is a tuple B = (G, XV , P), with G = (V, A) a
irected acyclic graph, or DAG for short, with vertices or nodes VG
also abbreviated to V) and arcs AG ⊆ VG × VG, XV = Xv∈V a set of ran-
om variables indexed by V, and P a joint probability distribution.
his distribution P can be written as the product of the local proba-
ility of each random variable, conditional on their parent variables

n the graph G:

(XV ) =
∏
v∈V

P(Xv|X�(v)) (1)

here �(v) is the set of parents of v (i.e., those vertices pointing
irectly to v via a single arc). Learning methods for both the param-
ters as well as the graphical structure of a Bayesian networks are
eadily available [33].

Blockage of paths in the associated graph G of a Bayesian net-
ork, defined as d-separation of variables and denoted by A �G B|C

any undirected path, if it exists, from a vertex in A to a vertex in B
s blocked by vertices in C) [4], implies conditional independences
f the corresponding random variables:

 �G B|C → XA�P XB|XC

.e., P is faithful to G. This property can be exploited to study the
roblem of multimorbidity. Since models of multimorbidity typi-
ally contain many more variables than single-disease models, it
s useful to select subsets of variables for predicting a particular
isease. The relevant subset can be obtained by determining the
arkov blanket (MB) of a vertex v: the set of vertices such that v

s d-separated of all other vertices given the set of vertices in the
arkov blanket [34]. In a BN, the Markov blanket of a vertex is the

et of parents, children, and parents of children. Usually, we will not
istinguish between variables and their corresponding vertices.

In multimorbidity it is of interest to study in which way diseases
nteract. For example, diseases D and D′ might be unconditionally
ependent of each other, i.e., D PD′|∅, but they could become inde-
endent if an environmental factor F is taken into account, D �P D′|F.

his means that the factor F offers a complete explanation of the
nteraction between the disease D and D′. Moreover, the MB  of a
isease D are all factors, possibly other diseases, that are relevant
o predict this disease D.
(left) and multiple diseases (right).

3.3. Multilevel regression

To analyze multimorbidity problems one has to deal with large
datasets in which variance is introduced by the fact that the data
have been collected from different sources, such as family practices
and populations, either social, economic, or demographic. If we
would ignore this, identifying interactions between disease vari-
ables, such as pathophysiology and laboratory results, could be
difficult and even erroneous.

While Bayesian networks model a joint probability distribu-
tion, regression methods estimate conditional distributions. Linear
regression tries to estimate a linear dependency between the obser-
vations of a random continuous variable (assuming it is normally
distributed), denoted by O, and a set of (non-random) explana-
tory variables, denoted by e. This is done by using an optimization
algorithm, such as the least square method, that minimizes the
deviation of the observations with respect to the model parameters.

If, additionally, the data is hierarchically structured, then at each
level, the data can be split into groups.  Characteristics of each group
are modeled by additional (non-random) level variables, denoted
by l. For example, if the different practices are modeled by a group-
ing variable, a variable such as urbanity that will be shared among
practices is modeled by such a level variable. Multilevel analysis
tries to explain the variance caused by level variables that have
an influence on the explanatory variables e. For example, if we use
linear regression, the intercept and slope, that determine the linear
dependency between two  variables, may  alter for different groups.

More precisely, in multilevel regression we wish to explain an
observation o with respect to explanations e and l, assuming that
the observations o are possible outcomes of a random variable O.
Let us first assume that there are only two  levels to cope with the
grouped data. The explanations e represent the first level, i.e., they
can be different for each individual. The second level then repre-
sents the groups, which are characterized by the explanations l. The
explanations l can thus only differ per group, and together with the
explanations e they describe each individual.

Let there be r groups with n first-level explanations and m
second-level explanations. Then, for each qth group at the second
level we  define a linear regression model for O, and allow depend-
ency of the regression coefficients on the variables lj and certain
deviation from the overall mean. With e = (1, e1, . . .,  ei, . . .,  en)T,

l = (1, l1, . . .,  lj, . . .,  lm)T, i.e., n + m explanations, ıq = (ı0q, . . .,  ınq)T

(the second level noise), for q = 0, . . .,  r, and  ̌ a matrix consisting
of components ˇij (the effect of lj on the explanation ei), the model
then becomes: E[Oq|e, l] = (ıq + ˇl)Te, which, if the noise is normally
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act  lower as computed from normal regression. This effect is due to the fact that
ultilevel regression allows different a priori estimates (ˇ0) for each group.

istributed, can be interpreted as a conditional probability distri-
ution:

(Oq|e, l)∼N(�q, �) (2a)

q = (ıq + ˇl)T e (2b)

or q = 0, . . .,  r, where the expectation of the outcome variable E[Oq|e,
] = �q.

In this model, the outcome for each group is dependent of
xplanatory variables e weighed by the coefficients ˇ, the level
ariables, and random variables ıiq, where for each i, the ıiq are
ormally distributed with expectation zero, and correlated with a

iq′ . These correlations ensure that observations for one group have
n impact on other groups through this hierarchical structure.

Generally, multilevel models assume homogeneity of variance
or all observations on the first level, i.e., � is constant, and does not
epend on e, l, and q. Likewise, it also assumed that the variance on
he second level is homogeneous, i.e., the variance of ıiq is equal to
2
i

, and the covariance of ıiq and ıi′q is equal to �2
ii′ , and thus not

roup specific. But there is no reason why this should be true in all
pplications. An alternative is to allow heteroscedasticity, i.e., het-
rogeneity of variances among groups on at least one of the levels.
eteroscedasticity, however, requires additional modeling when
stimating the different variances [35–37], and is not described in
etail in this paper.

Adding the observations lj simply to the regression model as
dditional explanatory variables, i.e., e = (1, e1, . . .,  en, l1, . . .,  lm)T,
ith corresponding regression parameters, i.e.,  ̌ = (ˇ0, ˇ1, . . .,  ˇn,
n+1, . . .,  ˇn+m)T, we obtain a one-level regression model with

 + m + 1 degrees of freedom, which corresponds to standard lin-
ar regression. The number of degrees of freedom in the multilevel
odel is q(n + 1)(m + 2). Fig. 2 compares standard regression and
ultilevel regression on a synthetic dataset with observations

ivided into two groups.
The concept can be extended to more levels, e.g., three levels.

f the q subgroups can be grouped further into s meta-groups, we
an define a three-level model, with l1 = (1,  l21, . . . , lj, . . . , l2m1 )T ,

nd l2 = (1,  l21, . . . , l2k, . . . , l2m2 )T as the second, and third level
ariables respectively (the first level is the evidence e), and allow
ependency of  ̌ on the third level variables as well. The coefficient

 is now a three-dimensional array consisting of components ˇijk.
f the vector �qs, consisting of elements � iqs, represents the third
evel noise (with homogeneity of variances), the model becomes:

(Oqs|e, l)∼N(�qs, �) (3a)

qs = (ıq + ((�qs + ˇl2)T l1)T e (3b)

here again the expectation E[Oqs|e, l] = �qs.

This last model assumes the random outcome variable O to

e normally distributed, but in case that O is dichotomous this
o longer holds. In this case a specific transformation of the out-
ome variable, e.g., the logistic function, is assumed to be linear
ce in Medicine 57 (2013) 171– 183

dependent of the explanatory variables. For logistic regression the
transformation is given by:

logit E[O|e] = log
E[O|e]

1 − E[O|e]
,

and the logistic multilevel model therefore becomes:

logit E[Oqs|e, l] = (ıq + ((�qs + ˇl2)T l1)T e.

The conditional probability in case of logistic regression is defined
as:

P(Oqs|e, l)∼Bernoulli(p) (4a)

logit p = (ıq + ((�qs + ˇl2)T l1)T e (4b)

When actually doing the multilevel regression we might not want
(or expect) an effect of certain higher levels variables on all lower
level variables. In that case the corresponding component ˇijk is
fixed to zero, i.e., it is omitted from the model.

Multilevel regression requires less parameters in compari-
son to standard regression, where the higher level variables are
modeled as explanatory variables [3]. Parameters of multilevel
regression models can be estimated using an iterative generalized
least square (IGLS) method. IGLS is a least square method that
estimates the parameters by alternating the optimizing process
between the fixed parameters (ˇij) and the stochastic parame-
ters (ıiq) until convergence is reached. Goldstein [38] proved that
this method is equivalent to the maximum likelihood estima-
tion in standard regression, and improved it to restricted iterative
generalized least square (RIGLS) which coincides with restricted
maximum likelihood (REML) in Gaussian models [39]. Parame-
ters for dichotomous outcomes are estimated with marginal and
penalized quasi-likelihood (MQL/PQL) algorithms [40,41]. Alterna-
tively Markov chain Monte Carlo (MCMC) methods such as Gibbs
sampling can be used [42]. Further information and comparison of
Bayesian and likelihood-based methods for fitting multilevel mod-
els can be found in [43]. Note that, a regression method always tries
to fit the model on observed variables only, i.e., it does not consider
unobserved variables. For more details about multilevel regression
models one is referred to [3].

4. Dealing with multilevel data by Bayesian networks

In this section, we  introduce the multilevel Bayesian network
(MBN) formalism as a new model-based representation of mul-
tilevel data. As mentioned in the introduction, this combines
the multilevel methodology, used in multilevel regression, with
Bayesian networks, in such way  that we  are able to analyze inter-
actions and probabilistic dependencies between multiple diseases,
using patient data obtained from multiple sources, such as family
practices.

4.1. Basic ideas

The advantage of a Bayesian network over regression models
is that all variables are treated as uncertain, where in regres-
sion, including multilevel regression, only the outcome variable
is treated as uncertain. If one is primarily interested in the inter-
action between all relevant variables, and not only in prediction
of outcome, in the context of multiple diseases, this is convenient
way to model multiple diseases. Furthermore, as multilevel regres-
sion models can be seen as conditional probability distributions,

they can be used as a factor in a Bayesian network (cf. Eq. (1)). In
this section, we explore this relationship by varying the amount of
structure in such models and compare this to the multilevel regres-
sion approach. However, the first challenge that must be met is



M. Lappenschaar et al. / Artificial Intelligence in Medicine 57 (2013) 171– 183 175

O

E1 Ei En

I1

I2

L1
1 L1

m1

L2
1 L2

m2Level 2

Level 1

Level 0

t
f

d
i
q
m
p
t
a
w
a
a
v

v
m
c
e
e
t
i

t
a
v
o
O
n
T
t
w
p

L
m
Y
h

P
i

P

B
a

P

Level 2

Level 1

Level 0 E1

Ei O1 O2

I1

I2

L1
1 L1

m1

L2
1 L2

m2
Fig. 3. Bayesian network representation of a multilevel regression model.

he incorporation of multilevel methods in the Bayesian-network
ramework.

In multilevel regression, the random outcome variable O
epends on the vectors of explanations of (non-random) variables,

.e., e = (e1, . . .,  en) and lj = (l11, . . . , ljmj
), with j = 1, . . .,  m, (sub)groups

, and m + 1 different levels. For a Bayesian network approach, we
odel O as a conditional probability distribution given the set of

arents {E1, . . . , En} ∪
⋃m

j=1Lj , with Lj = {Lj
1, . . . , Lj

mj
}, and an indica-

or variables Ij, where j = 1, . . .,  m,  that selects the group of objects at
 certain level j. Fig. 3 shows the corresponding Bayesian network
ith three levels, assuming no further dependence between vari-

bles. Clearly, this model is still too restrictive for most health-care
pplications, as no structure is present between the explanatory
ariables and we have only one outcome variable of interest.

The idea of a multilevel Bayesian network is that the indicator
ariables I split the domain into different categories with a deter-
inistic effect on the group variables L that are constant for a given

ategory chosen by I. If not present, I variables can be constructed,
.g., by the Cartesian product in case of categorical L variables. How-
ver, multilevel analysis, and thus a multilevel Bayesian network, is
ypically designed for hierarchically structured data, and then the
ndicator I variables are part of the database definition.

Some of the explanatory variables are group-independent,
hough structure may  exist between these variables. These vari-
bles correspond with the set of variables E in an MBN. Other
ariables, depend both on grouping and other variables at the same
r higher levels. These variables correspond with the set of variables

 in an MBN. The Bayesian network is constrained in the sense that
o edges exist from a lower-level variable to a higher-level variable.
his ensures that we keep the hierarchical structure present in mul-
ilevel regression methods. Because of the deterministic relations
e are able to simplify the structure of the MBN  using the following
roperty.

emma  1. Let X and Y be two random variables such that Y is deter-
inistically dependent of X, i.e., there exists some function f such that

 = f(X). Then, for all sets of random variables Z disjoint of X and Y it
olds that Z �P Y|X.

roof. Take some arbitrary Z. If it is a discrete distribution, then
t holds that:

(Z|X) =
∑

Y

P(Z, Y |X) =
∑

Y

P(Z|X, Y)P(Y |X)

y the relationship between X and Y, it holds P(Y|X) = 1 if Y = f(X),

nd 0 otherwise, so it follows that:

(Z|X) = P(Z|X, f (X)) = P(Z|X, Y)
En

Fig. 4. Multilevel Bayesian network with 3 levels and discrete variables.

Similarly, for continuous distributions, we  have:

p(Z|X) =
∫

p(Z, Y |X)dY =
∫

p(Z|X, Y)p(Y |X)dY

=
∫

p(Z|X, Y)ı(Y − f (X))dY = p(Z|X, f (X)) = p(Z|X, Y)

where ı is the Dirac delta function. �

We  can apply this lemma  to our initial MBN  for two cases. Since
P(Lj

i
|Ij) is deterministic, we  obtain O �P Lj

i
|Ij . The implication of this,

is that no arcs exist between the group vertices in L and the outcome
and explanatory vertices in O ∪ E. Since the probability distribu-
tion P(Ij+1|Ij) is deterministic too, we  obtain O �P Ij|I1 for all j. The
implication of this is that within the indicator vertices I there are
only arcs from Ij+1 to Ij, for all j, and between the indicator ver-
tices I and outcomes O there are only direct arc from I1 to any Oi.
These restrictions greatly simplify the structure of an MBN. When
making predictions based on the parameters of the MBN, the indi-
cator variables are mostly unknown. However, the structure still
allows us to use the higher level variables to explain the outcome
variable.

We now give a precise definition of MBNs. To shorten the defi-
nition, members of the various sets S are denoted by Si, and S \ {Si}
with S − Si.

Definition 1. A Bayesian network B = (G, XV , P) is a multilevel
Bayesian network, or MBN  for short, if its set of vertices V is described
by the tuple (m, O, E, L, I), with pairwise disjoint sets O, E, L, I ⊆ VG,
such that:

• m ∈ N  denotes the number of levels of the MBN, where level 0 is
called the base level;

• O, the set of outcome variables, is at base level such that if
(V → Oi) ∈ AG, then V ∈ E ∪ (O − Oi) ∪ I;

• E, the set of explanatory variables, is at base level, such that if
(V → Ei) ∈ AG, then V ∈ (E − Ei) ∪ O;

• L = {L1, . . .,  Lm}, where each Lj is a set of group variables at level
j ≥ 1. For group variable Lj

i
it holds that

1. (V → Lj
i
) ∈ AG implies that V = Ij;

2. P(Lj
i
|Ij) is deterministic.

• I = {I1, . . .,  Im} are indicator variables, such that Ij is the only parent
of Ij−1 in G, for all 1 ≤ j ≤ m,  and P(Ij−1|Ij) is deterministic;

• XV = {Xv|v ∈ (I ∪ E ∪ O ∪ L)}.
Fig. 4 offers graphical illustration of the definition. Note that,
within one MBN  multiple diseases can be modeled as outcome
variable. By Lemma  1, the outcome variables O are independent
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f the level variables L given the value of the I variables by lemma.
owever, this does not imply these are variables are meaningless.
nce the parameters of the MBN  are learned, it can be used to esti-
ate the variance that is introduced by such a level variable on the

robability distribution of outcome variables, without knowing the
alue of the indicator variable.

.2. Probability distributions for multilevel Bayesian networks

Without taking into account the level variables, the probability
f the outcome variables O conditioned on the explanatory vari-
bles E can be obtained by

(O = o|E = e) = fO|E(o|e; ˇ) = fO,E(o, e; ˇ)∑
ofO,E(o, e; ˇ)

,

f O is discrete, and

(O ≤ o|E = e) =
∫ o

−∞
fO|E(x|e; ˇ)dx =

∫ o

−∞ fO,E(x, e; ˇ)dx∫ ∞
−∞ fO,E(x, e; ˇ)dx

f O is continuous. The parameter  ̌ represents the parameters typ-
cally used for a specific distribution, e.g.,  ̌ = (�, �) in case fO,E(o,

 ; ˇ) is a Gaussian distribution with mean � and variance �.
In a multilevel Bayesian network the grouping variable splits the

onditional probability distributions between an outcome variables
nd its explanatory variables into multiple (countable) distribu-
ions keeping them closely related, i.e., only the distribution type
ependent parameters differ between groups. In case O is discrete
e obtain P(O = o|E = e, I = i) = fO|E(o|e ; ˇi), and likewise, if O is con-

inuous we obtain P(O ≤ o|E = e, I = i) =
∫ o

−∞ fO|E(x|e; ˇi)dx.
For example, in case O and E = e are both discrete and O is binary

ith a Bernoulli distribution with parameter  ̌ = pe,i, we  obtain:

(O = o|E = e, I = i) = fO|E,I(o|e, i; ˇ) = Bernoulli(pe,i)

=
{

pe,i if O = o

1 − pe,i otherwise

n case O and E are both continuous and O follows a Gaussian dis-
ribution, we obtain the probability density function:

O|E,I(o|e, i; ˇ) = N(�e,i, �)

ust as in multilevel linear regression, a linear dependency between
 and O can be obtained if �e,i = ˇie, also for E being a discrete
ariable.

In case O is discrete and E is continuous a link function is used in
ultilevel regression, to keep the linearity in the model, of which

he logistic function is the most popular one. The probability mass
unction for such a discrete variable with a continuous parent is:

O|E,I(o|e, i) = exp(ˇi
o0 + ˇi

o1e)∑
o exp(ˇi

o0 + ˇi
o1e)

or binary outcome variables this reduces to:

O|E,I(o|e, i) = [1 + exp(ˇi
0 + ˇi

1e)]−1

. Experimental methodology

In the previous section, the basic ingredients of multilevel
ayesian networks were outlined. In this section, we  take the step in
aking the technique practically useful. At the end of this section,

e demonstrate that the methodology works by using synthetic
ata. In the next section, the same is done, but then for a dataset
btained from a public health registry containing patient data from
eneral practices.
ce in Medicine 57 (2013) 171– 183

5.1. Parameter learning

Because we have incorporated the multilevel regression model
as factors in the model, we can make use of multilevel regression
to estimate the outcome variables. This has the advantage that we
exploit the correlation between different groups (if it exists) and
therefore requires less data per group than a standard Bayesian net-
work learning algorithm needs for parameter learning per group.
For multilevel-level logistic regression models, it is recommended
to use a minimum group size of 50 with at least 50 groups to
produce valid estimates [44]. An exact inference algorithm for
parameter estimation in networks with discrete children of contin-
uous parents is proposed in [45]. Compared to multilevel regression
models, it is also possible to use a Bayesian approach for learn-
ing the parameters [46] and therefore include even more domain
knowledge to the model.

5.2. Model validation

Possible criteria to validate the model parameters are the Akaike
information criteria (AIC) [47], the Bayesian information criteria
(BIC) [48], and the deviance information criteria (DIC) [49]. The AIC
and BIC are widely accepted decision criteria, but computationally
expensive when dealing with large amounts of data and MCMC
methods. This problem is overcome using the DIC, which calculates
deviance residuals, that sum up to the deviance statistic, along with
the MCMC  process. Unfortunately, in disease mapping, DIC is in
favor of overparameterized models, especially when using large
datasets [50].

Alternatively, an approximation method proposed by [51] can
be used, which works very well for large data sets in an MCMC
setting. It uses replication of the stochastic parameters and the out-
come variables for a specified part of the data along with the MCMC
simulation based on the remaining part of the data. The replicate
outcome variables can then be compared to the real outcomes,
allowing us to assess the predictability of the model.

Although computationally expensive as well, standard cross
validation (e.g., k-fold cross validation) is a robust method to vali-
date regression and Bayesian models [52], and receiver operating
characteristic (ROC) analysis can be used to validate accuracy and
precision of the model parameters. Recently, a new measure was
introduced, the net reclassification improvement (NRI), offering
additional incremental information compared to the area under
the curve (AUC) within an ROC analysis [53], which provides more
insight into risk prediction.

5.3. Structure learning

In order to build the structure between variables, we can make
use of two approaches. We  can either model the structure man-
ually based on existing medical knowledge or learn the structure
from data. Structure learning of Bayesian networks offers a suit-
able method to learn these dependencies. The constraints imposed
by the multilevel Bayesian network can be captured by blacklisting
and whitelisting edges, which can be incorporated into a wide range
of structure learning algorithms (see, e.g., [54]). For example, the
necessary edges between I1 and all variables Oi ∈ O are whitelisted,
whereas edges from a lower level to a higher level are all blacklisted.

A systematic approach to identify statistically significant edges
in a network, has been developed by Friedman et al. using bootstrap
resampling and model averaging [55]. The empirical probability
of an edge, defined as the fraction of occurrences in the networks

learned from bootstrapped samples, are known as edge intensities
(or strengths), and can be interpreted as the degree of confidence
that the edge is present in the true network structure describing the
true dependence structure of the original data. Scutari et al. propose
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tion about the genetic variation of a person is irrelevant, i.e., since
D3�P G|D1 we obtain: P(D3|D1, D2, L1, L2, G) = P(D3|D1, D2, L1, L2).

Applying the MBN  techniques, Fig. 6 shows the corresponding
MBN  representations. One can see that in the multilevel regression

I1

I2

G D1 D3 D2

L2

L1

Level 2

Level 1

Level 0

I1

I2

G D1 D3 D2

L2

L1
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 statistically motivated estimator for the confidence threshold
inimizing a specific norm between the cumulative distribution

unction of the observed confidence levels and the cumulative dis-
ribution function of the confidence levels of the unknown true
etwork [56]. Classical norms are the rectilinear distance, denoted
s the L1 norm, and the Euclidean distance, denoted as the L2 norm
57].

.4. Artificial multimorbidity example with synthetic data

Suppose we have the variables D1, D2, and D3 that model
hether the diseases D1, D2, and D3 are present, a genetic vari-

ble G, and two demographic vertices L1 and L2 that model certain
nvironmental conditions. Furthermore, let the demographics be
ariables obtained from higher levels in a hierarchically structured
ataset, i.e., L1 and L2 are level-2 and level-3 variables respectively.
or example, the variables D1, D2, and D3 could represent diseases
ike diabetes, retinopathy, and hypertension. The variable G could
epresent gender,  or a specific gene, and the grouping variable I1
ould represent a division in practices with type as L1, and I2 a
ivision in area with urbanity as L2.

There are fifty practices (I1 ∈ {1, . . .,  50}) and five areas (I2 ∈ {1, 2,
, 4, 5}). The variable type (L1) has 5 possible values and the variable
rbanity (L2) is binary. The deterministic relations between them
re:

2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if I1 ∈ {1, . . . , 10}
2 if I1 ∈ {11, . . . , 20}
3 if I1 ∈ {21, . . . , 30}
4 if I1 ∈ {31, . . . , 40}
5 if I1 ∈ {41, . . . , 50}

nd

1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if I1 mod  10 ∈ {0, 1}
2 if I1 mod  10 ∈ {2, 3}
3 if I1 mod  10 ∈ {4, 5}
4 if I1 mod  10 ∈ {6, 7}
5 if I1 mod  10 ∈ {8, 9}

nd

2 =
{

0 if I2 ∈ {1, 2}
1 if I2 ∈ {3, 4, 5}

e sampled 10,000 patients uniformly over the fifty practices and
etermined its respective values for the other higher level variables.
he binary variable G is binomially sampled with a probability of
.50. The diseases D1, D2 and D3 are sampled as follows.

D1 = Binomial(0.50 + 0.01G + N(�q, �q))

D2 = Binomial(0.20 + N(�s, �s))

D3 = Binomial(0.20 + 0.1D1 + 0.2D2 + 0.2D1D2 + N(�qs, �qs))

ith q = 1, . . .,  50, and s = 1, . . .,  5, corresponding to the number of
ractices and areas. The distributions N(�q, �q) and N(�qs, �qs) are

andomly sampled from a N(0,  0.1) distribution, �s is 0.25, 0.30,
.35, 0.40, and 0.45, for s = 1, . . .,  5 respectively, and �s = 0.01.

Applying multilevel regression, if we, for example, only allow
n influence of the level-2 and level-3 variables on the intercept

(
s

D1 D2D3

Fig. 5. Bayesian network representing probabilistic dependencies between certain
diseases (D1, D2, D3), a genetic variable G, and some demographics (L1, L2).

and the regression coefficient of the explanatory variable D1, the
multilevel regression model becomes:

P(D3qs|d1, d2, g, l1, l2)∼Bernoulli(p) (5.1a)

logit p = ˇ0qs + ˇ1qsd1 + ˇ2d2 + ˇ3g (5.1b)

ˇ0qs = ˇ00s + ˇ01sl1 + ı0q (5.2a)

ˇ1qs = ˇ10s + ˇ11sl1 + ı1q (5.2b)

ˇ00s = ˇ000 + ˇ001l2 + �00s (5.3a)

ˇ01s = ˇ010 + ˇ011l2 + �01s (5.3b)

ˇ10s = ˇ100 + ˇ101l2 + �10s (5.3c)

ˇ11s = ˇ110 + ˇ111l2 + �11s (5.3d)

With ıiq ∼ N(0, �iq) and � iqs ∼ N(0, �iqs). Substituting Eq. (5.3) into
(5.1), and Eq. (5.2) into (5.1), Eq. (5.1) becomes:

logit p = (ˇ000 + ˇ001l2 + �00s + (ˇ011l2 + �01s + ˇ010)l1 + ı0q)

+ (ˇ100 + ˇ101l2 + �10s + (ˇ111l2 + �11s + ˇ110)l1 + ı1q)d1

+ ˇ2d2 + ˇ3g

Since L1 and L2 are discrete variables, and have the same value
within a group, we can rewrite this into:

logit p = (ˇ′
0 + ˇ′

0s + � ′
0s + ˇ′

0qs + � ′
0qs + ˇ′

0q + ı0q) + (ˇ′
1 + ˇ′

1s + � ′
1s

+ ˇ′
1qs + � ′

1qs + ˇ′
1q + ı1q)d1 + ˇ2d2 + ˇ3g

Now, assume that using structure learning (without using
the indicator variables) it is observed that �(G) = �(L1) = �(L2) =∅,
�(D1) = {G, L1}, �(D2) = {L2}, and �(D3) = {D1, D2, L1, L2}. Fig. 5 then
shows the corresponding Bayesian network and the joint distribu-
tion P(V) is given by

P(D3|D1, D2, L1, L2)P(D1|L1, G)P(D2|L2)P(L1)P(L2)P(G)

To predict whether a disease D3 is present given that L1, L2 and G
are known, we  have by Eq. (1) and standard probability theory:

P(D3|L1, L2, G) =
∑

D1,D2

P(D3|D1, D2, L1, L2)P(D1|L1, G)P(D2|L2)

Since the Markov blanket of D3 is {D1, D2, L1, L2}, any informa-
a) MBN representing multilevel regres-
ion of D3

(b) Structured MBN of D1, D2 and D3

Fig. 6. MBN  representations of the example in Fig. 5. (a) MBN representing multi-
level regression of D3. (b) Structured MBN  of D1, D2 and D3.
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Table  1
Probability estimations of D3 conditioned on D1, D2 and L1.

L1 = 1 L1 = 2 L1 = 3 L1 = 4 L1 = 5

(a) True probability distributions in the test set
D1 = 0, D2 = 0 0.150 0.175 0.200 0.225 0.250
D1 = 0, D2 = 1 0.250 0.275 0.300 0.325 0.350
D1 = 1, D2 = 0 0.350 0.375 0.400 0.425 0.450
D1 = 1, D2 = 1 0.650 0.675 0.700 0.725 0.750

(b)  Multilevel logistic regression (Eq. (5))
D1 = 0, D2 = 0 0.135 0.137 0.171 0.187 0.198
D1 = 0, D2 = 1 0.279 0.281 0.319 0.335 0.346
D1 = 1, D2 = 0 0.410 0.414 0.479 0.505 0.523
D1 = 1, D2 = 1 0.632 0.635 0.676 0.692 0.702

(c)  Structured multilevel Bayesian network (Fig. 6(b))
D1 = 0, D2 = 0 0.164 0.148 0.189 0.228 0.218
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D1 = 0, D2 = 1 0.271 0.242 0.286 0.304 0.331
D1 = 1, D2 = 0 0.330 0.398 0.442 0.453 0.466
D1 = 1, D2 = 1 0.653 0.680 0.747 0.735 0.749

etwork (Fig. 6(a)) only D3 is modeled as an outcome variable of
nterest, as where in the structured model (Fig. 6(b)) D1 and D2 are

odeled as outcome variables as well (still being an explanatory
ariables of D3). As a consequence of Theorem 1, the disease vari-
bles in Fig. 6(b) do not have edges from I2 and Li directed toward
hemselves.

The comparison between the multilevel regression technique
nd the structured multilevel Bayesian network is outlined in
able 1, showing the probability of disease D3 in the presence
f L1, D1 and D2. Parameters of the multilevel regression model
re obtained with the MLWin  software, in which the algorithms
escribed at the end of Section 3.3 are implemented [58]. Parame-
ers of the MBN  are learned using the bnlearn package [54] in the
tatistical software R.

Using AIC and BIC, the most accurate multilevel logistic regres-
ion model allows random intercepts and random slopes on D1
or each entry of L1. Although the probabilities derived from the

BN are closer to the true probabilities, the area under the curves
AUCs) within an ROC analysis are close together, i.e., 0.725 and
.712 for the MBN  and multilevel regression respectively. In the
ultilevel regression all variables are used for prediction, whereas

or the MBN  only the variables of the Markov blanket are used for
rediction.

The net reclassification improvement is in favor of the MBN,
.e., the NRI is 0.2144 (p < 0.001). Thus, on average the MBN  is sig-
ificantly better then the multilevel regression approach in this
ynthetic example. This due to the fact that an MBN  is able to give
n exact solution with respect to a dependency structure between
ariables and its observations. Multilevel regression does not have
hese dependency constraints, which possibly favors overfitting the

odel.

. Modeling inter-practice variation in multimorbidity

Normally, in scientific research, one would investigate diseases
eparately, resulting in different predictive values of variables
hared by both diseases. For example, multilevel regression analy-
is was recently used by Nielen et al. to investigate the influence of
articular family practice variables on hypertension and diabetes
ellitus, revealing an inter-practice variance in predictability [24].
owever, since interactions could have an additive effect on preva-

ence, this yields no insight into the predictive value in case both
iseases are present. In fact, we need an extra regression model on
he combined diagnosis of hypertension and diabetes together to
e able to make such conclusions.
In this paper, we will use the research of Nielen et al. as starting
oint. Firstly, we compare the parameter estimations of an unstruc-
ured MBN  with multilevel regression. Secondly, we  compare the
redictive power of a structured MBN  with multilevel regression.
ce in Medicine 57 (2013) 171– 183

6.1. Description of the models

To evaluate if the parameter estimations of an MBN  are com-
parable with a multilevel regression we analyzed models for both
diabetes mellitus and heart failure. Nielen et al. analyzed hyper-
tension instead of heart failure. However, besides the validation of
parameter estimations, we  also want to investigate the predictive
power for diseases that have a different onset during life. Heart
failure is known to be associated with diabetes mellitus and hyper-
tension [59], and its risk management involves almost the same
variables [60]. Since the onset of hypertension and diabetes mel-
litus is typically earlier in the patient’s life than the onset of heart
failure it is in our interest if the finally structured MBN  follows these
associations.

We used five models for the analysis. The first two models are
the multilevel regression models for predicting either diabetes mel-
litus (model MLR-DM) or heart failure (model MLR-HF) using data
which is grouped by practice, where the urbanity of the practice
is modeled as higher level variable. The next two  models (MBN-
DM and MBN-HF) are the corresponding unstructured MBNs for
the first two  models, assuming no further dependencies between
variables exist (cf. Fig. 3), and that the urbanity is independent of
the disease, given the practice (cf. Lemma 1). Finally, we  consider a
structured model (MBN-STR) which contains both diseases as well
as structure between the outcome and explanatory variables, which
we call intra-level structure.

All five models use practice and urbanity as higher level
variables. Since the practices use different types of information sys-
tems, one might argue this is of influence on the predictions. To
model this, a second level grouping variable (the used information
system) can be incorporated on top of the first level grouping vari-
able (practice). However, it turns out that there is no significant
benefit when doing so. Therefore this idea is omitted for further
analysis.

6.2. Research problem and data

The patient data was routinely collected by the Netherlands
information network of general practice (LINH). In 1996, they
started as a registry of referrals of general practitioners to medical
specialists. Information about contacts and diagnoses, prescrip-
tions, referrals and laboratory and physiological measurements
are extracted from the information systems. Currently, the LINH
database contains information of routinely collected data from
approximately 90 family practices out of several different informa-
tion systems. Unless patients moved from practices, and practices
opted out, longitudinal data of approximately 300,000 distinct
patients are stored. Patients under 25 were excluded, because of
their low probability on multimorbidity. Practices who recorded
during less than six month were also excluded from statistical anal-
ysis. Eventually, we used data of 218,333 patients from 82 Dutch
general practices, meaning an average number of patients around
2650 per practice. Morbidity data were derived from diagnoses,
using the international classification of primary care (ICPC) and
anatomical therapeutic chemical (ATC) codes.

6.3. Unstructured MBNs compared to multilevel regression

For both the multilevel regression models MLR-DM and MLR-
HF we  estimated the parameters using MLWin  [58]. For the models
MBN-DM and MBN-HF we  used MCMC  simulation, available in the

WinBUGS software [46]. All variables were discretized and modeled
using a Bernoulli distribution. Parameter estimates using a 10-fold
cross validation are presented in Table 2. As expected, the results of
the unstructured MBN  models are similar to the results obtained by
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Table  2
Parameter estimations of explanatory (parent) variables, represented as odds ratios,
using cross validation in a multilevel analysis for diabetes mellitus and heart fail-
ure  (MLR = multilevel regression, MBN  = multilevel Bayesian network, DM = diabetes
mellitus, HF = heart failure).

Diabetes mellitus Heart failure

Model MLR-DM MBN-DM MLR-HF MBN-HF

Age 1.029 1.028 1.106 1.106
Gender (ref = male) 0.914 0.915 0.823 0.815
Overweight/obesity 1.725 1.671 1.689 1.600
Diabetes mellitus – – 1.256 1.260
Lipid disorder 6.437 6.392 1.172 1.183
Hypertension 5.675 5.800 2.071 2.067
Peripheral artery disease 0.954 0.949 1.619 1.530
Heart failure 1.132 1.194 – –
Retinopathy 9.253 9.669 1.310 1.104
Angina pectoris 0.679 0.665 2.214 2.184
Stroke/CVA 0.770 0.766 1.388 1.397
Renal disease 1.176 1.200 1.878 1.881
Cardiovascular symptoms 0.848 0.850 2.596 2.636
Urbanity (ref = urban)

Urban 1.000 1.000 1.000 1.000
Strongly urban 1.261 1.275 1.145 1.158
Modestly urban 1.477 1.490 1.181 1.192
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Little urban 1.436 1.408 1.422 1.456
Not  urban 1.474 1.259 1.335 1.318

ultilevel regression, showing that multilevel Bayesian networks
re a valid alternative method for multilevel analysis.

.4. Composition of the structured MBN

The structure of the MBN-STR model is learned using the bnlearn
ackage [54] in the statistical software R, which provides various
ethods for structure learning. We have restricted the search of

ayesian networks to those that satisfy the multilevel structure by
sing white- and blacklists. See Fig. 7 for the resulting Bayesian
etwork structure. Note that indeed there is only a dependency
etween consecutive levels, and that this is solely through the
rouping variables. Furthermore, it turned out that only a subset
f the disease variables depends on the practice variable, of which

iabetes mellitus is amongst them whereas heart failure is not.
o technically diabetes mellitus is an outcome variable and heart
ailure is an explanatory variable within the definition of an MBN.

Level 1

Level 0

practice urbanity

overweight
obesity

age

gend er

lipid
disorder

hypertension

diabetes
melli tus

peripheral
artery
disease

angina
pec toris

heart
fail ure

retinopathy

stroke

renal
disorder

cardiovascular
symptoms

ig. 7. Structure learning without any domain knowledge of cardiovascular diseases
nd diabetes mellitus in family practices. The dotted arcs are arcs from ‘age’ in order
o  make the model more readable.
ce in Medicine 57 (2013) 171– 183 179

However, since all variable can be treated as uncertain we can still
use the model to make predictions for heart failure.

Some of the directions of certain edges is opposite to what
the domain experts would expect, e.g., angina pectoris is point-
ing toward peripheral artery disease (PAD), but in reality this is
seen as a comorbidity due to atherosclerosis, which itself is not
present in the model. Therefore, we  also incorporated some domain
knowledge [59,60] into the model and allowed a geriatric special-
ist and two  physicians to validate the model. Removed edges are:
angina pectoris → PAD, angina pectoris → renal disease,  heart fail-
ure → PAD, and practice → cardiovascular symptoms.  The edge heart
failure → renal disease is reversed. The final model is showed in
Fig. 8, along with the prior probability distributions for patients
aged over 65 years. However, these results are of a preliminary
nature, and we  did not study the validity of the structured model
further.

Using bootstrapped samples to validate the strengths of the
edges, most edges shown in the network of Fig. 2 appear in more
than 95% of the networks learned from the samples. The only edges
with a percentage lower than 95% is renal disease → heart failure
(0.73%). Most of the edges not present in the originally learned
structure have an appearance close to 0%.

In this model the prevalence rate of diagnosed diabetes mel-
litus in practices varies between 0.008 and 0.135, with mean
0.077 and standard deviation 0.025. The prevalence of heart fail-
ure varies between 0.001 and 0.059, with mean 0.019 and standard
deviation 0.011. Fig. 9 shows the same model as in Fig. 8, but
now conditioned on hypertension and diabetes, i.e., both diseases
are present. In this case probabilities are more or less doubled
(or tripled in case of lipid disorder), indicating the population of
elderly patients with both hypertension and diabetes have twice
the chance of getting an additional cardiovascular disease when
compared to the general elderly population. For this population,
i.e., diabetics with hypertension, the prevalence of heart failure
varies between 0.001 and 0.230, with mean 0.086 and standard
deviation 0.049.

Finally, the conditional probability distribution of a disease node
can be used to uncover interactions between diseases. If we cal-
culate the probability of angina pectoris (ap) in the presence of
both hypertension (ht) and dyslipidemia (dl), we obtain: P(ap|ht,
dl)≈ 16 %. It turns out that this is much higher than one can expect
from the other probabilities: P(ap|ht, dl) ≈ 7%, P(ap|ht, dl) ≈ 5%
and P(ap|ht, dl) ≈ 1%. We  can do this exercise for an arbitrary
disease and (a subset of) its parents in the MBN  structure. For
example, when looking at heart failure (hf), there is an interac-
tion between hypertension and diabetes mellitus (dm): P(hf|ht,
dm)≈ 9 %, P(hf |ht, dm) ≈ 5%, P(hf |ht, dm) < 1% and P(hf |ht, dm) <
1%, which suggest that the effect of diabetes on heart failure is only
of clinical significance in the presence of hypertension.

6.5. Comparison of the structured MBN  with multilevel regression

Besides the estimation of odds, a more practical question is how
well the model can be used for prediction. For this, we  compared
the predictive performance of the MBN-STR model to multilevel
regression analysis for single diseases, i.e., the models MLR-DM and
MLR-HF.

For the multilevel regression method, we  used all the predic-
tors, while for the MBN-STR model, we  can restrict ourselves to the
Markov blankets (cf. Section 3.1) of the diseases and higher level
variables where necessary. For diabetes mellitus, the MB consists
of practice, age, gender, obesity, lipid disorder, hypertension, heart

failure, retinopathy, and renal disorder. However, making predic-
tions in a multilevel model we treat the indicators, i.e., the practice,
as uncertain, and instead we  have to use the urbanity for prediction
as well. The MB  of heart failure on the other hand consists of age,
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Level 1

Level 0
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totally urban 0.20

strongly urban 0.23

modestl y urban 0.14

little urban 0.22

not urban 0.21

urbanity

age > 65 yr

gender yes 0.03

no 0.97

overweight/obesity

yes 0.25

no 0.75

lipid disorder

yes 0.50

no 0.50

hypertension
yes 0.20

no 0.80

diabete s mellitus

yes 0.04

no 0.96

angina pectoris.

yes 0.06

no 0.94

renal disease

yes 0.10

no 0.90

periphera l arter y d.

yes 0.08

no 0.92

heart failure

yes 0.05

no 0.95

stroke

yes 0.28

no 0.72

cardiov. symptoms

yes 0.01

no 0.99

retinopathy
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ig. 8. Structured MBN  with prior probability distributions for patients aged >6
ardiovascular diseases and diabetes mellitus in family practices. The dotted arcs ar

ender, lipid disorder, diabetes mellitus, hypertension, peripheral
rtery disease, angina pectoris, stroke, renal disorder, and cardio-
ascular symptoms. For heart failure no higher level variables are
eeded for prediction when the diseases that vary along such vari-
bles are known, e.g., obesity, hypertension, and diabetes.

To measure the accuracy of the predictions we performed an
OC analysis (see Fig. 10). When comparing the AUC between
ultilevel regression and the MBN-STR model, the ones for the
BN-STR model are slightly better with a difference of approx-

mately 1%. For the MBN-STR they are approximately 0.90 and
.84 for diabetes mellitus and heart failure respectively. For the
LR-DM it is 0.89 and for the MLR-HF it is 0.83. When perform-

ng a net reclassification improvement analysis for the MBN-STR

odel compared to the multilevel regression models MLR-DM and
LR-HF, the NRI is significantly positive in both cases, i.e., the
RI is 0.723 (p < 0.001) for diabetes and 0.075 (p < 0.01) for heart

ailure.
rs, using domain knowledge (expert opinions/evidence from other research) of
 from ‘age’ and ‘gender’ in order to make the model more readable.

7. Discussion

In this paper, we  have presented a new approach to model mul-
tilevel data, and applied this to health care data of general practices.
As we have discussed, such data often contain a hierarchical struc-
ture, which can be modeled by using different levels of data, e.g.,
patient data collected from multiple general practices. Since tra-
ditional multilevel regression methods only allow one outcome
variable each time, which is unpractical in the context of multiple
diseases, we combined Bayesian networks with multilevel analysis
yielding multilevel Bayesian networks, which allows uncertainty
of all disease variables into one model.

Furthermore, we  can add intra-level structures between vari-

ables giving extra insight into probabilistic dependencies and
interactions. Moreover, certain domain knowledge can be incorpo-
rated, e.g., edges between pathophysiology and its corresponding
lab results are always pointing to the latter, making the model more
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Fig. 9. Structured MBN  (cf. Fig. 8) with posterior probability distribu

asy to interpret. Such domain knowledge can be used during the
earning of the structure of a Bayesian network by restricting the
earch space.

In this paper, we have shown that a multilevel Bayesian net-
ork can do the same as traditional multilevel regression methods.
e do not claim exact equivalence, but using synthetic data and a

eal-world application of MBNs with clinical patient data from fam-
ly practices, we showed the empirical equivalence of a traditional

ultilevel regression model to an unstructured MBN. Furthermore,
tructured MBNs provide insight into the relationship between
ultiple diseases and allows for studying multiple diseases at the

ame time, avoiding the redundancy of regression methods (when
sed to analyze multiple disease in the same variable set).

Although it is not our main purpose to provide a better clas-

ifier, the predictive value of a structured MBN  is just as good as
ultilevel regression analysis, despite a reduced number of pre-

ictors, i.e., the Markov blanket. Both in the synthetic example
nd the real life applications of diabetes mellitus and heart failure,
 for patients with both hypertension and diabetes (aged >65 years).

there is a small improvement in the AUC and a significantly pos-
itive NRI. Bootstrapped samples showed that the strength of the
edges between disease variables in the network representation of
diabetes mellitus and heart failure is mostly close to 100%, meaning
we can be confident about the found structure.

Using the learned MBN  we are able to condition on certain
disease variables, e.g., when conditioning on hypertension and
diabetes, the MBN  reveals that chances on obtaining another car-
diovascular disease, such as heart failure, is more or less doubled.
This ‘personalization’ of the network could be seen as a step forward
to personalized clinical guidelines, as mentioned in the introduc-
tion, making the MBN  a promising tool in the new domain of
multimorbidity. Further research will focus on the application of
the MBN  framework to relevant clinical questions within Public

Health and the related multimorbidity issues.

Finally, since the data available will never provide a full causal
model, it is important to make use of expert input. Besides
putting restrictions on existing variables, one might also introduce



182 M. Lappenschaar et al. / Artificial Intelligen

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

mellitusdiabetesMBN
mellitusdiabetesMLR

failureheartMBN
failureheartMLR

F
t

v
e
u
i
t
a
i
e
i

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

2007;7(34).
ig. 10. ROC analysis of a structured multilevel Bayesian network (MBN) and mul-
ilevel regression (MLR) for diabetes mellitus and heart failure.

ariables that are missing from the data, but which may  add crucial
xplanatory power. This is possible in BNs, and thus MBNs can also
se the same expertise to quantify the probabilistic relationships

nvolving these missing variables even though no data exists for
hem. As an example, atherosclerosis may  be added to the model,
nd, using the method proposed in [61], this variable may  capture
mportant combinations of observations, e.g., peripheral artery dis-
ase along with a cardiac disease such as angina pectoris. This may
mprove the prediction performance of these models further.
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